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A

INTRODUCTION

2

In order to solve problems in indefinite integration

4. effectively, students need both a mastery of the special techniques

of integration and a general procedure for choosing and applying

these techniques to problems. Most textbook'space and classroom

time in this subject area is devoted to teaching and practicing the

special techniques of integration. It is.generally issumed.tBat

with much practice and the help of insightful comments from their

teachers, students will develop a,"feel" for the material that

enables them to solve problems effectively. In my experience,'

however, many students havhad difficulty learning to approach

problems in integrati4en systematically and effectively: even after

lengthy classroom discuisions of" problem solutions.

Tolovercome this problem, this, booklet provides students

directly'with a general procedure for approaching"andsolving

'problems in integration. Based on observations of "experts"

working on integrals, the procedure has three steps: SIMPLIFY,, ,

CLASSiFYi and MODIFY.

In step 1, kMPLIFY, we try to reduce a problem to one which

can be Solved by a formula or can be done easily. -'if this fails

to solve the problem we proceed to step 2, CLASSIFY. Here we use the

., form of the integrand to decide which special technique (integration
0 -

by parts, by partial fractions; etc.) to use on the_problem.' If we

are unable to CLASSIFY the integrand, we go to step 3, MODIFY. There

we tr%to:manipulate the integrand into a more familiar oi manageabld

form. We alMays check for simple alternatives before begi9ing

complicated calculations, and start the process over with step 1,,

whenever. we have succeeded in transforming the integral to something

easier., The general procedure is outlined in the table on page 4,

and summarized in full detail on the,last page of this booklet.

.

7
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INTEGRATION: e

.

A A GENERAL PROCEDURE

Proceed from one step to the next when the .techniques of
that step fail to solve the problem. Always look for easy

alternatives before beginning comptizated calculations.
If you succeed in transforming the problem to something
easltr, begin again at Step 1. .'

Btep 2:. ,,,"CLASSIFY!

/

Rational

.Functions
!Products

.

Trigonometric
Functions

Special

Functions
.

(1.

ti . .

Step 3:MODIFY! .;

' 4

Problei.
Stitilarities

Special

C Manipulations

heeds
Analysis

3

HOW TO' USE THESE MATERIALS

-Work the pre-test in Appendix I. These materials are written

for people who have mastered the basic techniques of integration. If

you miss more than one of the pre -test problems, of if you find them

difficult, you should review your textbook's sections on basic anti-

derivatives and substitutions before you start Chapter 1. Before you

work on Chapter 2, you should be familiar with the techniques of

partial .fractions, integration by-parts, and trigonometric substi-

tutions. 1
L

1 This booklet is organized like the General Procedure, gin in

the chart on page 3. The three chapters in the booklet and the

sections the are divided into correspond to the three steps in the

general procedure and their subdivisions. You should work through

this booklet following.the procedure,closely, until it becomes

automatic. If it does; you will be ableto solve problems-in

integration like an expert.

. Each section begins with a description of some technique of

integration, which is summarized in table fop. The table is followed

by sample problems, which serve }s review problems and epmples. -Iyal

'should try to solve each sample problem yourself. Then compare your

answer with the solution _given. Just reading through the solutions

will not be enough! You should focus on the process of solution,

which is as important as the answer.

Each chapter.ends.with exercises-designed to reinforce-the

procedures you have just learned. Work the exercises as if they

were a test. Detailed solutions are in a separate solutions manual.

Rote: It's easy to "lose" terms in an,intergal if we're not careful..

I've chosen to write all the terms in an integral at each stage of

the process, Apct I suggest you do the tame. This-tikes some extra (\

time, but it helps prevent Iltly mistakes..

--

-
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Chapter 1

SIMPLIFY!

40111111,1' .

There is 'one general rule that you shodld keep in mind

k1/4

whenev r you are solving problems:

lyALWAYS CHECK FOR EASY ALTERNATIVES

BEFORE BEGINNING ANY CCO4P.LICATED

OR TIME- CONSUMING OPERATIONS,

I

As the sample peoblems below illustrate; t is worth taking

a few moments to look for h Ruicksor easy solution to a problem

before jumping into a compiicated prce/re. This is especially

true in integration, where a timely observation can save tremendous

amounts of work. The twb types of SIMPLIFYing opeiations we will

discuss are summarized below.

Step 1: SIMPLIFY

I

EasyAlgehraic ' ObviOus
Manipulations Substitutions

10

6

.0

Section 1

EASY ALGEBRAIC
MANIPULATIONS

Sole algebraic manipulations are easy enough to use that

it's worth considering them'autoitaticaily before going oh to

'anything else. For example, We almost always break the integral

of. a sum into sum of integrals and then integrate term by term.

Before doing this, however, we should lodk fOr other alternatives.

Sometimes an algebraic or.trigodometric identity will siMplify

the term facing us, before we try to integrate it. Another operation

which. is more complicated but also worth considering is simplifying

rational functions by long division.

'We call a rational functiOn (thb quotient of two pOlynemials)

a "proper fraction" if the degree of the numerator is less than

the degiee oP the denominitor. Proper fractions are usually easier

to manipulate than others. Also, we can only apply the technique

of partial fractions to proper fractions.- Thus we.should consider 4

division as a preliminary simplification. In sum,we hive:

EASY ALGEBRAIC MANIPULATIONS

(1) Break integrals into sums

(2) Exploit Identities

(3) Reduce rational functions to
Proper Fractidns by division

11
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SAMPLE PROBLEMS

Each.of the following sample problems canbe SIMPLIF4ED

by an easy algebraic manipulation. Try to solve each problem

before you read the solution, and then compare your method with

.mine.

1 + sin x

; 'cos2x

dx 2. Ssin x + cos x)
2
dx

rl + sinx
- 2
cos x

x3

SOLUTIONS

This integrOd contains i,_sum, so we should consider breaking
the problem into a sum tf integrals. This gives us

jr 1 rSin X ,

= fisec 2x dx +
jrsin.x

.?( --2- dx
2

dx

cos x cos x cos x
.1

, .

The first integral can now be done directly. In the second,
we notice that the denominator contains the term cos x,
Since the nunerator is sin x , which (except for A minus
sign) is the derivative of cos x, this suggests that we

make the subStitutions
. .

Then the

isec2x dx

= tan x -A-20u

4.
= tan x

= cos x, du = -sin x dx.

integrals become

f.%. -sin x dxcos
2
x

tan

tan x - (-u 1)

x_
idu

+C = tan x +

= tan x + sec x + C.

1^ +C
uA

I

a

Solulions, Continued

2 x + cos x)2 dx

The first thing we should
be done directly, so some sort
If we square the term (sin x +

notice is that the integral can't
of manipulation is called for.
cos x), we obtain

f(sin
2

+ 2 sinx cos x + cos
2
x) dx.

STOP! While the integral can be broken into three terms and
each done separately, there are simplifications. Do you see them?

Recalling the trig.identities (sin
2
x + cos

2
x = 1) and

(sin 2x = 2 sin z cos x), we can write the above as

2
v(sin x + cos

2
x) dx + /2 sin x cos x dx = dx + fsin 2x dx

1
= x -

2
cos 2x + C.

NOTE: The terml2sin x.cos x dx can also be solved by the ..,

substitution u=sin x. or u = cos.x. These give two equivalent
solutions to the problem,

it+ sin
2
x + and x - cos2x + C.

3

dx
2
x + 1

The integrand inthis problem is an "improper fraction",
so we should perform a division. The division gives us a
quotient of (x) and a remainder of (-x), so we obtain'

3 1,nce,

dx =Rx
x + 1

dx =fx dx
x
2

+ 1
)

x
2

+ 1

dx.

In the second integrand, wenotice that the numerator is one
half, the derivative of the denominator. If we make the
substitUtions i= (x2+1), du = (2x dx), the above becomes

fx dx -
1 fau 1 2 1

= k -
2 u 2 -

=
1

x
2 - 1

2

lnlui + C

In fx2+11 + C.

13
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. '1

"OBVIO US" SAiliSTITUTIOWS-

9

Using substitutions is one of the...dosi powerful tools welave

for simplifying and solving integrals, I always look for substitu-

tions before.I try more complex procednres. There are two guidelines

I use in looking for substitutions:

(1) Does the integrand contain a function ofa,function?

It it does, try a substitution with u ...as the_-"inside" function.
if

Consider the'integrals

Ix'tan-1(x2)

1 + x
4

.cos2x

.

dic and

tan
-1

(x
2
) appears.The term in the first integril, with" x

2'
as an

inside function. I mould try the substitution u = x2 in that

problem. The denominator of the second integral iscOs2x= (cos x)2,

an'tifride function. r Would try 'u = cos x.

(2) Does theiintegrand contain a complicated or "nasty"

function, particularly in tht denominator of;a fraction? If so,

trya substitution with u as the "nasty" function. Consider

)(tan

-1
x +,x) .-.2--)dx and 'jr

x

-Tr---dx:
x +1 - 9

(fx :2 +2

,

In the first problem I would try u = (tan -lx + x), and hope that

it helps. [It does; see sample problem 2.] In the second problem

the denominator .isn't particularly "nasty", but it's worth trying the

substitution u = x
2

- 9. Then du =,..2x dx, and the integral is

1 Ir 2x dx
2

x2 - 9
11.

iydu 1s7 17.- lnix2-91 + C.

c
10

1

Note: If the problem I just discussed were x2_9 dx, the.

substitution u = x2 -9 'would not have helped. In general, a

substitution u = f(x) will only help if you cantfind the tern

du = f'(x)dx somewhere in the integral If you try a substitution

and it looks like you're getting involved in a complicated procedure,'

stop to consider other alternatives. The procedurei of chapter 1

are designed to help SIMPLIFY and solve an integral rapidly: You

should explore all Simple alternatives before trying anything

complicated. Ifineed be, you can always return to a complicated

substitution later.

OBVIOUS SUBSTITUTIONS

(1) "Inside" functions

(2) "Nasty" terms and
denominators

SAMPLE PROBLEMS

Each of problems 1 through 3 can be.solved by a

substitution. Try to solve each problem before you read the

'solution, and then compare your method with mine.

t an-1 x

dx

1 + x

2 (tan-lx x.1/ x2+2

'I x2+ 1

-x3 ex + dx

e - e

4. One of the following two integrals is much easier to solve
1

than the other. - Decide which it is, and solve it.

(b) jr(l+x4)5 dX(a)Ix
3

(1+x
4) 5

dx

15
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SOLUTIONS 7,

4*"

e

-1
x

2

Is.

dx

"..1 + x

-1

'In this problem we have the term e
tan

x, so tan IX

is an "inside" function. If we try'

u = tan 1x, then du=
1

2
dx.

1 + x .

.. ,

Since du does appear in the integral, we can make the substi-

. tution. The integral becomes

,
wietan -1 x ( 1 , u.

------7 dx) = dreu du = + C
/ 1 + x

K .

.

.
.

= etan-lx +

an
-1
x + x)

(x2+21--)dx
x +1

In his expression the term Itan-ix + xj is rather
"nasty". We might consider the substitution

u= tan-1x + x,

and see if it helps. We obtain

du =E-L--71+
2

+dx =
1 + x

)ex
1 + x 1 + x + x

)dx,1+x

and, we're in luck. The kntegral then becomes
2
+2(tanla + 4(12 dx) = jru du

r X +1

1 2
+ C=

2
u

=
2

(tan 1x + 111, + C.

12

e + e
.dx

x

-x

-x
- e

1 I'd like to work this problem using all the methods of,
this chapter, to illustrate how I would think about this k;

problem if I didn't know where it came from.

As a first step, I look for algebraic simplifications.
The numerator is a sum, so I might consider breiking the -

integral up into.

eX
dx

+.1 e-x

e
x

e-x

dx.

This doesn't seem,to help; so I look for substitutions. j

might be tempted to try the substitution u = ex at first,

since all the terms in the integral are expressed in terms
of'ex. But du = exdx, and I don't see that in the integral.
For that reason_I on't explore the substitution further now.

, If necessary, I can return to it.

Finally, I might try a substitution for the denominator,

u'=qex - e
-x

).

This gives du = (ex + e-x)4x,

which does appear
easy. We halle

iex

1 x
[(e +

in the integral. From here on the problem is

ex) dx] = -- du
1 r

= In lul + C

ln

1x

e- e

e +
ex
-x

+ C.

egt

4 One of the folloing two integrals is muckeasier to solve

than the other. Decide which it is, and solve it.

(a)f x
3
(1+x

4)5
dx (b) 1/(1+x4)5 dx

17
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As always, I start working on a problem by looking for
algebraic simplitications.' In both parts (a) and (b) of
this problem, I can multiply (1+x4) by itself five tines,
and then integrate tern by term. That, seems \t' complicated,
however, so I look for other alternatives.

In both parts of the problem I see (1+x ) so that the\

term (1+x
4

i) is an "insiae" function. If I try

u = 1 + x4, then du = 4x
3

dx.

Since the term (x.
3
dx) appears in part (a), that

be easy to solve. It becomes

.1x3(1+x4)5 dx 1=11+x4j5(4x3dx) = -1.115 du
4

1
= 17(1+x

4
)
6

+ C.

* * * WRUNG * * *

The sample problems you've worked through in this Chapter

may have seemed very easy, because you were on guard for simple

solutions. On tests I've seen students spend ten or fifteen

minutes trying to solve -

r

Je*X- 9

ntegral will

by partial fraetions or by using the substitution x = 3 sin 0 !

The moral of this alter is:

When you start working 'on a problem,.alatays
check fort an easy algebraic manipulation or
obvious substitution. , Only wheii you're sure

Aft'

the problem _cannot be SIMIFIED should you
try anything else. ,

\

EXERCISES
14

EXERCISES FOR C3AP2'ER 1

1

Detailed solutions of these exercises are available in a
separate solutions manual, The order of the 'solutions is scrambled,
to keep you from accidentally seeing the answer to the next problem
you are working on._ The solution number of the exercise you are
woAXing on is underneath the exercise number. For.ex'ample,-

{1+ means that solution 5 presents a discussion of exercise 1.
sol. 5

.

.

In each of the .fallowing exercises, one problem can be done
easily. Use the techniques of easy algebraic manipulations and
obvious substitutions to determine which it is, and solve it.,

I 1. I

sol.

(b)
tcos x dx
J2 + sin x

(a)
+ sin x
dx

dx
x + x + 1

x + 1

Isol. 2

(b)
j(Px3 + x2 + 1

dx
x + 1

0.1

{sol:8 (b) d sec
4
x tan x dx

it

(a) j tan
4
x sec x dx

tan x

1

4. Pa) fx2 + 1 dx.
sol. 1 -

-1
(b) si tan x dx

5 (a) viln(ex) dx

sol. 3

(b) dx

61 (a) firr. )(11 5+ )

dx

sol. 4
1

CO
vir(I + ./i-

x
(a),

ex- dx
e

sol. 6
1(b) 37-= dx

e

dx

I ,8, I (a) x2

1

4x + 3
sol. 7

-

/ x - 2
dx

x. -4x +33
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Chapter 2

`CLASSI.FYI.

As we noted in the introduction,:experts generally follow a=

three-step procedure when solving integrals. The first step, which

we discussed in Chapter 1, consists in kooking for simplifications
or easy solutions to a problem. The second- step, if necestary,

consists df choosing and applying the technique most likely to

solve a problem.
.

This choice-of technique is tally bated. onthe FORM of the

integrand. Ask,'an expert why he chooses to solve fx sin x dx
using integration by parts, for example, and he'll say "because

it's a product of dissimilar functions." The solution to a problem

follows routinely once the right technique has.been chosen.

In this chapter we wil I classify integrals in-four basic

categories, and' discuss the techniques most often effective in

dealing with them. Our classification is summarized by,the_.

second-box in the General Procedure:

Step 2: CLASSIFY

Rational
Functions ProductsI Trigonometric

Functions
Special
Tune-Lions.

yotir goal 'in working through this section. should be to

classify integrands by form and recall the techniques appropriate '-
4.

to them. If you systematically use\tze simplifications of enectbr 1

and tRe'classification scheme of this section, you should be able

to so
/lye most of the problems at the end of xourtext's chapter

on integration.

, 20

o

r 16

Section 1
7

'RAa T.IONAL FUNCTIONS

A rational function , is the qhot ient of two, polynomials . The

Procedure for integrating rational functions is straightforward,
although it may sometimes be long and involved. A large part of
that procedure is purely algebraic, and consists of, "breaking up"
complicated rational functions into sups of simpler ones. We 0/11

begin by examining the simple or "basic" rational functions, and then
discuss tow -to break up thelmore complicated ones.

Part 1:

,

Definition: A Basic Rational Function is a "proper fraction" of the
.

form ,

r ,I r , Or r)s, + s .

z.

+b - (ax + b)n
',.

O.

ax2'+ bx + c

'Basic rational functions -of the first two types are easy to
integrate. If the denominator it (ax+b) or (ax+b)n, 'she

substitution u = (ax+b) will solve ft. problem. See sample

problems 1\ and 2.

RATIONAL-FUNCTIONS
4

'Things are more 'complicated kf the denominator is quadratic:
If the denominator factors easily, we use partial fractions to
break up the integiand. .For exarife,

(x-5) dx
,x2 + 3

- f bC-51cc ..f / dx( 2 ,..

(x-l) (x-3) x-1 r!"

2 In In +

We will discusst the technique of Partial fractions-in part 2

of-this section.

21

.11
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4.
17

o
Suppose the denominator'does not factor easily.

complete the square andMake a sbbstitution for the u

the denominator. There are two possibilities.

2 1
(i) If the denOkinator is of thelorm (u +a"),

something of the form

b+c
y--y qdb bf,ia-T du
u a u a

A
044.

The fitst integral on the right will

seconggives an arctangent.

c du.
' 1

u +a4"

Then

fprm in

we will obtain

a
yield.a logarithm, and the

(ii) If the denominator is of the
-4 -,

f bu+c
du. .

;at

form (u
2
-a

2
), we obtain

ere aretwo ways to continde.from here. One is to factor the

denominatikand use partial fractions to break up the expression

43
fu+a)(u-a).

bu+c

If tfie factors (u+) and (u-a),Jook. reasonable, this is probably

egood way to finish te problem.,,WR'do have another alteynativd:

however':

*.14 can write the integral as

bf4' A 1--- c
2 2 du*

u
2
-a

2
u -a

The first integral is logarithm, and the second

easily using the formula given; below. See sample

through S.

can be solved

problems 3

1 1

27---72- 7 i;
u - s

1

u - a 1u'+ a

22

44

r

fP

r-
18

.4E11E11

t f
INTEGRATING BASIC RATIONAL FUNCTIONS

(1) If ttfe denominatords (ax+b) or 'Saic+b)n, substitute
u r4,(ax41)). This reduces the problem to standard form.

(2) If the denominator is quadratic and factors easily,
use partial fractions to. finish tbsproblem.

(3) If_the denominator is quadratic and does not factor
easily, complete the square. If the denominator is then

is (u
2+a2), integrate directly to obtain a logarithm

and/or inverse tangent.

ii: (u
2 -a2), either use partial fractions or break up the

' integral and use the formula onp.17.

0

Note: Make sure you have checked for SZATLIPICANOW beforeeyou-
-use the procedure for rgtiomailunctirons.

PS

SAMPLE PROBLEMS

THe solutians.to these problems illustrate the techniques

described above. Try to solvethem before you read my solutions.
If they cause you a_great deal of difficulty, you should probably
practice on some simrlalr problems from your textbook.

1.

3.
3

,f4

dx 2 j7--E dx5x +./ (4x 3)

j
2

3x dx

x + 4x +'13

t

4. fx2

x+S
dx

oix
2

+ 4x + 2

x; 2

+ 4x + 13

23

dx
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Solutions to Sample Problems 19

1
4

, f31777 dx

There is no algebraic simplification possible. Since the
-denominato.r is (5x+7), we make,the substitution

u = 5x+7; du = S dx.

The integral then becomes

4 f 5 dx
T )37-477

5 ,

dx
(4x + 3)

sti u

4
=

S
lniul +'C =

4
lnISx +71 + C.

J
Again, I lee-no algebraic simplification. Since the

denominator is (4x+31°,-the substitutions

u = 4x+6; du = 4 dx

are called for. The integralthen becomes

4

5Jr' du .
(u-s- dx

4
(4x+3)

4.41 3x + 7
dx

x
2
+ 4X f 13

+ C

( -1- c -1
+C.

4(4x+3)
s

As a preliminary algebraic manipulation I would considers
breaking the integral into a-sum, but that doesn't look like

will help yet. Checking for obvious substitutions, I' would

consider substituting for the denominator, u = x2+4x;3.

This givqs du = (2x+4)dx, which does not appear,in the

numerator. I can't factor the denominator, so I should

complete the square. Since

x2 4x +

132

= '(x
2

s'" 4x + 4) + 9 = (x + 2)
2

+ (3)i,

4

Solutions, Continued 20'

.the denominator is of ihe form (u2 + a2), where u = (x4'2)

and a = 3. Making the substitutions u=x+2 and du=dx,

. we obtain .
.

.4,1_2 _.
1[3(u-2)+71du jr3u du j du

(3x+7) Aix

u + 3 tr+7 J: ir51
- x +4x+13

= 2 - lnIu2+321 + Itan-1(3) + C

= In + tan-1(!ir21) + C.
3

tf ;+,_2
dX

x + 4x + 13

As always, I begin work on this problem by looking for easy
algebraic manipulations. The integral can be broken into a
sum of two integrals, tut, this does not look especially

promising. I see no useful identities and this is already
-a "proper fraction", so I look for obvious substitutions next.

The "nasty" term is the denominator, so I' should
consider the substitution

2
u = x + 4x + 13.

This would give

du = (2x + 4) dx,

which is double the numerator in this problem! The rest is'

easy. The integral is

'11p2x+4) dx lfdu
lnlul+ C

2 x2+4,043 2 u 2',

In lx2+4x+131 C.
2

Notice: This problem could haie been done by completinilthe
square in the denominator, like we did in problem 3. The

advantage of the SIMPLIFY step is that it saved us the trouble.

25
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Solutions, Continued 21

Jr x + S
dx

x
2

+ 4x + 2

A preliminary check indicatet that none of the SIMPLIFYING
procedures will be .of: assistance here. Since I cannot factor
the denominator easily, I complete the square to obtain

x
2
+ 4x + 2 = (x

2
+ 4x + 4) - 2 = ( x+ 2 ) 2 - ( ir)

2
.

Thus the denominator is of the form u
2
-a

2
, where u = x+24.

and a = /2". Making the substitutions u = (x+2) and .

du = dxs° we obtain

jr(x+Sidx jp(u-2)+S)du ju du jr3 du
+2-- 2

x t4x+2 u - 2 u - 2 u - 2

The first integral is easy, and yields a logarithm. For the

second integral we can use the formula on page 17 to obtain

1 4,, 1 I - 1

u
2

- 2 125 u u +11-

and the integral becomes

,oe .

ubl:du 3 vir 1 1 )
du, =

--7 2/T u411

In 1u2-21 +
2r2-

(lnlu - lnlu +1i1)+ C

lin 1 u -a ,
,12_21 4.

24-1. u +If

1
-2- In lx2+4k+21 + In (x+2) + C.

242 (102)

-al

I r

26°

01.

r

22

Part 2:

DROWSING RATIONAL FUNCTIONS,

In part 1,of this section we learned tPintegrate the basic
rational functions. It is a fact that any rational function can be
decomposed into a sum of basic rational functions. The techniqes we
use are summarized in the following table.

DECOMPOSING RATIONAL FUNCTIONS'

(1) If the'function is On "improper fraction", divide to obtain
the sum of a polynom)al and a proper fraction.

(2) Factor the denominator as far as you can, into a-product
of linear and quadratic terms.

,.(3) Use the technique pf partial fractions to decompose the
proper fraction into a sum of simpler terms.

We have already discusssed step (1) in theSIMPLIFY chapter.
If you are trying to integrate an improper rational function, your
first step should always be to divide, and then to look-for further
simplifications.

Step (2), factoring the denominator, can sometimes be
difficult if.the denominator is complicated. The following rules
from algebra often make this task easier.

Rule 1: If a polynomial with whole,numbers for coefficients
has a root which is a whole number, that root
is a divisor of the constant term of the polynomial.

For any polynomial P(x), the term (x-a) is a
factor of P(x) if and only if P(a) = 0.

Rule 2:

,To see how these rules work, let's factor the polynomial

P(x) = x3 +x +x +6.

By Rule 1, any number which is a root of P(x) must-be a divisor
of the constant term 6. Thus the only candidates for a whole
number tbot of F(x) are

+1, -1, +2, -2, +3, -3, t6, and -6.

:27
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Now,we use Rule 2 to see if any of these are roots of P(x).,Testing

'the candidates,one at a time, we obtain

P(+1) =11,
3

+ 12.+. 1 +

P( -1) = C-1)3 fr (-1)2
,

PC:2) = 23 + 22-+ 2 +

?(-2) = (-2)31* (72)2

6 .1 9, so (+1) is NOT a root of P(x).

+ (-1) + 6 =.5,

so'( -1) is NOT a root of P(x).

6 = 20, so (+2) is NOT a root of P(x).

+ (-2) * 6 =

-8 + 4 - 2 + 6 0.. `thus (-2) IS a root of P(x).-

Using Rule 2, we now have that x - (-2) = (x + 2) is a 'Actor

of P(x) = x3 + x2 +.x + 6. We can divide to find the other factor:

A

0

2
Thus P(x) = x3 + x. + x + 6 = (x + 2) (x2 - x + 3).

term cannot be factored further, so we stop here.

s 2
.

.... ..x - x

x + 2 jx3 + x2 + x + 6

.. x
3
+2x

2

- X
='x2 -2x
----.7"17-+ 6

3x + 6

The quadratic

4

%
,

Step (3) in the procedure calls for using the technique of

partial fractioni. -Since your textbook describes it in detail,'

1111 just 'summarise it here. 2,' '''

,
, .

......._ ,

The technique of partial fraCtions is used to decompose a

Over fraction into a sum of basic rational functions. Make. sure

you have a proper fraction before you try.to use the technique:,
. , ,

_facht4rm in the denominator of.the fraction you are
trying to, break up will give-one or lore terms when you use

partial fractions. . ' .

If (arftTaippears in the denominator, there will be a term

of the form A
.

,11--;--- 'in the decomposition.
O.....

.

, ,

If (ar+b)n appears in the denoidnator,'there will be terms

of the form ..
.

Al
212____ 2 . .An

' - '2' "'
(ax+b) (ax+b)

I

(ax+b)n

in the decomposition.

A

/a
/24

If the term (ax
2+bx+c) appears in the denominator, there will be '

a term of the form

Cx+'D

ax +bx+c

in the decomposition.

.

Youwill rarely, if ever, encounter terms like (ax
2
+bx+c)

n
in the'

denominator. We will not dedl with such functions here.

To use partial fractions, follow this procedure:

Step 1: Decide what terms will appear in'the decomposition,using

the guidelines given above. Write an equation, with the

coefficients still to be determined.

Step 2: Multiply both sides of the equation by the denominator

of the fraction you are trying to break -up. Write

both sides of the equation as polynomials in x.

Step 3: C are the'coefficients of x on both sides of the

equa i These enable you to solve for the terms A, B,

C, etc;_inthe-decompositiol.

4,

SAMPLE PROBLEMS

Decompose these two functions into Sums of,basic functions,

using the techniques we have just discussed. Make e to try the

problems before you read ay solutions. Then compare y rr work with

mine.
4

f(x)=
x3 + x2 - 6x + S

2
x + x - 6

1. f (x)=

2
x
3
+ x - 6x + S

x2 + x - 6

4 3 i

a g6)-
x - 1

SOLUTIONS

The first thing we should do is reduce the "improper fraction"
.--

1* division. That division has a quotient of (x) and a remainder

of (S) , so

29
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Solution's to Sample Problems 25 Solutions, Continued

;IL

f(x) = +

= X +

x
2
+ x - 6

.(x+3)(x-2) .

e' Since the terms in the denominator are both linear, the partial
fractions decomposition Will be of the form

5 A

(x+3) (x-2) x + 3 x - 2

Multiplying both sides of this equation by (x+3)(x-2), we get

5 = A(x-2) + 1)(x+3), or

(Oix. + 5 = (A + B) x + (-2A + 38).

(Remember that if a term does not appear, its coefficient is 0.)

,Comparing coefficients, we obtain the equations

I+ B-=
, so that

A = -1

-2A +,3B = 5 .IB = 1 .

Thus

5 -1 +

(x4.1)(x -2) x + 3 x - 2, and

1 .f(x) =
x + 3 x

1

- 2 .

A

g(x) =
x
4

- x
3

+ 3

x - 1

This function is also an improper fraction, so we divide to
obtain

g(x) = x +
3

x3 - 1 4.

Our next step is to- factor the denominator. Since the constant

A

26

term in the denominator is 1, the only clndidates for roots

are x = +1 and x = -1. Since

(1)
3

- 1 = 0, x = +1 is a root of x
3
-1.

This tells us that (x+1) is a factor of (x
3
-1). We can divide

to find the other factor. This gives us

x3- 1 = (x - 1)(x
2
+ x + 1).

Thus ^

g(x) = x
3

(x-1) (x
2
+x+1),

and our problem is to decompose

3

(x-1)(x
2
+x+1)

into a sum of basic functions.. Using the criteria on pp.23-24,
we.see that the decomposition will be of the form

3 A Bx+C

(*) (x-1)(A
2
+x+1) x-1 x2+x+1. JP

Multiplying through by (x-1)(x2+x+1), we obtain

3 = A (x2+x +l) +,(Bx+C) (t-1)

= .Ax2 + Ax + A + Bx2 - ix + Cx - C.
Thus

1(0)x
2
+ (0)x + 3 = B) x

2
+ (A - B + C)x + (A - C).

This gives us the three equations

= 0 A = 1

A - B + C 0 so that B = -1

A - C = 3 C = =2 .

Plugging these three values back intOef'), we obtain

3
= 1 (_,1)x +(-2)

(x-I)(x -+x+1) x-1 x2 r x + 1 , so that

g(x) x + 1
x + 2

x-1 x
2
+ x + 1

3
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Section 2

PR.ODIdCTS

If the integrand is a product, an0 especiayy if the,inteo

is a productlrof dissimilar functions, you should consider Using.,

integration by parts to solve the problem. 'The formula is derived

',from- the. formula for the differential of a product,

d(uv) =.11 + v duo

Integrating each term, we obtain

uv =fu dv +,fv.du.

Rearranging this gives

dv = uv du.]

To apply this formula, we separate the integrand into two parts'. Ne

call one u and the other dv. We differentiate u to obtain du,'

and integrate dv to obtain v. If we can then integrate the term

,6 du, the Problem is solved. The goat of this procedure, then,

is to choose u and dv such that the term A du is easier to solve

than the original problem. As. the sample problems illustrate, this

by differentiation. Theseusually happens when u is

comments are summarized Ow.

-14 GRATING PRODUCTS

Consider integration by parts. The formula is

flu dv = uv - jry du
I

and your f,hoice of u and dv should be governed by two things:

(1) You must be able to integrate the tezm yob call dv.
4

(2) You want du to be easier than the original integral.
This often happens when u i$ simplified b differentiation.

32

28

sks This formula also has special application to
.

the integration

of single terms that we can't integrate otherwise. Since if(x)dx

can be written as Af(x)][1 dx], we can think of that inthrand

as a'product and try integration by parts with u=f(x) and dv=dx.

,See sample problems 3 and 4.

SAMPLE PROBLEMS

As usual, try these problems before you read my solutions.
Pay particular attention to the reasoning I use in making my
choices of u and dv in each problem.

.1. 1x cos x dx

3 fsin lx dx

2 ix' tan-ix dx

(ln x)
2
dx

SOLUTIONS

Sr

fx cos x dx

There are two possible Choice's of u and dv in this problem;

u = x

dv= cos x dx

promising,

and
dv= x dx

u = cos x
To see which is more

we should determine du and v in each. In the

first case we obtain
du = dx

, ind in the second
x

du = .. sin x

I 2 Clearly fv du is easier to solve inV =....2- X Q

the first case, so we make the substitutipns u=x, dv=cos x dx

of Then

° jr(x)(cos x dx) = (x) (sin x)

u

se
dv u v

- Asin x) (10,

v* du

= Z sin x +icos x + C. 33
.01

Os
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'Solutions; CohtinUel

;Note:" The functions -e ,` sin x, and_cos x- are affected - about the
*t,

same by either integration or differentiation. On the other .

hand, polynomials are usually ''complicated" by integration

and glade simpler by differentiation. This suggests the follow-

ing guideline:

Let P(x) be any polynomial. All of the integrals

/Pad ex dx, fiNd) sin x dx, !Nal cos x dx

should be done by parts,' with u = P(x) and dv the remainder.'
'41

29

2.1x2 tan -Ix dx

As ih problem 1, there are two reasonable choices 'for u and
dv:

:1 u = x2

dv4e= tan.4x--dx
or / = tan-lx

m tanlx dv = x2 dx.

Letts- examine 'which choice will help more. In the first case
we will have that .du = 2x dx, which is rather nice. But we
will have to integrate dv = tan lx dx, and that is no simple*

matter. In the.second case, we Will have'

,,du
1 3

. and v = x .
« x

Here du is much simpler than u, because-we've replaced

an inverse tangent by a rational function! Nits -this choice .
t

we,obtain.
. ,

f(tan-ix) (x2 dx)- = (tanlx) (- x3) - ri :dx

.----- 1+x
u A , u v V.,

4

The second 'integral canfnow b. done by- the procedure for
ions: After us ng the procedure, we'obtain

a-1 1 Z
7 4 ; +.6 In(1+x ) +

( Solutions. Continued o 30

3 . fsin -1x dx .
This vitegrana cali.be considered as a product, if we

write the problem as, if.(sin 1x)(1 dx). 'Since, as in kroblem.2,

we obtain the greatestsimplification by differentiating an

inverse trigonometric function, we set

3

-,

u = sin-11 ,
dx

1 dx
so that

p
I v = x.

du
Vi-:72

. e.-

(sin-ii)(x) -1(x) ' dx
)

1-x

Thei

Asin-lx)(1.4

u dv

(ln x) 2 dx.

(-0 du

x sin x +1/1,71t2 + C.

<
11

1 ,

Like priblen 3, thiscan be done by parts if we write it-as

if (In x) )11 dx]. yilth
a"),"=i ax

and
idu =

v = x
-2 ln x dix

2u =On x),,

we obtain-. °
.

j(ln 302(1 dx) = 7 (ln x) 2 (x) -i 2(x)(- In x dx)
-e- ,,,,__.

u 7---dv u V. s"' du

. ,
= x (In.. i) 2 - 211n x dx. , f-r----4.

We havenq solved the problem, but we'fo simplified it:-we now
have to.integratfiAln.X dx) instead of f(ln x)2. cit. A second
-integration by tarts with U = ln x,' dV = 1 dx gives

is .
x(ln x) 2 - 2/(1n. x)*(1 dx) = x(ln x)- -2[(ln x) (x) -IGO (-dx)].a...4 x,.....y.

U,, di,' U. V te V dU'
2 x)+2x + C.

.

Note: Like many problems in integiation' this can'be done in
more than'one,way.. The s(ibstitution W x (or eW =x)

transforms ts. adx r 2eW
,

,,arinlx) to j dW, which is, done by parts (twice)

35,
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Section 3

TRIGONOMET`RIC

.FUNCTIONS

+her\ are many,special techniques for integrating combinations

of the trigonometric functions, and trying to keep track of all of

_them,,can be.difficult. Instead we can keep some general guidelines

for approaching trigonometric integrals in mind. The basic idea is

to exploiIthe'relationships among the trigonometric functions

theinselves, in order to.simplify the integrand. '

,....r.Q The first kind of manipulation we look for is a simple .

substitution of the kind u = sin x, u = cos x, etc.I'For this kind

of substitution to be successful, the ighrand should consist of

an expression involving one trigonometric function, multiplied by

ttie.derivative of that function. For example,

f d.1._Tc7:
is of the form flf(sin x)[d(sin x)],

where f(sin x) = 1
2

and d(sin x) = cos

l +sin x

In this problem we would make the substitution u = sin x.

if( an integral can be expressed as

dx.

.,/f(sec.,,x)(sec x tan x dx), we would set' u = sec .4,

I

I

.

Our first/object; then, is to manipulate an integral into the -

_form4f(sin x)(cosx,,dx), etc, To do this, we try toexploit the

"twin pairs",oftrigonometric functions: sin x and cos_x,

sec- x and'tarvx, and csc x and cot x. The "twin pair" relation-

ships are summarized in the table on page 32: We datcuss how-to

use then in sample. problems hand 2.

.36

41'

,

Twin Pairs of Trigonometric Functions

,

x)= cos x
dx

-(cos x)=-sin x

2
sin x + cos

2
x = I

--(sec x)= sec x tan x
dx

dx
--(tan x)= 4sec

2
x

tan
2
x + 1 = sec

2
x

csc x)=-csc x cot x
dx

d 2

dx
(c- ot x) = -csc x

1 + cot2x = csc2x

. If we are unable to exploit the "twin pairs", we turn to a

different approach. The next thing we try to do is-to reduce the

powers of the trigonometric functions appearing in the integrand.

This is usually done with the help of the formulas

sin2k = -12.(1-cos 2x)
1

cos
2

2
x = --(1+cos 2x)

or by a reduction formula obtained by using integration by parts.

See sample problems 3 and 4.

Finally, there is a last resort" technique based on the

substitution u =Ian 2
. . =Admittedly, this formula seems to come

"out of the blue"; However:.if nothing else seems to work when you

are trying to integrate a rational function of sin x and cos x,

the substitutions

u = tan(Z) , sin x =

14.0
2 '

2u 1-
cos x

u
2

1+u

dx =
2 du I

1+u
2

will transform the integrand to arational function of u. It can then

be finished by the techniques of section 1.-" See problem S. In sum,

INTEGRATING TRIGONOMETRIC FMNCTIONS

(1) Exploit "twin- pairs" to prepare for substitutions. 'Try

to obtain jrf(sin x)(cos x dx), etc.

(2) Reduce powers of trig functions in the integrand, by
half-angle-formula or integration by OnFts.

(3) As a last resort, the substitution u = tan(Z) transforms

rational functions of sin x and cos x to rational

functions of u.

a

37
s
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33

1. JrcPs Sx dx 2

isec3x dx

iosSx dx

SAMPLE PROBLEMS

.fsec 3x tan
3
x dx 3.

/5. f2 + sin x

SOLUTIONS

issin4x dx

*0'

As a first approach to the problem, we shpUld try to exploit

the '"twin pair" of sin x and cos x. Thus we should ;try

to obtain either

(a) a function of cos x, multiplied by (-sin or

(b) a function of sin x, multiplied by (cos x).

Notice that we can achieve (b1) Since cos
2
x can be expressed

2
in terms of sin x, then any even power of cos x can be expressed

an terms of powers of sin2x.,,,In this problem we can write

cos5x = (cos
4
x)(cos x), which gives us4

< ticos x dx = 111114
. 2 2

( x)(cos x dx) = x) (cos xx)

= ur[ 1 - 2sin2x + sin4x ](cos x dx).

This is now in the form jrf(sin x)(cos x dx), and the

substitutions u = sin x, du = cos x dx give u;

1 2u
2

u
4

] du' = u -
3 5.45yu +u +C

A

A ,

2 1 1
= sin x - s sin

3
x + sin x + C.

Note: This technique will work exactly in this manner for any

odd powers of cos x and sin.

38

0

Solutions, Continued

2.

3.

Lec
3
x tan

3
x dx

A

34

on.

Since this integrand involves sec x and tan x, we should see
if we can express it as

(a) a function of sec x, multiplied by (sec x tan x), or

(b) a function of tan x, multiplied by (sec 2 x).

In this case we can achieve (b), since factoring out theLerm

(sec x tan x) leaves us with (sec 2x tan
2
x), and the even

power of tan x can be expressed in terms of Secant.. We have

Aec3x tan3x dx =4r(sec2x)(tan2x)(seC x tan x dx)

=Asec2x)(sec2x - 1)(sec x tan x dx),

and the substitution u = sec x gives us

4u2(u221) du =/(u4 - u
2
)du 1 u5 1 u3= yu - y u +G

3

f4
sin x dx

5 1 3
= -- sec x - sec 3x + C.

Technique (1) doesn't help us in this problem: if wv try to
separate out (sin x dx), we're left with the teim (sin's dx),
which can't be expressed as a polynomial in its twin, cos x.
Instead we turn to technique (2) and use the double-angle formula:

,

Ain4s dx = fisin2x) 2 dx = Al-1-cos 2x)]2 dx
2

_ .

1
(1 2 os 2x + cos

2
2x) dx.=

The first two terms in this expression can be.integrated easily,
and wb can again call on a double-angle formula to express

1
- cos

2
2x =

2
+ cos 4x). .This gives us

4ix - 44os 2x dx 1Lrjrdx + kfcos 4x dx
4

4
sin 2x x sin 4x

4 32
sin 4x - 8sin 2x + 12x

32 + C

) 3 9
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Sec .x dx-v'

This, is' a ditficuli," problem. We?11' go through it slowly and
.1ndetail, so that the reasoning for it and prbblems like it
becomes apparent. We begin by noticing, that.tekehnique (1)
doesn't work for us here and that the double-angle formulas

.don't apply, so we decide to use integration by parts. There
are three'reasbnable choices:

-
(a) f(seex) (1:. dx) , (b) f(secix)(sec x dx) , and

. .

.--..--. ..__, ..
(c) f (seq x)(sec2x dx)

u dv

.
Inchoite (a), settinrdv=dx would lead.to v=x, and the term

t (v du) would involve both x and a combination Of trig
functions. Integrating that looks difficult, -so we go on to try
something else: choice' (b), setting :1v = (sec x dx) leads
to -,v =- lnlsec i + tan x 1 , which is nasty. Thus we examine
choice (c)..Since . .

dv = sec2x dx "'" --, `v = tan x
,-

,,., (du = sec x tan x dx!
.

. ,

u = see':x
.

and this is the best of the three 'alternatives, we proceed :
. .I(sec x)(sec x dx) = Asec"X)(tan -f(tan x) (sec x tan x dx)

U 0°14)4 v du

= sec x tan--x -f(sec x) (tan2x dx).

Vecen use the Adentity (tan2x =,s.ec2x-1) to obtain+

-fsec3x = sec lc tan x -1(sec x) (sec2x - l) dx, or

fS4;t3 x dx = sec x tan. x -fsec3Z-.'dx:+f'sec xdx.

For a moment it looki as if weove gone around in circles,
because we now have the tern

-it = jrSOC
3
X dx

on both sides a equation (*).. Notice, *however, that

*veers With I negative sign onthe right-hand side of

We 4311. then consider (*) as-an algebra c 4eqUition,

Solutions`; Continued

U = (sec x tan x) - U + (islet x dx).

Solving this equation for U, we obtain
I III 2U = sec x tan x + f sec x dx

= sec x tan x + lnlsec x + tan x1 + C.
<Dividi3ng both sides of this equation by 2, and replacing U by

fiecx dx, we finally obtain

36

1ilsec 3x dx =
2

[ sec x tan x + lnjsec x + tan x1] + C',

where C' =C/ 2.

Note: - This is a long and involved procedure. With 4nor
modifications, it will provide reduction formulas fol., powers
of all the triginkrietric functions. Because of its complexity,
however, you should only consider using it after checking othat
technique (1) and the le-angle formulae don't

5. f2 dx
+ Slit X

In this problem, neither the "twin pairs" or reduction
formulas seem to help, so we make use- of the "last resort"
substitutio given in-technique (3). The substitutions

; 2u du.u =tan(); iinx X; COS =
2

ItU

transform the integral to

1
2

2 du7l+u

+ 1112

°1+u

2u +2u+2 u +u+1 .

$p This is a rational. funttion, and is done.bi-cerepleting the
, square in the -denominator:

Fe

o-

f.. du du 1 -112+1/2

u2
t

+u+1 (u+1/2)+(3/4) an .[/3741]
C

1 tan-1 tan(y ) + (1/2)
/377

1-374b'
*""

41
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Section 4

SPECIAL FUNCTIONS
6

In this section we will discuss,three kinds of substitutions

which occur often enough that they are worth singling out

for special mention. The first type of substitution deals

with terms of the form

(a
2
+u

2
)
ni2

, (a
2
-u

2
)-
n/2

, and (u
2-a 2

)
n/2

.

We deal with functions like these by making a:trigonometric

substitutions for one of the terms

( *)
(a2+112)1/2, (a2412)1/2,_

Or (u2-142)1/2..

The substitutions can be memorized, but I find it easier

to draw a triangle and derive them. All of the substitutions
' come from the Pythagorean theorem,

which says that , x2 y2 x2

in the triangle to the right.
9

If we place the sides a and u

on the triangle carefully, we

can make the third side of the triangle be any of the terms

Seethe triangles below.
in (*)

42

0

38

Once the triangle has been drawn and labeled, we can "read" whatever

substitution we need from it. Follow this procedure.

To.obtain an expression for u , use the trigonometric /Unction

that involves u and a. Once.you have u as a trigonometric

function of 0, differentiate to find du.

To obtain an expression for lsomething)112, use the,trigonometrie

function that involves the sides lsomething)112 and a in the

triangle. .

Make the substitutions. The result will be a trigonometric

integral, which you can solve in terms of 0. To express the answeg

in terms of x "'read," the functions from the trilgle.

Sample problems 1 and 2 will illustrate how to late this

procedure. See page 41 for the second /41d third kinds of substitutions

we discuss in this section.
0

1.

1.

dx

fdx

(x +9)

SAMPLE PROBLEMS

f)
x
2
dx

.

SOLUTIONS

Before'we try a trigonometric substitution, we should 'Check for
any SIMPLIFICATIONS. Unfortunately there are none, so we
draw a triangle. In this case the term we wish to substitute
for is

(x
2
+9)

1/2
,

so we draw the triangle

14.

3

tski
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Solutions, Continued 39

. ,

To Obtain the substitution. for x,we use the function that

involves the'sides (3) and (x). In this case

tan 9 = , so x 3 tan 0 and dx me 3 sec20 do.

To obtain the substitution for (x2+9)1/2, we use the function

2
that involves (

1-x
+9)

2/2
and (3): This gives us

,

sec 0 =
2"" 1/2

, or (x
2
+9)

1/2
= 3 sec 0.

3 ear.

We are now ready to Substitute these into the problem. We get

dirdxa dx

(x
2
+9)

3/2 m
1(x\+9)

1/2
]
3

3 sec
2
0 d0

:/-27-;;Tc7,

9

1
sin +C.

1,

.
3 sec

20
de/

(3 sec 0) .

= f cos 0 d0

. We, mw return to the triangle to obtain the value of sin 0. This

gives us the final answer

2 x dx

(x +9)

40-

In thisproblem the, term /4-9x2

is of the form 41-z7.u2, and suggests

8 triangle'with hypotenuse 2 and let

3x, like the one drawn to the fight.

We first determine, x and dx by using the trigonometrics

function involving.(3x) and (2). This gives us

44

Solutions, Continued

sin 0 =
2 '

2 2
so x = y sin 0

3
and. dx= cos 0 do.

To substitutefor c'4 -9x2 , we use,the trigonometric function

involving that term'and the constant: Here

cos 0 =
rt:Tx2

2
so 44-9x2 = 2 cos 0.

t

At this point we're ready to substitute 4n the Integral. We

obtain

x
2

dx (- sin 0)2 (-3-2 cos 0 dO)

L

2 cos 0

fsin2

2 r 2 f.
j dO - 7.7../ cos 20 dO

52.7.1(2)(1

.

cos 20) dO

2 1
. ... sih 20 C

=
2

( 0 - sin 0 cos 0 ) + C.

To complete the problem, we need only read off the values of

the fiinctions of 0 from the triangle. Sin 0 and cos 0 are

,3x .4.--$7c2
.

r and 4 respectively. To find 0, we can use the 'function

3x 3
sin 0: since in 0 * 0 = sin

-1 x
2

Thus

x
2
dx

[ sin -1(3x) '1(1(4797)1 b C.

J 27 '2 ' '2 J` 2 "
4-9x

'45



www.manaraa.com

e

MORE SPECIAL IviicrroNs 41

The second and third types of substitution we discuss in this

section are really special cases of A suggestionwe discussed in

T

Chapter 1, where we noted-that it is often worth considerin

substitutions for the "nasty" terms in integrands. Expressio s

involving ex and 1/11iTc7b occur often enougtito justify fisting
/

these substitutions. ,
..__

We frequentlytehcounter integrals like
. '

3x
dx,

'

1 dx 4( 1 dx, and
e
x

+ 1
, a----

e - e e + 1

.

which are rational functions of ex. At first glance it looks like

the substitution u,= e
x

will not be of assistance, because the

t ddkr ex dx is missing. You should make the substitution

anyway!

1
If = e

x
, then du = e

x
,dx = u dx, so dx = -Li- du.

If you are trying to integrate a rational function of ex, make the

substitutions
g 1

e
x

= u and dx =u du.

The.etult will be a rational function of14.

A similar comment holds for integrals which include terms of

'the form
n

ax +b.

1 -If we set u = ;1i7n 7g, then u
n

4
= ax+b, and x =

n-b).

n
Differentiating, N

a
e obtain dx = -u n-1

du.

If you are trying to solve an integral which is a rational function

of x and n axtb, make the substitutions

y174 = u, x = '1(un-b), and dx = un-.' dx.

The result of these substitutions will be a rational function of u.

See sample problems 3 and 4 Tor these sUbstitutions. The table

on page 42 summarizes this section.

46

42

INTEGRATING SPECIAL FUNCTIONS

(1) If the integrand includes terms of tip form

(a
2
-u

2
)
n/2

, (u
2
-a

2 )/1 /2
, or (a

2
+.11

2
)
n/2

(a) Draw a right triangle.
(b) Place a and u so that the third side of the

triangle is the term you want.
(c) "Read" the' substitutions from the triangle.

(2) If the integrand is a rational function of SK
make the substitutions

u and dx =
1

(3) If the infegrand is rational function of x and ;

make the substitutions

in)71; = u, x- = 1.(
nu-b), and dz.= u

n-1
du.

a

3. 1

flex - e
-x

dx

SAMPLE PROBLEMS

4.. f 2x+1 dx,

*4,3,

-44 SOLUTIONS

-
0

I 1.
dx

e
x

- e
-x

The inteKrand in this probl'em is a rational function `of

*Therefore we should make the substitutions

e
x

= u, dx = 2-du,

even though (exdx) doss-not appear in the numerator: Since

-x 1

x u
e = =

.1
, the integral becomes

e.

r.
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Solutions% Continued 43

, u - -

(Lryli. du)
-1(u - 4 (4) -u2 - 1 .

du du

k U U

i t
Using partial fractions or the formula on page 17, this isJr uI-1 )

du'_ lu-11 - lniu+11] C

1,1111u11+
2. I u+1

1 lex-1= 1/1
2

ex+ 1

+

The integrand in this problem is a rational, function :of

and 32/7---c, so we should make the substitutions

u/4 ; u
3

= 2x+1 ;

The inte then becomes

3 3 2
x = -1) ; dx = u du.

AO (3 7+1dx) )(u)(11-12

= 3 4 du.

u -1

du)

r
11;ing the technique for rational functions, this becomes

3 1

2
+2

'7A3 +.;:r

4 3u + ln I u-11 2 1n

where u = V2:7+1.

O

1

I

du

2+u+1 (if)
v-3-

48 1

A
EXERCISES . 44

, £tERCISES FOR CHAPTER 2

,
PART 1: The purpose of these exercises is to give you pri.ctice in

the SIMPLIFY end CLASSIY steps of the General.Procedure.

DO NOT SOLVE 1W INTEGRALS AT THIS POINT. 'Examine them for

simplifications, classify them, and decide which technique

you would use to solve'then. Then compare your reasoning with

mine, in the solutions manual. Remember:

means that solution #6 presents a discussion
sol. 6 of exercise 1.

I1 dx
so1.861 fxvx-+4

, .

I 12

-. .

/2. tan4x- dx.
so,. 1

1, 3
01.

dx
ex4-

1

6x2

5. 9x

1501. 13Ii 4/ 375"+

dx

I s9.81
x tan,

1
x dx

-7. f sx3

!soh 14
cbc

1 V x - 1

I5

Isol. 11 3,./C2+6:c'dx

i 9. x
ol. 9 J x

110,1
RO,. 2 2

9
dx

cos x,

ti

The exercises are.contvmea on page 45...
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a * pART 2.. a a

Solve each of the exercises from part 1. Detailed solutions are

in the solutions mqnual. This table lists the number of the solution

to each exercise below the number of the exercise.

r .

Exercise # 1 1, 4 S 6 7 8 9 10 11 12 13 14.15 16

.Solution I 22ME 291:11:11331132 23 21 31 19 28

Chapter

-414441i5,

. 'MO.DIFY

Chapters 1 and 2 of this booklet contain the basic techn es

necessary for solving most first-year calculus integration p ems.

Once we'can'SIMPLIFY or CLASSIFY an integrand, its solution s a

routine (although not necessarily easy) matter.

We encounter the most difficuly with problems of unf jar

fOrm,ihose which.1;isit classification by the methods of M apter

2. Kith such Problems our goal is to MODIFY the integrand manipu-

lating it until it is in a more convenient or recognizabl- form.

Once this has been done, we return -to the SIMPLIFY and/el IFY-

stepi of the Geh4ral Procedure to'finish the problem.

"J
The three sections of this,chapter are:

(1) Problem Sisilarities: looking,foz and explo ing
resemblances, between the problem we-zre-wo ingi on

aid:probleti we know how to intfgrate

(2) Special Manipulations: techniques for exp essing
, complicated integrands in more convenien form

(3) Needs,intlysis: looking to see what add tional terms
_might:help,Solvezproblem, and:Modify the,
integrand -to include them.

. ,

LOgether,--:these form-the-third step of the G eral procedure:

.

'81:ep4:,. MODIFY

Problem - .

Similarities
Special , -
Manipulitions

Needs
Analyiis'

51 f

4
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'Section

PROBLEM

SIMILARITIES

Some integrals can be classified easily, but look so compli

cated that tAe standard procedures for solving them promise to be

/scheme

messy.. Other integrals may notfit into the classification

/scheme of Chapter 2, and)we may not knZw an appropriate way to

solve them. One way to approach such problems. is to look for

similarities between them and problems we know how to do. If the

form of a difficulI problem resembles that of a "standard" problem,

. there are two possibilitiets. We might be able to reduce the

difficult problem to that "standard" form. Or, the techniqi2I--!xe,___

/Thdwould use on the easier problem might help us solve the more
ifficult one. Th# sample problems will illustrate this kind of

approach. Summarized in table form, we have
7

.4

411

PROBLEM SIMILARITIES

.41) Look for easy problems similar to the one you
ate working on.

(2) TiY to reduce the difficult problem to the form
of the easy similar prdblea.

(3) Try the techniques you would use on the similar
problem.

SAMPLE PROBLEMS

Use the suggestions given on page 47 to try to solve these

problems. ?Wen compare your solution with mine.

tf:tc dx

dx

Jr

2

2. 1 -
x
6

- 9x
3

+ 8

t

4

3. 42

SOLUTIONS

dx

x

The integrand in this problem is a rational function, so

we could solve the problem by the procedures of chapter 2.

The denominator is difficult to, factor, however, so we look

for another approach.
'

The problem would be easy of the denominator were (1 + x2)

instead of (1 + x4); can that be arranged? Yes, because of

the x term En the numerator. Making the substitution

U = X
2

du 2x dx,

we get

fr3.7 "2- 2"1 f du

1 + u

y tan u
.1

+ C

1 2
= I tan
-1

+ °C.

--c
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Solutions, Continued 49

x
2

6
x - 9x

3
+ 8

dx

This problem; like problem 1, can be solved directly by

the procedure for rational functions.' The denominator factors

without diffrculty.to give us

,

Lir(x3-l) (Z
3
-8),

Sr"'

Mind rontini'w factoring Iliet_denominator,,use parties

fractions, and then integrate term loy,tetm. lbat momisei to be

a very involved procedure, howeirer. 'We.should stop and look

for other alternatives.

Note that the integrand reseMbles 1 simple rational function

with a quadratic denominator: instead of (x-1)(x-8),, we have
'

(x
3
-1)(x

3 -
-8). .Can IAIIT44fy the denominator? Yes, since theme

term (x
2
dx) appears in-the numerator. With the substitutions

2
u =-x

3
; du = 3x dx,

we obtain
. . .

t .

3

4 du'
/7171115;1 T u- 1 + u - 8 '

1 (Z.Ov- (7) du

A

.
21.ft u - 8 .11 1 1 u

4

C = 1
fu-1

. .

x-81
In + C.

, x -1

Vote: Substitutions like this might have occurred to-you after--

workingthrougfichapter 1. If so, terrific! Our guiding,

-printiple is: at every stage of a problem; ,look for easy

alternatives. As, you gain experience, your t2logue of

SIMPLIFYING techniques will grow. 0
. .

Solutions, Continued 50

(x+1) fx2+2x.
a

dx
,

As a preliminary simplification, we might consider a substi-

tution for the "pasty" term in the denominator: u = x2+2x.r "

Thisleads to du = (2x+2)dx, and at first glance this

looks promiiing. Unfortunately,,the term (x+1) is in the

denominator, instead of the numerator, where we would like

itl ip.we abandon this substitution temporarily, in the hope

we can find something easier.

Looking foi similarities, we can ask;.;are there any

"standard forms" that include square roots in the denominator?

Yes, terms like
du -du

.4114*e. 177:777

completing the square, in the hope that we get something

etc. This suggests

easier to handle. We have [x2+2x] = [(x+1)2 - 1], which

suggests the substitution u = (x +1). Then

dx du
= sec

-1u
+ CJ (.4.1) ATTC fu 11727

= ssec-1(x+1)
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Section 2

SPECIAL.
MANIPULATIONS

52

A. RATIONALIZING DENOMINATORS °-

This technique is based on the relation (A+B)(A-B) = A
2

-B
2

.

rf we replace A by Vii and B by 47 , we- obtain

(AT + )(ru" - .17 ) = u v.

e

In this section we discussfour techniques designed,to express

complicated integrands in more convenient formtfor integration.

They are a

-t

SPECIAL MANIPULATIONS°

A. Rati nalizing jenoilnatori of quotients

0.Spe sal use of trigonometrictillentities

C. " moron denominators' substitutions

D. "Desperation" substitutions

ti

-Theie.techniques oftensinvolv9 complex.manipulations. It may

not be clear that they ate Helping to solve 'a protlem until we have

done some complicated calCulations: For that reason these tech-

niques
-

differ from the simplifications of Ckapter 1. When we first

examine an .integral, we look for fast-and easy waysto solve it. If

that fairs, we try sb..claisffyl: and.use.standard techniques, Only

if that fails, or if the standard techniques look'very complicated,.

do we looks for alternatives such as these. With practice you will

discover which.apprpaches to integ-rats you-can examine rapidly, and
0 . .

which are time-consuming. This knowledge should.gOverp tie order

in which-fou apply them.

5b

. r, : , hose 1.fiC41UV ie of. the JImm

(riti IF ), multiply both the numerator and denominator by its

"conjugate, (15'.7. 1737). The denMinator'orthe resulting fraction
,

--14rsimpty-(u-- v). , 0

See sample pioblems 1 and 2.

B. SPECIAL .USE OF TRIGONOMETRIC IDENTITIES

The basic trigonometric,identities, like the terms discusied

n (A), can 174ritten as the difference of two squares. For example,

(l+cos x)(1=cos'x) = 1-,cos2x = sin
2
x;

(1sin x) (1-sin x) = 1-sir2x = cos2x;

°

(sec x +tan x)(sec x-tan x) = sec2x - tan
2
x = 1;

(csc x +cot x)(csc x-cot x) = csc
2
x cot

2
x = 1.

The terms paired above, like (1.cos x) and (t -cos x),

called conjugates.
. .

If the integrand contains any of the terms (1 t cos x);

(1 ± sin x), (sec x t tan x), or (csc x t cot .c), eitherNid

the denominatorofa fraction or inside a square toot, consider

mu:tiplying and dividing the integrand by its conjugate.

See sample problems 3 and.4.

57"
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C. "COMION DENOMINATOR" SUBSTITUTIONS

When an integrand involves a single term like ../1' = x
l/n

,

we sake the substitution u = x
l/n

, or equivalently, u
n

= x.

The result of this substitution is an integrand which has integer

(whole number) powers of u instead of fivotimem/ powers of x.

Some integrands involve more than one fractional power 9f

x, like

fx
1/3

-+ 4
dx

X
1/2

+ X
2/3

A.

To solve an integral like this, we would like to find a

substitution u = x
1/N

such that all of the fractional powers
. --

of x. are replaced by integer 'powers of u.- We choose N as follows.

Let N be the smallest common denominator of all the fractional

pavers of x which appear'in the integrand. Make' the substitution

u = IN, so that x = uN : and-- dx = ; uN-1 du.

The integrand which results from thissubstitution will be a rational

function of u.

In the problem above, the smallest common denominator of
%1 2

-2- and
3

-is b. Thus we should sake the substitutions

-4W u = x
1/6

; x = u
6

; dx = 6uSdu.

-The integral then becomes

rti

(2

i+27-14 )(6u4 du),

which can be solved 1:1y the.procedure for rational functions.

See sample problem S.

58
1,

D. "DESPERATION" SUBSTITUTIONS

)
54

Our guideline'in Chapter 1-was-that we should only consider

substitutions that are quick and easy to use, and we postponed

looking at any substitutions that looked complicated or unpromising.
1

If neither the SIMPLIFY nor CLASSIFY steps help us solve a problem,

we should now consider more complicated substitutions'in the hope

tnat they will prove helpful. At this Atagre have little to lose.

For example, to solve

A1 +rx- )dx,

*we might try u = 1 +47 or eVen u =f-17-Tr . See p;.Obl 6;

To solve

1( X +.1 )4x

we might try u =
x + 1

or even U = Ix + 11
-x

)

MEMBER: Our goal'is to manipulate, the integrand until it takes,

a familiar or convenient form. As:soon as we succeed, we return'

to the SIMPLIFY and CLASSIFY techniques of chapters 1 and 2.

SAMPLE PROBLEMS

Try each problem before you read the ablution. Then compare your
reasoning with mine.

dx

t 47:7

2. f .dx

I -

3. of
dx

1 + cos x

4.

5
6. rx-
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Solutions to Sample Problems 55

2.

SOLUTIONS

Wrdx .

if;717 477

To solve this problem, we multiply both numerator and

denominatorliy the conjugate term ((i+1 - 47-71).

This gives. us

f(i771 + trx7-1) (1371 - )

(1371, - 17-73 ) dx

x+1-- ) .dx

2

j(16;71 - 47-1 ) dx

(x+1) - (x -1)

1

3.

Solutions, Continued

f 'dx

+ cos x

54

Since the integrand is a rational function of cos x, we could

use the substitution u = tan to transform it to'if rational

function of u. Since working with conjugates in -this case

is fairly easy,.we can try that first and see what happens,

We get

vfl+cos

dx
x.

(1-cos x) dx
jr(l+cos x)(1 -cos x)

2 J(x.1.1)1/2dx

1 1/2
- (x-1) dx
2

3/2 1
(x+1) (x-03/2

x dx'

Here too we multip1N2umerator and,Onominafor by the

conjugate term, (1 + V1=7). This gives us.

41k

ix ( 1 + d1=7).dx .jrx (1 + )7; ) dx

(1-47iii)(1.4) 1 - (1-x)

p(1 + J1=7) dx jr(1
(1-x)

1/2
)dx

= x
2

(1-x)
3/2

+ C.
3

1

fdx

sin x
2--

jrcos x dx

x

=
2

csc x
sin

1
= COL X + + C = COL X +

=

;

.1 4. /di cos x' cix:.

f (1-cot x ) _

sin2x

dx_-

i--- ,. (where u=sin x)
u

u

1 /

* C
sin x-

cot x + qsc x +C.

In this problem the "nasty" term

'to

is inside the - square root.

If we multiply (1-cos x) by -rts conj
a _

2 .d'
sin x, and the square root of that i

-reason we can try the technique, in

is simpler to work with: If it isn't

thing else.,
'

0

/*.
ugate (l+cns x), we obtain 4

,
S just sin x.FOr that

the hope that the result

, w e would look for some-

f/F7:77). dx
"

x)(1+cos x)-
dx =

(l+cos x)

l+cos xlk

n x
dx

sin x4xfsin2x laCT

4.7cT7 , 417.7g7 .

.r
This may look as complicated:asthe integral 'lie

but is much easier and can be done by the techniques

t

x" fi

started-with,

of

Chapter 1. We-have the term cos x in the denominator,
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Solutions, Continued , 57

and (almost) its deriviitive in the numerator. Making the

substitution .0 = co,1 x, the integral becomes..

Jr. -du- J/10,11 -1/2
= -2(1+u)

1/2
+ C

571 2

= + C.,

dx

J1/i 1/2x - x

,
-- This problem involves 'fractional exponents. The least ,

1 1common-dencminator-ofand-----i-se-the substitution2 3
. ,

X L
'U 6u = x1/6, so and dx = 6 uS du.

f
The integral becomes

6u5 du

u : u
=

...

u du .
_6fu 3 du

1 - u u - 1 rfu
-6f( u2 + u + 1 + u-i /

1 uI
=

- (2u3 +' 3u2 + t; + In lu-1) ) + C =

- (2x1/2 + 3x1/3
6x1(6 141/6_ 11 .,

C.

dx

This problem can be done by sequential substitutions
u = 4.1

v = 1+u; w = F. As an example of a "desperation" substitu-
tion,-hoWever, we might try

u =4CT7:7,7T . Then u2 = 1 +/II; x.= (u
2
-1)

2
; and

dx = 4u(e7 -1) du. Then

fr7Tir dx = f(u) (4u(u.,_1) f du = f(41:414 - 4u2) du =

5 '4 3 4 5/2 4

.

u 3 u + C = (1 +,,tx ) -
3

(1 + )5/2 + C.

6

.s

58

Section 3

NEEDS ANALYSIS

The technique of needs analysis has been implicit in much of

our work so far, and we, now state it formally as an integration

technique. It consists'of asking what might enable us to solve a

problem, and then either adding it (and compensating for it) or

changing something in the problem to it., Needs analysis explains

the, reasoning behind our exploiting 'twin pairs" of trigoAometric

;functions, for example. If an integrapd is a complicated expression

involving sin x, we search for a way to introduce the term

(cos tx).- Conversely, if (cos x dx) appeared in the integrand,

we might seek to express the rest of the integrand ih terms of'

sip x. For an integrand involving e , we might Seek to Introduce

(exdx). (Thls\11' done automatically by the substitutions omex;

du=e. dx; dx = -du. An alternit&strategy is given in sample

problem 14 If'the iniegrand involves x , we can-look for a way

to introduce [nxn-I dx'. As usual, we summarize in table form.

NEEDS ANALYSIS.

(1) Look'for a term, or a form of the integral, that would.
enable you to solve it.

(2) Try to modify the integral to produce, the term or form
you/need.

(3) Try to introduce the term you'need, and compensate for
it.

0
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-.Sample Probtems'aiii SoluilOns

'SAMPLE PROBLE'MS

iry' to solve -each: of these ;roblems using a needa anaIysis.

Then compare your eclution with mine:

59

.1
dx

x -x
10,

x,ax +b!e - e

r dx

r 4 1

sec-x dx / dx

jv a - sec x (sin x + 6) (cos.x)

dx

eX

We solved this'problem before on page 42, where the

procedure for special functions called for the substitutions

e-x

--soturteig-

ex =u
.

and. dx = 3-du.

Needs analysis provides another route to a solution...Since

the integiand is a rational function of ex,-Iwoad like to

make the substitution u = e 'This would work most easily

if tear, egent in the integrand, I can
.

obtain it, if T multiply numera r and denominator of the

integrand by ex. This gives

sand now the substitution' u = ex gives

- 2 k(u-1 u+1 /
u

. du

= 1!/15H C

= - 2 . ( ln fu-1 - In u+li )

+ C.

N

:;olutiohs, Continue! 60

2. rsec `x dx

J /5 - sec2x 9
. 01,'

Since this integral involves a fUnction of sec x, our first

reaction is: we need the term (sec x tan x dx.).

n9

. ,

numerator and denominator-by-tan x to obtain.
it

((sec x)(see x'tan x dx)

i ,

v (tan 415-secx $

but this looks verynasty. Instead, we can ask: We have

the terii.seeh dx) in thi numerator. Cdn the rest of the

integral be -expressed-in-terms -of-ran -x2--1741s-,---s-ince-7---

sec2x-.. tan2x + 1. Using this in the denominator, we obtain

ft

We can multipli

sec
2
x dx

- tan2x
ji:r477:

du

-1 -1 tan x
= sin (7) = sin (-2) +.

if x(axn+b)

= tan x]. ,

One way to handle this problem might/be a "desperation"

substitution, u = (axn+b). 'Another way /is to focus on the

./

term causing diffuculty, the x
n

in the denominator. To make

a substitution like u = xn. we would need nxn-2 in the

numerator. We :an get it, if we muliply.numerator and

n1
. denominator by nx

- integral becomes

64

nx- dx ' Jr nxn-I dx

,.

.

(nxn-1) (x)(axn+b)
n (xn)(axn4)

If du/ n (u)(au+b)

n-1

where u = x
n We can now solve the problem by partial fractions,

obtaining

"1.1((l/b) 1.4/hild
u

-
u au+ au+b

p a
du
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Solutions, Continued 61

= (1n1u1 - In (au+b1)+ C = iota:7;E I + C

4.. dx

Lir(sil\x + 6) (cos x)

=
n1b

in

n
l I + C.

ax +b

Since this integral involves sin x\ and cos x

either

we. need

(a) (sin x dx) in the nuaerato% with all the rest
expressed in terms of cos x, or

@) (cos x iax) in the numerator, with all the rest
expressed in terms of sin x.

If we try (a), we obtain

410

i(sin2x + 6sin x)(cos x) .

That doesn't help, because We can't express the 'denominator

easily in terms of cos x. So we try (b):

dx . cos x dx cos x dx

(sin x + 6)(cos x) (sin x + 6)(cos2x) (sin x + 6)(1 -sin2x).

1Here the numerator il (coi x dx) anil the denominator is a

function-of sin,x. Now the substitution u = sin x gives us
. .

sin Adz

du
du

(u +6)

(

(1-u2) 06u+6111+u)(1-10

1/10 1/141
1 u+6 1+u 1-u /

-1
lnlu+64+ InIl+u1 - lni

e
l-ut + C35 10 4

-1
= In 'sin x + 61 + .11T 1n11+sin xl - 11111-4in xl + C.

66 Y.
Whew!

O

EXERCISES 62

EXERCISES POR CHAPTER 3

4i4

PART 1: Examine each of these integrals and DECIDE how Lou
.

would solve it. Then compare your chosen approach

with mine, which.is giveri in the solutions manual..

Is dx
ol. 5 x -3x-+2

isol. I., f steac7xx+ 2

1 2 J dx

I
2/3. ,/3

dx
sol. 3 I xx+ 1

I 4 I
sol. 9 1

dx

sol. 4

I (5 x

Isot. I 11177

f dx

I 7 1

sol. 8 I j(x+4)17+73ic
dx

I8 1 dx
isol. .1 //1":67

'9soh 21 .fx.,2(1.x.,3)

1
dxlsol. gi /sec

._

PART 2: Solve each of the isereisestgiven above. Detailed

solutions are in the solutioqs manual. The solution

numbers are given below.

Exercise t ,1 2 3 4 5 6 7 8 9 10

Solution # 15 20 13 l9 14 17 18 1112 16

67
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Appendix I.

A2

. I

Pre-Test a

- e
, 1

...-
You should be able to do arc or ttOst--ppblems without difficulty.
If you have a lot of trouble; practice these-types of problems
before you-try to work through the booklet. Answers are on -the_
opposite page. "

1
:., .

1 gX2+3x1/2+1) ° (8) r(x 2 *1)2 ch

(2) (x24 l)3d-'. (9) ..4 e
x2

clx
.

-

(

clx
(10)

f 2x ch
x2 + 6 .

.

.
2 ° .

(4) e
7x 1 _). ..- (11) ./(2x+1)(x40t)dx,d +2 7

. t
,, (...

c-

(42) iicsc 22x dx ,'' ,:c1 `- '

cm -:,-,.,*. ,
1 t

,

d i- '' , ,

(6), ---(log(sin '2x)) (13) "cos Sx ch:
. .., ,

- .
- t ^

(7) (tan' 4x). ," (14) i sec x tan, x 'clx, . 1
(

_ --

Appendii

Answers to Pre-Test

(1) lox . :.1 x'" (8) 1 xs f "i xs x + C;

1NOT (x2 +1) 3
+ C.

---b 3

(2) 6x(x241)2 (9) + C

' :-

(3) (10) -JAN +6i +, L , .
2 1/Z---1 x t

c
2 ,

,(4) 14x ei,, x +1 (1) .1. (x2+x)8.+ C .

i . ,_-.

,
e

-1 ,

(5). 6 .sec26r- (12) cot 2x + C
2

,.

' .r(6) 2 cos 2x i . (13). sin 5x +,C
5 - :

sin 2x . i .

,,' I C

4

. _

(7) "4 (14) iec x + C
1 + 16x '

.
.

Pk:34 1. 4
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.cb

a

ei.41

13-

A3

This table contains the formulas which are
ESSENTIAL for integration. You should know
them so well that you never have to refer
to the table when solving probloms.

ESSENTIAL FORMULAS'

Trigonometry

(a) sin
2
x + cos

2
x = 1

(b) sin 2x = 2 sin.x cos

.
.

cos
2
x---sin

2
x

(c) cos 2x= 2 cos2x - I

1 - 2 iintx

Integration

(1) Ludu =

(2)1
du

= In u C
u'

(3) feu du = eu + C
4

_ .

un+1
Cn1

(4) /sin u du -cos u e

(S) loos u du = sin u C

(6) Pec2thu = tan u + C

(7) jrric2u du = -cot u + C.

(8) fsec u tan u du = sec u

(9) Ascii cot u du = -csc u C

+C

' This table contains the formulas whiCh are
USEFUL for integration. For short-term use
(on tests, for exarple) memorizing them will
save you time and trouble. For long-term or

lir11114

o ional use, you can look them up or
de hem when you need them.

-. -

USEFUL FORMULAS

Trigonometry

(d) tan2x + 1 = sec2x

(e) 1 + cot
2
x = csc

2
x

(f) sin2x = - cos 2x)

1
(g) cos2x = 1 cos 2x)

2

T4egrat ion

Air du
-

-1
sin (--u ) + C

a. ar L72;

--J

(11) f du

k a2911
2 a

(12)
jr .du 1

sec (3
-1u

) C
au2_at a

(13) Stan u du = -In 'cos ul C

(14) /cot u.du = ln 'sin ul C

(15)1sec u du = lnfsecu +tan 14.1-

(16) `csc u dti = -In lcsc u cot u:+C
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A-Detailed Outline of the General Procedure

. .

SIMPLIFY!'
.

. ghTIAMMLCMffiniagtA
.

asvIcus suBsTITurtoNs
.

(1) Break integrals into Sums.

(2) 'Exploit Identities.

(3) Reduce rational functions to
Proper Fractions by division.

.

(1) Substitute for the "Ins de
Terme" in complex expressions.

(2) Try to substitute for "Nasty"
Terms or Denominatore (brief
tries'only).

.

1

. ..
, 'CLASSIFY! .

.

. INTEGRATING RATIONAL FUNCTIONS
411-

TitIGONIETRIC FUNCTIONS,
-,

, . ..........,....
(1) Reduce to 'proper fractions" by division.

(2) Factor the denominatAr. '

(3) Decompose by partial fractions into a sum of
"basic" rational functions.

,INTEGRATING

(1) Exploit'twin pairs to prepare for substitutions.
Try to obtain integrals of the form .

,

4

if(sin x)(co dx); etc.
i .

vx
(2) Use half-angle formulas ors by. parts

to reduce powers of trigonometric' functions
100fi the integrand.

(3) As a last resort, the substitution u = tan(2)
.transforms rational functions of sin x and cos x
to rational' functions of u. (see p.32) e

.

(4) If the denominator is (ax+b) or (ax+b) n , ,

. use the substitution u = (ax+b).
.

(5) If a quadratic denominator does not factok
easily, complete the scf9are. For the terms

i: (a2+u2)integratedirectly to obtain a
' lggariths.and/or,arctangent.

+ 2 2
t

.

ii; _(u -a ), break intoa sum and use the formula-
on p.17, or use Partial fractions.

.
.

IaEGRATING SPECIAL FUNCTIONS

.

.

(1) If As integrand includes tDrme.of the form '.

(a2_u2)n/2-, (u2../12)n/2, or (a2+u2)n/2,'

(a) Draw a right triangle ,,,

(b) Place a and u so that the third side of
the triangle is the term 'you want.

(c) "Read" the substitutions from the triangle.

(2) If the integrand ie a rational function of e
x

,

make the substitutions
L

e
x

= u and dx = du.
u

(3) 'If the 4ntegrand is a rational function of x
and t/Fi.4,. make the substitutions

I

. IkTEERATING PRIOCTS ,

Consider integration by.parte. The formula is

, -,, fu du = uv -. ' ,(i) ,du

,and your choice of. u and dv should be governed
by two things:

%: ,

(1) You must be able to inteirate the term- dv.

(2) You want dry du to be easier than the original
integral. This often happens when u is

4
, simplified by differen ;iation.

;;7"; 21 u; x = --(un-b), and dx = Ru n-1 du.
a a

,

1 ,

MODIFY! 1

PRCGLEM SIMILARITIES
.

SPECIAL: MAMIPUEATIONe NEEDS ANALYSIS

(1) LoOk for easy problems similar
to the one you are working on.

(2)'- ,Cry to reduce the difficult

problem to the form of the easy
similar pioblem.

#3) Try the techniques you would
use on'the similar problem.

.
.

..,.-A-. .

(1) Rationalizing denominators
of quotients. I .

(2) Special uses of .

trigonometric identities.

(3) "Coimon denominator"
substitutions.

(4) "Desperation" substitutions
_

(1)'Look for a term, or a form
of the integral, that would

' enable you to solve it.

(2) Try to modify the integral
to produce theprm or form
you need.

'

(3) Try to introduce the term
you need; compensate for it.

+!,

72
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STUDENT FORM 1

Request for Eelp

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Student:4 If you have trouble with a specific part of, this unit, please fill
out this form and take it to your instructor for assistance. The inEbmation
you give will help the author to.revise the unit.

Your Name.
Unit No.

OR

Difficulty:

OR

Page

'Section Model Exam
Problem No.() Upper,

()Middle

() Lower

-

Paragraph Text

Problem No.

Description of (Pledse be specific)`

Y 2-

Instructor:0 Please indicate your resolution of the difficulty in this box.

COrrected errors in materials. List corrections here:

i

Gave student better explanation, example,
Give brief .outline of your addition here:

or procedure than in unit:-

. ,

t.

(:2)Assisted student in acquiring general learning and problem-solving

skills (not using examples from this unit.),

Instructor's Signature

Please use reverse if necessary.
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9 STUDENT FORM 2

Unit Questionnaire

Name Unit No. Date

Institution 'Course No.

,Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that comes closest to yourpersonal opinion.

1'. .How useful was the amount of detail in the unit?'

Not enough detail to understand the unit
Unit would have been clearer with more detail
Appropriate amount °Metall
Unit was occasionally too detailed, but this was not distracting

. Too much detain; I was often distracted

.2. How helpful were the problem answers?

Sample sointions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little Not at all

. 4. How long was this unit in comparisdn to the amount of time you generally spend ono ._
a lesson (lecture and homework assignment) in a typical math, or science course?

Much Somewhat About Somewhat Much-
Longer Longer the Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
as many as apply.)

Prerequisites

Statement ofakills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)
Other, please explain

6.' Were any Of the following parts of the unit particularly helpful? (Check as many
as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Eicamples

Problems
Paragraph headings
Fable of Contents
Special Assistance Supplement (if present)
Other, please explain

Please describe anything in the unit that you did not particularly like.

1,"

. Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more space.)

ti

74
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e

a

This table contains. the fpxmulas which are .

ESSENTIAL for integration. You should knout .

them, se well that/you never have to refer

4).

. . A5

to the table where solving problems.

SSENTIAI; 'FORMULAS

Trigonometry

(a) sin
2
x + cos

2
x = 1

,(b) 'sin 2x = 2 sin x cos x
f

cos
2
x .- sin2x

(c) cos 2x =1 '2 cos2x - 1

1-- 2 sin2x

Integration

n+1 4

(1) fundu = " + C

071
"

fdu 111,11.+

` u

(3) feu du = eu + C
o

(4) fsin u du = -cos u + C

(5) fcos u du = sin u + C

(6)fsec2u ciu.= tan u + C

(7) .jcsc2u du = -cot u + C

(8) isec a tan u du = sec u'+ C

(9) fasc ucot u du ,= -ctc u + C
4 °

.0

'75

) ,

a

This rablp contains the formulas which are
USEFUL for integration. For short-term'use
(on tests, for 'example) memorizing ,them will
save you time:.and trouble. For long-term or
occasional use, yolk can look them up or
derive them when you need them.

USEFUL FORMULAS

Trigonometry

(d) tan2x = sec2 x (f) sin2x = 1/2(1

(e) 1 + cot
2
x = csc2 x (g) cos2x = 1/211

cos 2x)

cos 2x)

Integration

(10).
du7

Jae -u2

1) *du

- sin-!(11) + C

.

tan-1(,,T 1. 4---6-1)

.Aa+u2

!

, .

1

(12)
du = 1 sec-L(11) +

.

C
u42-a2 a

0.

(13)ftan

(14)jcot

(15) f.sec

(16)fcsc

u,du = -1nIcos ul + C

u du = lnIsin ul- + C

u du =.1n I sec u+ tan t4+ C

u du = -ln I csc u + cot ul *4- C

I.

76
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1 (Exercise 4) Part (a) can be solved easily.

There are no easy aigMbraic manipulations in either part of the

problem, so we look for. substitutions. In both (a) and (b),

the "qasty" term is tan -lx. If we try

1
u = tan

2
lx, then du = dx,

x +1

and this term does appear in (a) . Using this substitution in

part (a), we obtain.

u((tan -lx)( 21 dx)

x +1

1

2
(tan 1x)2 + C.

(EXercise 2j Part (b) can be solved easily.
-

We begin by looking fdrhalgebikic simplifications. Both

integrals (a) and (b) can be broken into sums, but that doesn't

look terribly promising at this point.. There are no identities

.which apply to either problem. But we notice that part (b).

is an "improper fraction", so we should divide'to reduce it to

a proper fraction. _Thd quotient is (x2) and the remainder is

(1). Now (b) is easy to finish:

du a

p3
+ X

2
+ 1

d
.3(

x + 1
= fiX2 1

x 1 )dx

3x3 + In lx+11 .+ C.

/

a 1

Solutions, Chapter 1

3,(Exercise 5) Part (a) can be solved easily.

In this problem, a simple algebraic manipulation is all we

need.
_ .

In part (a), ln(eX) = x, so

ifIn (ex) dx jrx dx
o

1
x2 + C=

2

N

4, (Exercise 6) Part (a) can be solved easily.

Since both parts of this exercise involve a 5th power of a

rather nasty term, algebraic simplifications are out of the

question. Voth because it is "nasty" and an nside function,

the term .(1 + f ) commands our attention. we try

u= (1 + o5F ), theh du dx
211

The term appears in the denominator in part (a) of the

exercise, so part (a) looks promising. We obtain

fdx

) (1 +. ,fie )5

.

f ITC

1 ( 1 d 1 d1).

(1 + )5. (1 +MS 21i

5 2 42,4 du = u + C
-4

ar

-1 -
+ C

2 (1 + 137 ) a

_ 24 1977

Orr, ""' P.41
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Solutions, Chapter 1 3

5,(Exercise 1) Part (b) can be solved easily.

We might try exploring with trig identities in the hope of

simplifying either part of this exercise. If we do, a short

amount of exploration convinces us that this approach is

unpromising. In both parts of this problem the "nasty" term

is the denomintor, 0(2+sin x).. If we try

u = (2+sinx), then du = cos x dx.

Since (du) is the numerator in part (b), (b) is the easier

problem to solve. We get

Lfirsi3lic

dx
= In luf + C

= in. 12+sin x I + C

6, (Exercise 7) Part (b) can be solved easily.

In both parts of this example we have that the integrand

I

is a rational function of ex. While we might be tempted to
.qot.

jump into the substitution u = ex, let's follow the procedure.

The first of our algebraic manipulations calls for breaking

an integral of a sum into a sum of integrals. If we examine

(b), we see that this almost finiPhes the problem. We obtain

e

e

Sx
1

x

feSx

e+

1
dx =1(

x
dx = ( e4x e-x )

dx

= e
4x

- e
-x

+ C.

. 80
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7 (Exercise 8) Part (b) can be solved easily.

As in Sample Problem 6, the moral here is: look before you leap!

We can factor the denominator into (x-1)(x-3), vhith means that

both parts of Exercise 8 can be solved by the technique of

Partial Fractions. In both la) and (b), hover,' -the "nasty" '

term is the denominator, (x
2
-4x+3). If we try

u = x
2
-4x+3, then du = (2x -4)dx,

which is twice the numerator of part (b). Part (b) can then

be solved almost immediately: Ap

Jr (x -2)dx 1f12142lx "li
u 2

1
+ C

.

x
2
-4x+3

2
x
2
-4x+3

2

.=
2

lnix
2
-4x+31 + C

8Exercise 3) Part (b) can be solved easily.

,

We might try to exploit the relationship tan
2
x + 1 sec

2
x

in either part of this exercise, but' manipulations with this

may get complicated. We should hold d'(' using this until we

have checked for anything easier. In part (a) we have tan x

as the "inside" function, which suggests

u = tan x; du = sec
2
x. 0.

Unfortunately, we don't have sec
2
x in part (a), or any easy

'way of getting it. So.we go on to part (b). There the "inside"

function is sec x, suggesting

u = sec x; du = sec x tan dx.

At first this doOtn't look helpful either, untifIke realize

that we can "borrow" a C,sec x) from,(sec4x),= (sec300(sec x).

isec x tan x.dx =
Then I 4

Asec3x][sec x tan x dri'
a

1 1
s= f u

3
du =

4
u
4

4
c = ec 4

x + C

a
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,Solutions, Chapter 2 PART I.

I(Exercise dx

1
1,

The SINKIFting techniques of Chapter

help herp. Our clue to approachingt1

,/33-c.i- in the niimerator. This is one

we studied in section 4,- r11..ax+b, and stalest

2 1 2
u ; u `;=-- 3x+1 ; x.= .(u -l) ;,dx

1 don't seem to.

lem is the term

ecial- functions

substittitions

. , .
.5 "., .

1c - \(fiercise 10) 9. dx . .

7
2+osrkx'

,

. _

,-- .5
The methOds' of 'Chapter 1 dori't seem, to apply. iThe integran
li I

is' a combination of trig functions, so we check for the e .
.., ,

appropriate. technique there. There doesn't see)k to he,any way

to' exploit "twin pairs", and there sr:nopowers to redice,
. .

so we are left with the "last fesort'l substitutions bas. on

2
u du .

3 (Exercise 15) cos2x) dx
.

,* We could use £he techniques of the Trigonometric.

..-- Functions sectioh, btit we should' check for easy alternatives

first. If we remembpr the trigonometric identit)5

\.

cos 2x = cbs
2x

- s'in2x ,,

the-problem can be' done easily by the methods of Chapter 1. ,

,

.`

.. 4 dx IV
(Exerci .se3)

..*ex.l. . .,

..

x '

.. There are no
'apparent

simplifications, and the' term e ..
in th% denominator indi,car that we should conside

. 7"

. du
Substitittions - u = e

xi,
dp = e

X dx; dx 8
.

.

82
,
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5(Exercise .134'
tan-lxdx

The methods of Chhpter 1 apply here. The

tan x; and if we set u = tan
-1x, hen du-

point or the problem is easy.

7 dx
.(Exercise,l)

x /372,

There are no apparent simplificatibps -for this

Our clue for approaching, it is the

: term /;c:7: , which is one of the

'special f *Le studied in section'.

'4. It suggests trig substitutions,

based on 'the triangle tb the right.

"nasty term
dx.

From this
x2+1

.

(Exercise liV
/.(x3.x2)

x2+x-2

problem.

I.

.
, .

5

'The integrand in this exercise is a rational function, ,so

.tle should follow,the procedure for rational function' s.

A I.

c

(Exercise 6) ix tan-ix dx'

is a

is a
(ar:

(b):

* r

.5

There are no apparent simplifications.: Here the integrand

product of di,ssimilar.functioni, so integrat,ion by parts

'likely technique. The two choices we have are..

u = x;. dv = tan x dx. '

U,..! tan
-10

dv =5 x dx.

Choice la) doesn't look promisfpg; because we w d have
t

to integrate clv*= tan lx Aix.' In choice .(b), we dif etentiate
-

u 2. tan
-1

x to;obtain. chi 1---, which' is much simpler. So
dx

we'use integration b,' parts: 41

with u = tan lx1 chi' = x dx.
' -

83
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914

f cos(ln x). dx
x

Since this integrand contains an "inside" function,
(In x), our first approach should be to try the substitution

u = In m.

(Exercise 2) dr2 tan 4x
dx

There are no apparent simplifications. Since the proplem
involves trigonometric -sunctiorfs, we should first try to

.

exploit the relationship between tan x and its "twin", sec,x.
If that fails, we fight look for a reduction :formula. ,

-.1.1 cj. .(Exercise 8), ti

.
As a prelimindry simplification-, we Might factor the

term in the denominator to obtain
.

. ''''': S dx

. .,/(7)(7f6) ,
.... . .

but this doesn'r'seem.te help muth. What. can we integrate?
Termt of the form ji du ;

.12i7 se
so, wb should.,consider completing the
squares tha denominator to obtain ' -4 .

ii(x+3)2 - 9, .1
S dx, With u = (x+3), this

is 9 diiis
1777'

and a trig substitutir

`is suggsted; With tte help of the- diagram given above.
.

:

4.
. 84iiiii,

Solutions, Chapter. 2, PART I 8

1 1x4dx ..'.(Exercise 16)
i

I

x3-1 . t
. .

Sirce the integrand here is a rational unction, we should
follow the procedure given in section 1 for integratingo
rational functions.

1a(ixercise 5) 9 x dx
12x +4

While the denominator suggests a trig substitution, we
should be careful and check for simplifications first. Since.
the integrand contains an "inside" function, (x2+4), we can
try u = x2 +4 and see what happens: ,du = 2x dx, and we're
in luck-. The.problem can be done by the means of Chapter I.

14(Exercise
.

"/Sx3
x

dx
4

1- ,

' The integrand is a rational function, bqt we shouldn't
rush into the techniques f Chapter 2 until we've checkerfol%
simplifications. The "nasty" term is the denominator,andi.f
we try u = x4 -1, then du=4x

3 dx. Since our numerator is
(Sx3 dx), we can finish the problem easily with the. techniques
of Chapter 1.

15(Exercise 14) Asc2x cot3x dx

This problem can be done directly by the means of Chapter
J. If we sett' u = cot x, then du = c sc2x dx, and the
ihtegrai becomes - 3-,/ u d,. ' . ..., '

.*. .
5 -

1.64Exeilci se" 14.) 6'..,/csCII, cot3x dx
i*

A*

tills problem can't be done iramediateliy by the moans of
Chapter 1. We have to eip loit "twin pairs ",'as in;gample
Problem 10.
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1

'Solutioni, Chapter 2, PART II

(Exercise- 4) -' i,./i7---01

See so,lution jlt=fOr-our reasoning. With the substitutions
u =13x471- ; ;2 = 3x+1 ; x___= .1-(u

2
--1) ; dx = - u du,2

3
the integral becomes --0- 0, '

dx

f 6 (3(u2-1)]2[3 u du] - -(u d
je 2-I) 2 .°

= 11(u4-2u2+1) chi
44 1 2 3 '---

=
9
- [-

5.
u -

3
- u + u]

Exercise 10)

4 1 5/2 2 3/2= - [ (3x+1) - (3x+1) + (3x+1) 1/2
+ C5

f 9 dx
2 t cos x

See solution [2] for our reasoning. With the substitutions
22u 1-u 2 duu = tp(1) ; . sin x = ---2- ; cos x =, --2- ; dx =

1+u 1+U 1+u.. ...
ithe integral becomes ,

f91+dj)
=

)
du

2
Ill

u2 +3
, 1-u2

1
+

ltu
Now if we remember formula 11°fr\om the table of useful
integrals, this is

. ".

'1. u
) + C. (18 [ tn -1

(

V ir- tan-1( ian(1))+
C. '.

, --,,,---fr 5
4 I lifr

V, ., .

Solutions, Chapter 2, PART II 10

4

(Exercise 15) j(sin2x - cos2x) dx

( .ee solution [3] for our reasoning. We have

1Asin2'x cos
2

x)
,

$
dx r. licos 2x dx = T

(Exercise 3) j* 4 dx
ex-1

sin Zx + C.

See solution [4] ,for our.reasoning. With the substitutions
'u = ex; du = ex du

; dx = ,

th'e Vetomes

- 4 --, Using partial fractions,
41:

this is
4/(1-1-1.7 - 4 (lnfu-11, - 1111110+ C

u1
14 + C = 4 lnlex= 4 1n1-1 + c,u .

ex

(Exercise 13)
tan-ix dx'

See solution [5] for our rasoning. With the substitutions
11

; dxu= tan- ; a
x +1,

.the integral becomes

rJ -lx/ dx f
2

du = -1 u2

.x ti

2
1- [tan-lxj2 + C.

v

RECEVP.-7D

siAr.; .04 1977

Pjel./..A C:111, c.

87
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Exercise 1) r 7 dx
117:i

.See solution [6] for our reasoning. Based on the triangle
to the right, we obtain khe
substitutions x = 2 tan 0;
dx = 2 sec20

; and

27; = 2 sec 0. the integral
becomes f) sec20 de

(2 tan 0) (2 'sec .0)

-711/cos '0] (10' L. 7 f d0 cr. ./ ics
2 [sin Ii/cos 0] 1111t4 V sin 0 7 c 0 dO.

7 /sec 0 al.Z.
tax-7. G

Usirig.fora (1'6) , we obtain

-7 in icsc Q + cot + C.

Going back to the triangle to "translate" csc 0 and cot 0
in terns of xt'we obtain

T .1n x

.
+ C.

2 a(Exercise 12) P2221-1c2cl3c- Al(.. x x-2.
FollOwilig the procedurefor rational functiOns, we 'obtain

en

(x+529) dx u);( (

x
2

2

(x+2),7x 4i) dx

z.,2
j

J(x (a-_.Z 21441.) dx-
+2

1:2 ' 4 2
=- x + inix+21 _+ lnlx-1] + C.

;cmosc

c

e-. :4
Solutions, Chapter 2, PART II .

12

r
s

. .

44111
_.(ExerCise 6)

. .0

2 ,6, tail-4X dx

See solution [8] for our reasoning. Using integration by
parts with

9.

u = tan -lx
du = dx

x +1

dv = x dx
1

v 7 x2

.

1(tan..1x)(x dx) = (tan-1
x)(-2 x

2
) -

4
, we obtain

1
x

2- dx

x +1
v du

2x2 van lx:-
lf 2

7=
dx

=. x tan -lx - -
o

1 2 1 ,

1 2 1 1 el 1
-= x tan x - + tan x C.

2 5 (Exercrs-v4). jcos(ln x) dx

_

1

X2+

See solution [9] for our reasoning. With the substitutions
= In x ; du = 1- dx , the integral becomes

Jcos(ln x)[(1) dx] = Ylco; u du = sin C

= sin(ln x) + C.8

2 6.0-xePcise 2) "tf2 tarrix dx

See solution [10] for our reasoning. Exploiting the relation-
ships between tan x and its "twin," sec x, we'obtain

2 itan4Z dx = 2J(tan2x) (sic2x - 1) -dx

2,/ (tan,2Z)(4A2x)(ix - 2 tan2x dx -

21 ((tan2x) (sec2x dx) - .2fisec2x -1) dx

2,/(tan2x)(sec2x dxr- 2f sec2x dx _+ f dx

2 3 .tan 2 tan x 4%2 x
89
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2 f(exercise 8)
5 dx

fi;,...kx
See solution [111 for os,r reasoning. After completing the square

in the denotinator and making the substitution u = x+3,

the above integral becomes

S du.

From the triangle

to the -right, we obtain the

substitutions

-32

f u = 3 sec 0; du = 3 sec 0 tan 0 do; 1../7-37= 3 tan.4

----z. tiis transforms the integral to

/3 see.0 tin-0-d0
3 tan 0

5.fieC 0 10

..

5 In Isec 0 + tan 01+ C = ' 111. f
3

1+ C

. = 5 In
I x.+3

3
36x I

+ C.

2 C3jExercise 16). 1 x4dX P

, ./ x -I ..

Following the procedure forrational functions,we obtain

4' A 0

7-7
fX. ax

. x-1 .,

4 _

4

viri(x fx'.
dx

(x-1)(x2+x+1))

SY4): f(13)X + (1/3) dx
x +x+1

rx dx + rdx (x-1) dx
3 J x- 1 3 2(xs.) +

2 4
s.

1We now make the substitution u (xs-
2

) in the third4
integral, to obtain 1

0

14

fx dx

= jx dx

1 f
x-1

d;c lf(u-3/2)du f

3,J
u

2 + 3/4 /
1 f u du if du

3 u2 +31 4 2 u2+3/4
. ,
.

= x
2

+3 lnlx-11 -
6

lniu 4
4
--1 + -- tan-1( u+ C2 r-v3/4

4 1 2 1 , 1 (i 2 31 1 1

= T x + -E ln Ix-1( --6 lnix2+x+11+ ..,i. tan (,) + C.
1 2 1 1 1 1 -1 2x+1

,/3
#16

iks

Exercise 5)
f 9x dx

),P7.4

See solution [13] foi our reasoning. With the substitution

u = x2+4, we have

9f -1/2if 9x dx, 9 2x dx

7-7

9 f du
2 riT 2 u

u
I/2

+ C = 9)1747 C.

3a(Exercise 7)
x -1

j5x4 dx
3

See solution [14] for our reasoning. With the sUbstitution

u :±1 ( -1); the integral is

px: (Ix":5f 4x3dx du
x4

-1 4 x
u

1`ro

5
in lui + C

5
-4-- n + C. ,

91"
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Solutions, Chapter 2, PART II

10

15

31o(Exercise 14) fcsc2x cot3x dx.
f

See solution [15] for'our reasoning. With the substitutions
. 2 ''

u = cot x;- do = - csc x dx, the above becomes

-,d('( cot x) (- csc x dx) = -fu 3 -du = u
3 ' 2 4

-1 4
= cot 4x + C

C

3 2 (Exercise 11) orcsc 3x cqt
3x

dt

-41
drcsc3x cot3x dx = 21(csc2m)(cot2x)(-c.s6 ettx dx)

. -

= -.AcsC3x)(csC2x - 1)(- csc x cot x dx).
, .

At this poinethb integrand has been expressed in terms of

csc x and.its d!rivative. With the substitutions u = csc x,'

du = - csc x cot x dx, we obtain

P 2
(u-2 -) ( ti-1,) (du} ,

= 1/(.1z4+u2)du"

-1 5 1 3*
--= + u + C

-1 f'S'' 1 3
-§- csc .x + x

92'
\;\ .

P

Solutions, Chapter 3, PART I
It)

(Exercise 8)
f dx

77+ 7-Te

Like Sample Problem (9), this4problem can Ve approlched a

number of ways. With such a nasty expression, we might be

tempted to make a "desperation" substitution with

u =174Tx

2. (Exercise 9)
1/2

(1 + x
1/3

) dx

This is not a "common denominator" substitution problem.. If

we multiply the two terms in the integrand, the problem can

-be handled basily by the methods of Chapter 1. .

:341.P(Exercise 3)
ci x2/3

x+1
dx

This is a "common denominator" substitution problem, where
2/3 1

the terms in the integrand-are---x------and .---The-common

denominator is '3 , so we should make the substitution

u = x
1/3

.

- s.- o17 o 1477
X

dx
(Exercise 5)

.- .
.

In this problem we should rationalize the denominator, and

then see whatever else is called for.

5. (Exercise 1)
x dx

x4 -3x +2

The form of$this problem is similar to national functions

with quadratic denominators. We could obtain a quadratic

denominator bo¢ setting u = X2 46.
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e£xercise 10) Lec x

x

+ tan x
d

7.

The easiest way to handle this problem is to recall the

identity: tan2x + 1 = sec2x, or sec
2
x - tan

2
x = 1.

We can multiply the denominator by its conjugate, sec x - tan x.

xS dx
(Exercise 6)

There might be any of a number of approaches to thif problem.

The key.bbserVation to'make is that the numerator, x
5
dx, :can

1
be written as -

3
(x
3
)(3x

2
dx). This makes the substitution

= x
3

look promising as a beginning; we can go anfrom there.

Op-
(:),(Exercise 7)

dx

(x+4)/;7:87

As-in Sample Problem 3, we need a way to get started on this

problem. Perhaps completing the square in the denominator

will give us a lead.

L

9,(Exercise 4) dx

There doesn't seen to be,any easy way to approach this

problem. It might be worth trying a desperationpubstitution,

u 1.1W

/0,(Exercise 2)
ft= x dx

sec x + 2

Since the integrand contains an expression involving sec x

in 'the denominator, we an ask': -what do we need to integrate-

such an expression? The derivative of sec.x, [sec x tan x dx].

We ctn obtain this by Multiplying both numerator and denomi-
.

nator by sec x.

. 94

Solutions, Chapter 3, PART II . 18

LExercise 8) .

dx

%/7

See solution [1],for our rbasoning. With the substitution

u.="7+77T, we have u2 = 1 +Or; u2 -1 =,15F x = (u2-1

and dx = 4u(u2-1)du. Thenthe integral becOMes

j4u(u2 -1 )du
u_. =

4
4.)r(u 2-1) d u

3
- 4 u + C.

...- a

=
4
- [1 + ./71r]

3/2
- 4 [1

1/2
+ g.

3

1 2(Exercise 9) fx1/2(-+ x1/3)

=
/(x l /2

x
1/2 5/6

)dx =
2

x3/2

6
x

11/6
+ C.

a

13.(Exercise 3) fx2/3 dx
x+1

,See so1 gon [3] for our reasoning. With the substitution

u = x
1/r

we have
-

u
3
= x and (3u

2
,du)v= dx. The integr 1

becomes

1(x1/3)3 dx _11.612)(3u2 du),,3 u4 du
x+1 3

u.+1 u
3
+1 .

If we now follow the procedure for rational functions, we
40

4

( 3u - Su
3u du

obtain f ) du = 3u

(u+12(u
2
-u+1))

1 u+1
=.1(3u u+1 )du =hu

u+1 I 2
) du.

(1771 u
2
-u+1 +(3/4)

2

1
For the third integral, we set w = (u - -2). This gives -um

Au du . fu' _p21/1/ilt.
V u+1

+(3/4) (continued...)

ti

95.

1
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Sblutions, Chapter 3, PART II. 19

I

= f3u du .+ du
13+

w dw 3
7

jr dw

w
2
+(3/4) w-+(3/4)

3 2
u 4. 1111u-11 lnlw2.2 I - tan t

T C
4 2 65- Tr

a

3 2
U 1111U+1.1 1u2-u+11- -tan

7*''''

1/3
3 2/3 1 VS 1 , 1.2/3 1/3+ 1

tan-1
.(z-1

-2- x lnix +1 - 'nix -x 11 4 .5 t

4,(Exercise 5) ' x dx

, 4-7x-

To rationallze.the denomimator in this problem, we multiply

both numerator and*denominatop by [ .5-47i - A=7 This yields

j[ +x WITT (l +x) (I-x)

077 - 4;7 ], x dx , x dx

JL - ./1 -7 ] x dx

2x
= - .117-7]

. 1

( (1+x) 3/2+(1-x)
3/2 )

+ C.

s

. 4
.(Exercise '1) x dx. .

. ,
x4-3x 2+2 ...,-if i

See solution [5] for our reasoning.. With the substitution

u = 4 , du = 2x dx, this integral becomes -

,JD

; (x2) 2.3(2)42
1 f 2x ar , , 1 jr du

2
u
2
-3u+2

.

.F.

,1 jr du it
(u-2) (u-1)

.

.

,2

. .

4. \ du
u-2 u-1

= (lnju-21- 111111-1,1)-0 C

.

1

:14+ C =

2
C,

' Solutions, Chapter 3, PART 11 20

(Exercise 10} ; dx

f sec x tan x

See 'solution [6] for our reasoning. Multiplying numerator

anu denominator of the above integral by (sec x tan xi,

we obtain .

)(1(sec x - tan xj[sec x tan x]

(sec x - tan x] dx

jils et x - tan x] dx

/(sec x - tan xj dx

.sec
2x

- tan
2x

jisec x - tan° xj dx

= InIsec x + tan x 1 + In 'cos x 1 -+ C

NOTE: As'usual, there is more than one way to approach this

problem. if we don't notice that we can multiply by the

conjugate of the denominator, .or .if we feel uncomfortable with

-sec x and tan x, -we can express the integrand in terms of

",
sin x and cos x. This, gives us

cos

x j'cos x dx
= In (sin x + 11 +,,C

I sin x sin x + 1
+

cos x cos x

We can sho4reatily that these -are the same answer. In this

case 'the second alternative gives us a faste1 solution than

can happen; the important thingut
the use of conjugates. That

to have is an organized, logical procedure for approaching

integrals.

.( Exercise 4)
xs dx

see solution [7] for our reasoning. With the substitutions

u =x3, du =,3x2 dx, thi; integral is

1 00)(3;2 dx) liu du

.)/(' 1731 44 3 Vfl+u ... .o.
The ubstitutkons v = (1+u), dv = du,

3

reduce this to
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Solutions, Chapter 3, PART II 21

r(v-1) dv
J

18.(Exercise 7)

jtv1/2_ v112] dv

2 v3/2
z4. 1-

2 2
+ C2 v1/2 + C (1+u) 3/2 - 2(1+u) 1/

.
3

=
2- (1+x 3

)
3/2 - 2 (1+x 3

)
1/2 + C

3

dx

(x+4)471;

See Solution [8] for our reasoning. Codpleting the'square in

the denominator, we obtain

x+4),/(x+452-42 , and the substitution u = x+4 yieldsf(

fu a;2_42 4 4
= - sec .)+ C

4 4
I -1 usec (-) + C 1 -1(x+4 C.

dx

19(ExScise 4))

I . .

fgr
This is the hardest problem in these'aaterials; don't get

'dismayed if you h a lot of trouble! With the desperation 'xsubstitution i, x , we obtain u
2 = --- , so u2 (x+1)*= x.xtl-

'4' 2 %
, so dx 1i 2u du %

ThSolving fOrx, we obtain x )e-3----*
1-u . , (1-u2)

integral becomes
Jo (2u du _. du

(1-u2)2)° 2

ur

(1-u2)2 ....
.

The team in the denominator suggests
the pbstitutions 1-1--T--12= cos 0;
u = sin dd F cos 9 dO, which.we
derived from the 'triangle to, the iiiht.

I-u

Solutions Chapter 3, PART II 22

. .
These substitutidns transform the integral to

2
f (sin 0)(c'os 9 dO) _ 2fisin 0)2( 1 ; dO

cos40 `cos .9 J cos 91

= 2.ftan20 sec 9 dO = 2f(sec20 - 1) (sec 9) d0

= 2.fsec39 d9 - 2fsec 9 d9.

Finally, we can-see our way to e end of the troblem. The
first integral can be done by parts, the 'second by formula 15.
We obtain

2 (1-[sec 0 tan 9 + In IseC 0 + tan 01)- 2(lnisec 0 + tan 44+ C

=.(sec 0 tan 0)- lnisec 0 t tan 01 + C

1 u id 171_,
u cI

(W-712 i-u2) 1-n-e IT-71

1 I 1 +u

1-u I

Cl were) u 2-7

a(Exercise 2) pan x dx .
sec x + 2

See solution [10j for our reasoning. Multiplying numerator and
denominator by (sec x) and making the substitution- u= sec x,A we obtain sec x tan x dx

_

du
(sec .x) (sec x + 2) fu(u+2)J

21 u u+2
du = (In dui - In 1u+21)+ C =

I
In u-72-1 + C

V 1 int sec-x
+ C.2 isec x + 2
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102
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Briefly discuss the'achieVements of Gerber:dos Mercator, Janes
Gregory, and John Wallis.
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1. MERCATOR'S ACHIEVEMENT

1.1 A Strategy for Navigation with Map and Compass

, Imagine y'oiNtsel'f piloting a ship .at sea,-hotv can you
reliably get to your destination? Suppose you have brought
the most basic of navigational aids.: a magnetic compass
and good maps. The simplest way to use your compass

would be to hold its needle still by keeping youipship
moving in a constant compass direction. Thus, if you ,

travel steadily northeast, your compass needle ,(which
points north)

1
will make a steady145° angle with your.

direction of motion/and the needle will shay still. '

Firs 1-5 show such a northeaS"tward journey (an
airflight from the Galapagos Islands in the Pacific Ocean's

to Franz Josef /Land in the Artic) as it would appear on
Pfive types of map. The airplane's course makes 'a 45°

angle with all the meridians (the north-south lines, great

circles through the north'-and south poles) on each mop.

Which map would be the easiest one on which to lay out
the course? Figure 1 may give the best overall ,view'of

.the earth as a sphere, but the Mercator projection in I
Figur 5 is the best for navigation because your ship's

, 1

In truth, the compas's points to the north magnetic pole, not
the North (geographic) pole. Diserepancies of this kind are

/discussed later in the Special Assistance Supplement. [S-/]

1

.
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Figure 1. A flight with a constant bearing of 45° E of N from the
Galapagos Islands in thevPacifi5rto Franz Josef Land in'the Arctic
Ocean.

4Pigure 2. The flight of Figure 1 plotted orf one...form of conformal

map.' (Theangles to the meridians are constant but because the "
meridians converge the patty is curved and would be difficult to Piot
and Measure.)

2
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Figure 3. Plot of flight on "plane chart" such as was in use for
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Figure 5. Frght. at constant bearing on a Mercator projection.
Straight line path is easily constructed, measured, and followed.

course appears there as a straight line, not a curve. It's

easy to construct the course with a protractor (compass

rose) and straight edge because it is-a straight line course.

1.2 Rhumb Lines

Sailors have used thelcompass and followed lines of

constant compass direction since at least the thirteenth

century.
2

They called such paths on a map or chart. rhumb

line. Cartographers and mathematicians found that the

sailors' rhumb fines became IFStal-like curves on the globe

and named them "loxodromic curves" Or loxodroma (from the .

Latin loxos--slant and drome--running) because they cut all

the meridians they cross at the same slant angle (See

Figure 1). You should trace a loxodrinne On a globe to see,

that it spirals.' As a rhumb line moves north and the

) meridians get closer together,' the line must turn steadily

toward the pole to. cut all the meridians at thesail.ce angle.

'' It spirals toward the pole without ever reaching'it.

2
Historians disagree as to the origins of the magnetic

compass. You will find an interesting account of the compa5p*
and its history under !'compass" in the Encyclopedia Brittantca.

4

1.3 The Ned for a, Map On Which Rhumb Lines Are Straight

If you ish to follow a thumb line course, you must

know what co stant compass direction to use from your

ftatting poi t S to your destination D. If you had a map

on which the rhumb line path between any points S and D was

simply the straight line between those points, you could
,

draw that line with a ruler and read the compass direCtion
l \,

by measuring,(wth a protractor) the angle at which
_1'meridians are e cwt. Before.lkiercatoes time sailors attempted

. . ...

to use pla,iiichSrts (charts in which the lines of latitude

were equally spaced) forthisiurPose. Figures 6a and h

and 7 ,show the e
1

or that arises when a straight line nn

a plain chart is' ssumed to be a rhumb line course.

,
d.4 ,Mercator's S ccessfuj Map

In the sixte th.century, Gerhardus Mercator recognized

that such a map, '41 which all rhumb lines would appear as

straight lines, wolii& be very useful to sailors. He )

succeeded in creati g such a map--his famous world map

Pablished in 1569. This map was recognized as a gigantic

achievment, the first signifidant improvement in map design

in 1400 years. A Standard reference on cartography calls

the Mercator projection a "radical departure and improvement

te

over methods existing

contemporary judgment

longe primus', which,

before his (Mercator's) time. In

he was styled as 'In cosmographia

translated, means: In cosmography
. by far the first." (Deetz and Adams, p. 104)

The Mercator world map has become such a fixture in

our culture that it is familiar to every school child. I

%remember this map as a
A
very unsatisfactory early view of

our planet, because my teacher convinced me more of its

shortcomings than of its value. TheshortcOmings are serious:.

distances are hard to Measure on the map because: northern

regions appear grossly exaggerated in' area (compare, Greenland

to Africa on a,globe and on a Mercator map--or in Figure 1

and Figure 5); the polar regions cannot be shown at, all but

must be inset as separate maps; distances ar'e hard to

109
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Figure 6a. A straight line course joining the Panama Canal to
Land's End, England deawiron a plane chart. It advisesus to use
a compass bearing of 5Q0 as shown. A-

IR
lor

Hi
rd4

k6

I1111
s MkIN

P.

I
il. Briii

1
LI 2 MIME

Figure 6br The comparable straight linetcourse on a Mercator map.
The correct compass direction to follow is 569 east of compass
north.

6

O

. .

Figu're 7. The navigational advice obtained from charts 6a and
'6b leads to 'dHferent results. The solid line shows' the course
from 6b, a rhumb'line that does join the Panama Canal and Land's
End. If weobeyed.the plane chart in 6 and followed a constant
500 compass bearing we would be far off course, as the dashed
path shows.

GERHARDUS MERCATOR is the Latinized name of Gerhard Kramer,
born in Flanders id°1512. He was,the expert engraver of map-
sections for a globe made by Gemma Frisius in 1536, a crafts-
man of mathematical and astronomical instruments, and a land
surveyor. His major achievements as a cartographer include
a globe in 1,541, a large (132 x 159 cm) map of Etdope (1554)
which made his reputation and was reprinted with corrections
in 1572, a map of,the British Isles in 1564 and the great world
map of 1569. His major-work was done at Duisberg, Germany
where he was cosmographer to the Duke of Cleves. Mercator spent
his final years creating a collection of maps of west and south
Europe, of high accuracy for the period. It was published in
1595, a year after his death, as Atlas - or Cosmographic Medi-
tations on the Structure of the World. Thus the word "atlas"
was first applied to a collection of maps. He.should not be
confused with Nicholas Mercator, 16147,1687, mathematician and
astronomer, nor were they related. (Source: 'Dictionary of
Scientific Biography Vol. IX, Am. Council of Learned Ncie-
ties, 197, p. 309.)

111
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measure becatise the scale change's as we look"along vertical
S.

lines t . .

In the schoolroom where studentAare learning about the
.

relative .sizes and locations of ccuntries the map is, at its

,worst. A s a navigational.aid, the map has been unsurpassed,,

for.400 years because loxodimmes appear as straight lines

and angles measured on the map are the same as those measured
on the globe.

1.5 Modern Navigators Use Mercator Charts

The shortest,path between two points on a sphere is the
great-circle route (S-,2]. Modern air and sea navigators

naturally prefer, to follow that shortest route. To do so,'

they begin by plotting ihe'course with a straightedge on a

gnomonic map (Figure 8) on which all great circle routes
appear as straight lines. However, the compass direction

changes continually along the great ci.icle route (which,

except. in special 'cases' is not a rhumb line), and pilots
still expecf to be told to follow a fixed compass direc-t/

tion. It is thus convenient and usual to replace the
great circle route with a sequanp? of rhumb lines.

Because angles cannot be mbastired readily on a gnomonic
or great circle chart, the navigator selects convenient
intersections with the meridians along his great circit
course and plots these points on a large scale Mercator map.

) Straight lines drawn between these points on the Mercator
projection give rhumb lines which are easy to follow as a
course and which use ully approximate the great ci le path.
Figure 9 shows the re4ulting course on the Mercator `ap. The,,
extra distance involved in following the rhumb line p ces
instead of the great circle itself is minor in comparis n to
the improved ease and certainty of navigation.

1.6 The Integral (secs do IF

In this paper we'll explore the construction of the
Mercator map in some detail. We will see why, a century
before Newton and Leibnitz created.the calctlus, Mercator

8

112

f

Figure 8. A great circle route appears as a straight line on this
gnomonic projection. (The path appears curved becApse of an opti.cal
illusion; sight along it to verify that At is a straight line.)

found himself ih need of the integrar

fisec
-

We'll briefly cover the mathematical history of this integral'
as well. For-all practical purposes this integral was
evaluated long before the invention of the calculus although

no proof appeared until 1668, when the calculus was newborn
Y but known.

N D113 1
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'50 0 70 60 50 40 30 20 10 0

.Figure 9 A series of rhumb line paths (straight Line segments On
this Mercator map) approximating the great circle route of Figure 8.

2. CALCULUS AND THE MERCATOR MAP

2.1 The Framework of the Mercator Map

Let's begin to create Mercator's map. The zquator.is.

°a rhumb linein the east-west direction and will have to be

a straight line on the map; let's place it horizontally

across the middle. The meridians-of'lengitude are the,

'northxsouth rhumb lines and must also appegr oh the map as

straight lines. Let's place them vertically, and space, them

''evenly. This gives. us accurate right angles between the

north-south and'east-west meridians and the equally divided

equator on the map. The'other east west rhumb lines

include-the arctic and antarctic circles,:the tropics of

Cancer and Capricorn and all the other paz°allels of latitude.

As we will see; our main proglem isto plaCe them as

horizontal lines with such a spacing that rhumb lines will

turn out to be straight lines oir the mat.-
10'

.

Two of out a,s-Umptiot-S-ahould-be made explicit':.
1

Our map is in "one-to-one" scale: we will dup-

licate distances along the equator-mile for mile

(although other distances will be distorted).

That does not yield a pocket siie map but scaling

it down to printable size is an easy matter. Thus

we'll soon talk of "stretching" earth distances, to

put them on the map!

We take the earth as a sphere. Cartographers ,

can include the planet's equatorial bulge, but we

will not attempt to do that here:
.b

4.

2.2 Horizontal Distances at Latitude Get Stretched 0

So far we have placed a family of parallel meridians

on the map at right angles to the horizontal equator. Our

troubles begin when we try to place the parallels of

latitude on the map. In Figure 10, distances along the

parallels of latitude between specified meridians are seen

to shrink to zero as we move toward the poles, but those

distances will ve Co be equal on the map because, there,

meridians are p illel lines. Thus horizontal distances on'

the map will have to be longer than the true earth dist'ances,

and the stretching will have to increase as we move toward

the poles. The vertical placement of these stretched hori--

zontal lines will have to be skillfully done to keep the

rhumb lines straight.
North Pole

Figure'10. Correspqnding points on meridians and map: EF on the
globe 'stretches to E'F' on the map.
'4: 115 . .,,ft
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To. see how to placethe parallels of intitulle wee ratusstt
study. the horizon al stretching. A wedge !al the eatatet
its associated m p are shown in Figure 11. Eegimant 3AB itsf

a part of the e itor sRanning 6 '(radians); _ IIff
R (aa approrimat ly 4000 miles) is the earth's raxiilalt-tieen
Re is the actual length of AB and of the co-r4;tspolidin z WEE'
on the map.

zns

Figure 11. 1 wedge of the earth and its rorrespondi-ng4firr.toff ttite. -map.

Now consider at 0 radians north 1n1j,/mbie. E:17)ii5Saa
part of a circle centered at 1', where T is xlizezz1 1,7111Taltith
of the earth's center C, inside the earth.. Siatme Q;1T rata
BC are parallel,, the angle 0 of 'latitude ..t.ppealas iin ttrAixaglhe
QTC where stlown. Since QC is an earth-radius.3.4ee !rzae taxa,-
PQ is a ,part of a circle of radius QT *. zsactimit
PTQ has the same central angle e as does se-L-Mar t; thus
the actual length of PQ is

1/4

PQ = (QT) 0
OT PQ = (R cos 0)a

116'
IL

_ -
The horizontal stretching an now be understood. An

eas=t-west length PQ' = (R cos 0) 'at latitude. 0 must be
tre.tr_itek into R e on the map. (Why does P'Q'' =

R61) We must stretch PQ` by the factor to
convert it into P'Q' for the map, because

Since )11"V F91-]".PQ

ptir R' 1
PQ (R cos 0 ) 0 cos 0 sec 0

lid get- as the length of P'Q,' on the map_

P'Q' = (PQ) sec 0 .

a

-22. 3:- Mercator's Insight: Vertical Distances Must Also
He Stretched 0,c

Mercator's g-&a,t insight was that each piece o f vertical
-7e,riciioss at latitude must be stretched,, when put on the map,
lxy tire same factor sec 0. As we shall see,,he thus succeeded
in- pres'ervjng'angles from the earth onto the map. That is,,
iE any two lines, meet at an angle on the earth, their images
copied_ carto the map will meet at that same angle. This

he true for all "angles ever w T re on globe and map. (A
maw pie_serves angles is ca Ledo ' conformal; -the study of,
jus=ti which 'globe-to-map functions yield conformal maps is
air impartant.part of advanced mathematics and cartography.)

Why does making the map conformal cause the rhumb lines
ttx appear as straight lines? On .the earth, recall, 'a
rifamiir*Line cuts all the meridians at a constant angle. If
the mar is=tonformal, the rbumb tine on .the, map will cut
x1111 the vertical parallel meridian lines at that fixed angle
aa.rcb will, taus be a Straight line, for straight lines are
eeccact.Wthe curves that cut a family of parallel lines all
at the same angle in plar& geometry. Thus to have rhumb°
aneplutas straight lines, the.whole secret is to space
mitt tite horizontal lines correctly, placing them at such
dia.tances from the equator line' on the map that angles will
lie preserved. (Of coarse, stretching the meridian lines and

spacing the garallels of latitude around: the equator are two
mane Eon Sameame task.)

-0,#
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2.4 The Vertical and Horizonta Stretching at Latitude
Must Be Equal

Let's explore the stretching-fbrther. _Figure 12 shows

a'rhumb Ha-cutting a meridian at angle a. It cuts thee

1Lhrorizontal.parallel of latitude at the complementary angle
i

. .

. 0 = I - a.'
. $

Suppose we move a small distance AZ along this rhumb line

'away from the crossing 15dint. This movement is the combined-

effect of simultaneously moyirlAz cos Ounils horizontally
3 1(eastward) and AZ gin B units vertically (northward). What

will this moveme:Alook ,like on our Mercator map? If an

initioint was,at latitude M, the Az cos B.horizontal

,portion of the movement is ostretChed by a factor sec M. If

the angles a and B are going to 6e preserved oh the map,

the vertical component of the motion must also be streCched

by the same factor sec M, becoming CAz: sin B) sec M. Then Az.

on the earth is mapped as Az sec M qn the map. (See Fig. 13)-o

40

AE sin$

enla ed
AE.cps

On Earth
.

Figure 12.. The local scene on a globe at la'?

Wilt need
(AZ sin 8) sec 0

latitude 0

enlarged

Figure 13. Sime lodall scene on the map.

(Ak. cos B) sec 0

3RecallEng that cos2g + sin2B 1 may help here.

118 14

4:11

. _ _

- 2.5 Summary: How Me Get Straight Rhumb Lines

A concise summary of our logic aw'reads as follows:

1. To get rhumb lines_to appear as straight lines on

the Map, weLmeedlo preserve angles from the earth

onto the map.

2. Hoxizontardistances,at latitude M are stretched-

by a factor sec M as tht5 are shifted globe

to map.

3. To-preserve angles, we must also stretch the

vertical lengths along the meridians by the. same

factor sec M at latitude M. A

2.6 How To Place The Parallels of Latitude

As we move north, along a meridian, the latitude changes
continually. What will it mean "to stretch the vertical

lengths along.the meridian by the sane lector sec M at latitude

4,"?

Integral calculus rovides a method. Let's, tTy to

calculate D (M0), the distance on the map along the meridian

from the equator to the parallel at latitude Mo. (If we knew

the number D (4O) we would know hoto locate the parallel

at latitude 00 on the Mercator map.). First, we cut the

interval- from 0 to 00 into many small pieces: let Am

represent a bit of angle located near 4, where 0 < m < M . ,

This small bit of latitudinal Angle subtends a bit of

meridian RAO on the globe (Figure 14), a length of

meridian locatedroughly St latitude O. As.this

N, north
epol

parallel at

qo

latitude 00

C, center
of earth Dvt'ol

latitude 00

latiludr + AO
latitude 4

B A' Bt

On 'Earth On Map

RAO sec0
after stretching

it-eqUa tor

Figure 14. Setting up the ittervii1 or D($0).
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bit of meridian is shifted from globe lo map, it is 'stretched

by the factor sec c 0 on the map.

Thus D(0
0
) is approximately the sum of such bits of

length Rsec 60 as m moves from 0 to 0 :

0

(1)' I D(00) =.I Rsec ,60

If we let )

ail the A0 lengths tend to zero and use more and

TreAof them, we get better and better approximations of

D(40); in the we get

(2) t
s

D(00) = io
oo

R sec 0d0 R Jo sec 0 d 0.

e...
.

.

To ,place all"the parallels of latitude o the Mercator

map, we will need D(00) for all values 0; 00 1 1 . Thus we

need 4sec 0d 0 to construct th Mercator map!

3. MORE HISTORY
4

3.1 Mercator's Map: Cartography In His Time

Mercator did not )(flop that he needed the calculus to
\make his map. He did know that he must place the equally-

\spaced-on-earth parallels of latitude further and further

apart., His map contained" minor errors in the placing of the

parallels of latitude; it also contained misplaced mountain

rangest rivers and continents, as the sketch (Figure 15) of

the original 131 x 24 centimeter map shows very clearly.
Mercitor's sources were the written itineraries of travelers

and the older maps of his day, both notoriously inaccurate.
Where modern mapmakers spend their energy on the accurate
accumulation of data, Mercatormainftask was to reconcile,
the inevitably contradictory reports that reached him.

One severe example will show the inaccuracies of

mapping at that time. Mercator's-map constituted the first
usefill, dramatic improvement in mapping the known worldt

since the time of Ptolemy (the great astronomer and

geographe 0 1400 years earlier. An, important error

on those early maps resulted from taking 10 as 56.5 miles

4The cartogrqphic history in this section istaken from Crone (1966). ""
The mathematical history is drawn from the notes of Professor V. F. Rickey
and from Cajbri 0915)

.
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Figure 15. Sketch of Mercator's map of 1569.

on ;he earth's surface. An almost-correct value of 68.5

miles per degree was known to Eratosthenes (200 B.C.) but not

'accepted by Ptolemy. thus distances were stretched across

too many degrees of latitIde and longitude. Ptolemy 'took

the east-west length of the Mediterranean%Sea as 62°.

Mercator's value of 52° was a substantial improvement but a

correct value of less' 'than 42° was not known until after

1700 A.D. One resuieekof this error is worth mention:

geggraphers of the generation before Columbus had stretched

the Europe-Asia land mass.much too far around the globe;

Columbus had reason to bglieve that a journey of reasonabtle('

length tO the west would'bring him to the orient. Maps_of

modern quality, did Aot appear until nineteenth century

exfiorers began to carry sophisticated instruments 'into the

field.

Mercator, facing' these complex problems,, spaced his

parallels of latitude as best he could.on the map of 1)69.

His exact method is not known. And sailors, properly

distrustful of mapmakers, did not a.lopt the Mercator map at
- 17
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once. By 1600er so, Mercator maps of portions of the earth

began to appear. These were of larger scale and incorporated

corrections ihmthe placement of the parallel; of latitude due

'to the work df Edward Wright. Acceptanceby sailors grew

Steadily. The first atlas of Mercator projections wds the

Ammo del Mare of Sir Robert Dudley',. published in 1646. By

that time Mercator maps were_the,navigator's standard.

3.2 Edward Wright's Discovery

, The matherlidtical history that arose from Mercator's

achievement is astonishing. As mentioned earlier, we do

not know whether Mercator really understood' where to place

the parallels'of latitude to straighten the rhumb lines.

By the time,Edward Wrightorpublished Certaine Errors in Navigation
in 1599, the secret was'out:

"the parts of the meridian at every poynt of latitude

must needs increase with the same roportion wherewith

the Secantes or hypotenusae of the arke, intercepted

betweene those pointes of latitudeandthe.aequinoc-

tiall (equator) do increase... by perpetuall addition

of the Secantes answerablA the latitudes of each

point...we may make astable which shall.shew the sec-

tions and points of latitude in the mer dians of the

nautical planisphdere: by which section , the parallels
are to be drawne." [Prom Wright (1599, pp. 17-18). as

quoted in Cajofi (191t, pp.:31'2-313)0

Wright recognized that a sum of secants was needed;* by his

"perpetuall addition" we assume he meant the,eontinuous

summation of integration. He could not have known.of

integration as an anti - differentiation' process, but the

intuitive notion of a limit of integral sums was afloat in

the intellectual seas of-that time. lorprovide the naviga-

tionalti corrections, Wright published "table of summation-

approximations of the integral (2) for 0 between 0 and 45°
. -

at intervals of 1 minute of latitude.

122
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3.3 Later Math0Latical History

,Geographers really needed an integration formula for

the integral so that lengthY.summations could be avoided.

The following fifty years saw a search for Such a fqrmula

through.hon-calculus techniques. In 1614 Napier published

tables of sines and logailthilis of sines, although these,

were not quite logarithms as we know them today. In 1620

Edmund Gunter published a table of log(tan e). By 1645,

Henry Bond discovered by chance and published'in Norwood's

Epitome of Navigation, as Edmund Halley tells us half a century
later,

"that the Meridian Line was Analogous to a Scale of

Logarithmick Tangents of half the complements of the

.Latitudes." [From Halley (1698, p.202) as quoted in

Cajori (1915,11.314)j

Bond's discovery is that

(3) sec 0d0 = - In tan[. Ci - Of.],
0

a,correct formula not usually seen by calculus students.

Bond did not prove the formula, but, led a number of prominent

mathematicians, including John Collins, M. Mercator,

William Oughtred and John Wallis, to attempt the proof.

Bond's conjecture came from comparison of tables and graphs.

During the 1660's, Newton and Leibnitz produced a

systematic calculus and by 1668, via a nastily complicated

geometric argument, James Gregory proved the truth of (3).5

During theNnext decade or two, simple calculations of ftec0d0

were found. Throughout this period, mathematicians were quite

conscious at they were providing the theory necessary for

an accurate Mercator projection and they consistently

regarded the task as an important and worthy one.

,

!Thus jsec m do is one case where an integral was first

treated by-summation long before the birth of the calculus

Cannot resist including'a quote, ascribed to Edmund
from Cajori's article. Halley, in reyiewing-the research on
says about Gregory's'proof that it involved "a tong train of
and Complication of Proportions, whereby the evidence of the
is in a great me/inure lost, and the Reader wearied before he

Halley quoted
our problem,
Consequences
Demonstration
attain it."

19
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.r

'and was eventually made part of.the-calculus mainstream.

This integral is one of the most esoteric that calculus

stude* are asked to handle because the' usual integration

methas given seem unmbtivated., and "magicar
0

:" - But the.

integral's importance for applications makes

worthwhile, and we will next examine several

calculating it. (If Sections 4 and or S are

still appropriate tp9read Section 6.)

its Study

techniques for

omitted, it is

Exercises

1. Differentiate to confirh that

4

a). I sec x dx = - In
0

.1

tan x))

4). I sec x dx = In (sec x-+ tan x) for 0 < x < m/2
0 0

K

c).

x

-sec x dx = in tan (2(1+ x))
d'

2. Starting with blank graph paper, make part of a Mercatoromap,

as followt: put in the equator, the meridians at 0°, 30°, 60°,

330° latitude; and parallels of latitude at 10°, 20 °, 30°, 40°,

50°, 600' 70° ane80° north and south. (Arrange the scale so'that
. 0

A these parallels do fit. Now, using a globe or non-Mercator world

map as a source of data, sketch in Greenland andoAfrica. Do your

results look about SlieFigure 5? Do-Africa and Greenland have

roughly equal areas, as the map seems to say? (look up the actual

area in the almanic or atlas.),

3. The formulas in Exercise 1 are for x

any one'of.themrso that it gives

eir

for y measured in degrees.

.

measured in radians. Convert

sec y: dy

' 1

4. It is probable that Mercator Constructed'his map grid by using a

table of secants-at one degree intervals. Adding up the secants

from one degree to 30 degreesWould give him the approximate

spacing of the 30° line of latitude in terms of the size of one

4
20

.

degree at the equator,,

approximation

lt

Without knowing it, he was using the

/30°

sec 4) id.

i=1,

sec.i

Try this approximation yourself to find the distance in earth radii

(radians) from the equator to 30° north latitude on the map. First

use steps of 5Q.and then of 1° (Remember 1° = 4-1
1

radians). Cohpare
o0

your results to the exact value given by equation 3. Do you

think Mercator's probable method was sufficiently accurate. for a

a small scale world map? When you have completed Section 5, compare

your sesult to the value given,by the series approximation of

Exercise 12.
° P

5. I was taught, erroneously, that a

Mercator map is obtained when) a paper

#

41.

cylinder is wrapped around the earth,

tangent it.the equator as in:the

sketch, and points on earth ere,

projected onto the cylinder as though '

by a point-size light at the earth's

center. What spacing of the

longitude-circles does this

projection involve (1nstead of the

D(4)) = RI sec 4) d

0

placemelit of the circle at latitude

on the MeiPcator.map)? Are the

Ongltude lines more spread out on

this map or on the Mercator map?

Figure 4 shovA a map. made with

this cylindrical projection.

4) " MM.

.....)
CYLINDRICAL PRPJECTION

Point A is mapped to A'

(Hints for Exercises 3 and 5 may be found on page 32.)

Ide
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4 ,. ,

6. An'swer each question,z_supporting your answer with speCific

evidence from the unit:

ii)^ Do we know enough about integration when we have

learned to calculate integrals by antidifferentiation?1

b) Did Newton and Leibnitz create 'the calculus in response

to'scientific questions as part of the.intellectual

growth 6T:their age or did they create it out of thin

air because.of its internal logic and beauty?

c) Can fsec (x)-dx be Calculated between limits x = a and

x a b without the use-of a "closed integration formula?"

d) What is the advantage of sailing a rhumb line course' as

oppoied to another course? Are there disadvantages in

sailing the rhumb line and, if so, what are they?

On -an accurate Mercator map of the world, how or where

is- the north pole located?

On an accurate Mercator world map, does an inch of map

distance along_ the parallel of latitude at 400 north

represent the same. eacth-distance as and inch of map

distance along the parallel at 30° north?

Is fhe Mercator map an easy one to use to measure the

distance between Chicago and New Orleans?

*
4. SEVERAL CALCULATIONS OF fsec x dx

)

f)
0.

g)..

4.1 The Usual Integration

A typical, sneaky calculation of this

fsec x dx = 5sec x`.
sac x
sec x

h(sec x + tan x)

sec x + tan x dx

in 'isec X + tan xl +c

a

(4)

integral is
A_

+ tan x
+ tan x

dx

*This sect ion may be !Olmi ited. See Suggested Uses on inside
of title page.

22

and no motivation other than "look, it

We have used the well-knowh result

1
ill ln ly1+ c.

works" seems possible.'

4.2 A Partial Fractions Integration

A lit- tle obvious trigonoietry permits 'us to calculate

the integral by partial fractions. Some equal signs have

been marked for further comment:

dx
= J

cos x dx
isec x dx J cos x cos2 x

The

the

® jcos'x dx cos x.dx
x J (1-sin x)(1+sin x

sly

multiplication by 1 = co,s x/ cos x at CI is done so that

next 'step (1.;) can be done, a modest example of planning

ahead. Here are the partial fractions

Thus

1 1/2 1/2
(1-sin x) (-1+s x) x 4177373'i x

cos x ,rcos xfsec x dx = . dx

1 r
= L- ln (1-sin x) ln. (l+sin x)]+c

V

1
ln

ln

l+sin x
1-4in x

+c

il+sin x 1+tin x-six +s.rinx)+C

0.1 (l+sin x)24.,
1-sin2x

(l+sin x)2 + cln cos2x

l+sin 4
=In

Nilcos x
x + c

127, 23
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=

ln
Il+sin x I

c
cos ,x

in Isecx.+ tanxf + C.

Here it is:

jsec x dx = ,

i
dx

'cos x
dx

Again, the decision at Eg leads to improvements at the
following 0 steps.

The step marked A rests on the' fact tliat

dx

2 ) cos(212-x)' )
sinr7/2-x

' 2

(5) 1747 " IYI

although you might think more immediately'of

(6) ilFri ' ST?

Both (5) and (6) are correct when

when y is negative;

while (6) is not:

Y 0 but (S) is-still true

/(73)70 1-51 S

IFTTP # -S.

Thus, the absolute value bars arise very turally ih the
integration formula.

The calculatiQn involves no t ganometry more

cost 1 and a/cos x sec x , but

zation. It was apparently

t 1670 and may be the

oninsintegiation..

sophisticated than sin2x +

requires a little algebr

first done by Isaac Ba

earliest use of partial

4.3 Gre o 's Form e Inte ral

It is not difficult to derive (3), Gregory's'form of
the.integral. The needed 'trigonometry this time is that

cosx=sin (I x)

and the doutle angle formula

sin -'x) 2 iin(2.G- - x)) cos

24

dx

cost y
cos y

1 f
seey dx

° tan y

where y ='(n/2-x)/2

Now change variables to y, using dy = -4 dx, a74 get

sec2y dy -
j tan y ln 'tan yf +c

(7) = In .

The algebra at is sneakier than one might like, 1, adMit.

The minus sign here is not unreasonable. For our basic

interval xe(04), sec x > 0 and the integral y 0. But (n/2-x)/2

is ,between 0 and n/4, its tangent is between 0 and 1, and the,

In would be negative. The minus sign straightens that out.

Another form of the integral is given in Problem 7.

And it should be possible tp, convert In (sec 0+ tan 0) into

- 1n4tan((n/2-x)/2)) via trigonometry, should it not? You

are asked to do so in Problem 8.

25
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JAMES GREGORIE or Gregory..1638-1673, =eat:odium:Chu:cm
of infpoctance in mathematics and optics than ite*gas,gineenoree-

Alit for in his own day. A great technological achlevenrat oft r:1

that time was the design of efficient low-xlistorticntedizscomes:
Gregory contributed eiperimental designs that influenced:atm-
ton' s reflector telescopes; the Cassegrain xlesign ife72%aas
the ultimate successful result of this effort. :4

Gregory put much effort into finding the lengths, aereeas
and volumes associated to the conic sections. These'-oesdtts
were needed for engineering work such as design cffoapti:mil
instruments. Difficult integrations were involved, mini *gene
done by geometric methods using classical areek.kicnovikeigeoff
the conics, physical principles, etc. ',;The calr.ulatixmcoff
Jsec x dx for use Mercator°Projectivn is xmeaancarodte.
His later mathematics centered on calculatism xsf -asalasaff.optimi-
nomials. He used approximation methods that -were -redilscovened
by Newton, Simpson, Taylor and Cotes some .years later-, and
credited to them. He was also a pioneer in the -use xff inffirithe
series; see Exercise 13. .

His work was not influential hecausvgragory amactiinzgaat
isolated Universities, was too much out )5f zommuniamtficln*.:Ith
his proper peers. His generation saw its -work absuched ass
small portions of the deeper, richer,,systematir caitctIlpsdde-
veloped by Newton and Leibniz. (Source: Diationra2 )2-7..-Zdi-
entific Biography, Vol. V% pp 524-530 and X..31. lloyet., HiiartoTy
of Mathematics)

JOHN WALLAS (1$16-1703) was the greatest Inglbsii-rmathe-
matician of the generation that preceded 'Newton. lie.wasmn
important leader of the transition from Zreek geometric retebindes
to modern algebraic methods. Two books publ ishexi ob also Hz)
1655, one on analytic geometry, the other ?An. ices-hail
methods, were bothnfluencial. He deriAd-man ^Einviapertscil
results of the'calculus, Including

a
n +l

°

by algebra -based methods that were a great-iinTiffixacti:onoff
the geometric derivations used earlier by tavalizri wridcathess.-
Some of his "prdofs" were incomplete or erreneouswndgeere
critized during his life even Though the resu ageoecooreett.;
he thus helped mathematics.make enormous rhaaihqg
the vigorous and most efficient perivatidns to 'found *y
others later. s a c 1 ergyman, and - , . lain a:DK/Lim
Charles . Source: C. B. r, A History Weraencrbiga,
John Wiley, New York, 1968, Chapt- XVIII. 4
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Efenercise_

7;-

4

(ae° ideas close to those we used to `derive Gregory's formula,

isecxdx = -In tan 4ce-.)

irr section- 4- to derive this formula:

fsec x 1 If tan +x) + c.
Th

_ 8E a). Show.via trigonometry that, if 0< x< /r/2,'

WI Ntan (1-(X+ .= sec x + tan x .

This may be done in many ways. - My own inethod 'started from

the for:1;11as for tan (A/2) and gn (me) .

to. Now show cot (-12- - tan f(-I; -vx). (Hint: draw

graphs of the tangent and cotangent curves and give a
geometric sort of proof.) Thenexplain why the two
integratiohs lisited_in problem 7 are guivalent...

(Mitt for- Exercise 7 may be found on page 32.)

5! A SPITES, FOR fsec x dx

Rern11 that Mercator's need was to calculate

sec 43 df)

fbmirmanr values df 4), even every 1/60 of adegree.' While

Ornevacr"s proof al',:logarithiick Tangent" formula was

Gomm= fox-tbois integral was valuable, it helped the task

.-----afrcmmputmtion only to the extent th',4t tables of log (tan14-1r--77

wexmaarailahre In 1685, John Wallis published a series

liaxmmoE the integral; offpfing a wholly new and. fairly

anammitartdomputational method.

section- may be- omitted. See Suggested Uses'on inside of

131
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5'71 Derivation of Wallis' Series

This series is very easy to derive. From section 4.2,

in thepartial fractions derivation, we have

x
-fg cos x dxjosecxdx = .. =

xo 0
1 -sine

icos x [1 + sin2x + sin4x
0 .

+ sin'x + ...]dx.

All we have done here is to use the geome.tric series formula

= 1 t a + a2 + a3 + a" + ... if lal < 1

with a ..sin2x, (which does satisfy 'al< 1 for the xc(O,n/2)

that concern us).

Thb next step is to convert this integral-of-an-infinite-
.

into an infinite-sum-of-integrals, which we calculate

rm by term6. Continuing:

x x
sec x dx = cos x 1 dx +

0 0

cAtN

cos x dx +
0

x ( x

cos x sinkx dx +
JO

cos x .s in x dx +..,

= sin x + sin3x
+ +

sinsx sin2x
+---r ...

,
'tan x dx

5.2 Numerical Approximation of the Integral

We can use (8) to approximate

ix Sec x dx
0

by getting y = sin x from a table and taking partial sums

of (8) until the desired level of convergence is obtained.

You are asked to do so on the computer in Exercise 12.

I The series is not an exceptionally fast-converging one.

For x = W6 some partial sums are:

in

Highest power of
sin x- included Partial Sum

1

3

5

7

9

11
13
15
17

The correct value, fOr, comparison, is
fn/6

-sec x dx L.- 0.54930614.

.49999999

.54166666

.54791666

.54903273

.54924975.

.54929414

.54930352

.54930556

.54930601

Many integrations that lead to obnoxious formulas can
be convected 'into series calculations leading to convex-

gent, computable answers. Wallis published a series for

3 7
(8) y + + + ... with y = sin x. in 1685, too, and we include this one as Exercise gas one= Xs XI X *

4
example. See alsoExercise 10.± This series is convergent for any xc[0,7/2) as Exercise

11 asks you to show.
6. WHAT HAS CALCULUS CONTRIBUTED TO THE

MERCATOR PROJECTION?'

The map that Mercater published in 1569 was revolu-
tionary because it simplified the task of navigation at
,sea -- sailors could plot rhumb line cour,rs by the simple
use of straight lines. By about 1600 corrected versions

of Mercator world map were accurate enough to satisfy the

practical reqdirements of navigation at sea and the map

29133

6
The reader shoUld be warn9d that, in general, it is not true

that the integral of an infinite sum is equal to the term-by-term
sumof the intertals. However, as you will see proven in more
advanced courses, the Calculation here is legal because the series
involved Is convergent for all values in a closed interval [0,x]
where 0< x< it. and the functions.inolved, including the sum, are all
continuous.

8
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soon came into wide use. But all of this was accompli.shed

before the invention of the calculus; what has calculus

really added to the achievement& of Mercator?

As, ore and more detaile'dlieicator charts of smaller

and
__/
smaller parts of the earth's surface have been made

over the centuries, a more and more accurate-spacing of

the parallels bf latitude has been necess ,pry. Once the

precise mathematical Calculation of fseco dO was known,

this spacing could be immediately accomplished to any

degree of accuracy. The only limitations in the produc-

tion of Mercitoi maps were those imposed by the printing

process, size and quality of paper, and so on. NoAmath-

ematical barriers stood in the way of the cartographer,

because methods had been provided to create the Mercator

projection both in theory and to any level of accuracy

in practice.

The influence of Mercator on the course of mathema-

tical development was important. Along with many other

technologi5al-problems of that age, the problem of re-

fining the Mercator projection to",a high Ovel of accuracy

inspired the mathematicians and guided their efforts 'in

developing the Calculus. They did not qjt working on

cartography- inspired problems once the Mercator pt'oblem

had been solved, of course. Sin1101600 the Mercator

projection' Ls`been further refined (to take intoLaccount

the equatorial bulge of the earth, for example) through

use ofmOre mathematics and many other projections have

been developed on a sound mathematical basis.

Exercises -

9. Use this start to get a series-for, also given by Wallis (n

1685, for

'tan x dx x dx
J cos x

cos2%f
sin x cos x dx

134

30

tf

-,0 = f sin x cos x
1

( ) dx1-sin2x

The answer will, be

x
7

tan x dx = Tts-
1, S4 S6 S6

+T+T4""7.+
0

where s = sin (x).

For what x does this converge and why?

10. What goes wrong when we try to carry out Exercise 9 for

x

cot x dx?
JO

II. Give a proof that Wallis' series
v3

4- 1--

v5 y7
y I-

3 5 7

with y = sin x for some xc [007/2), is convergent

ar a) ,by a comparison test

b) by another test

c) For what y (and then what x) does this series converge?

12. A computing project: use Wallis' series
3(

5
3

5
5

sec x dx = s T 7T+ ... where s = sin (x)

to calculate on the computer successive partial sum approxima-

tions,of the integral. Your instructor wiJ1 °tell you what

interval [0,x] to use. Continue until you have_the integral

approximated within .5x10 -6. How will you decide when you have

calculited enough terms t'o the series and are ready to get off

the machine?

13, a) Derive Gregory's series:/

r

1

x
dx

x2

.x3 x s

+
x 7

arctan x = 1 = x -
3 5)0 A

Hint: Replace 1/(1+x2) by a geometric series before

integrating term by term.

b) or What x does this alternating series'Conver

c) Use the computer and this series to get a tablet:pf arctan

x forx-vaiues that your instructor assigns. (How-can you

easily decide when to get off the machIgE, for xc(0,1)?

What is an estimate of the error if yotstop after soNnie

terms?).

135 )
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d). What does the series tell you about a relationship between 7. 4F8RENCES

C

° arctan rand arctan

Hints For Exercises

3. Change vaeiables using

in x, where x irmeilsured

5. In Figure 13t angle e

gives the spacing of the

for the Mercator map.

.7. Start with isecxdx =

9: Reread the beginning of

10. The lower limit of integration,

improper: Is it finite/

(-x)? '

180

Caikri, Florian, 1915: "Oman Integration Ante - dating

he Integral Calculus" Bibliotheca Mathematica, 3rdy x. The result wilrbetan integral

in radians.

is the latitude of points A, A', and D2(e)

parallel of latitude just as D(e) did

'Try to find D2(e) and then show

D24) 10(0.

dx dx

Series, 14 (1915) pp. 312-319.

Carslal, H.S., 1924: "The Story of Mercator's Map. A

Chapter in the History of Mathematics." The Mathe-

matical Gazette XII (Jan. 1924) pp 1-7.

Crone, G.R., 1966: Maps and Their'Makers. CaprIcorn
Books, New York, 1966:

Deetz, Charles H.0 and Oscar S. Adams, 1944: Elements of

cos x
sin(x+i)

Section 5.1.

0, causes the.integral to be

MaR,Projection With Application to Map and Chart Con-

struction, 5th Edition, revised, 1944. Special.Pub-

. licitidn No. 68 of The Coast and Geodetic Survey, U.S.

Department of Commerce.

A hq

.

Halley, Edmund, 1698: "An Easie Demonstration of the

Analogy of the Logarithmick Tangents to the Meridian

Line or suit of the Secants: with various methods for

Computing the same to the utmost Exactness", PHilos-

ophical Transactions XIX (1695-1697), London, 1698.

Hobbs, Richard R., 1976: Marine Navigation I; Piloting.

Fundamentals of Naval Science Series, Naval Institute

Press, Annapolis, Md., 1974. Reprinted 1976 with
corrections.

Parsons, E.J.S. and W.'F. Morris, 1939:, "Edward Wright

and his Work",hmagio Mundi 3 (1939) pp 61-71.

Taylor, E.G.R. 1971: The Haven-Finding Art. .Hollis. and

Carter bondon 1971.
- /

Sadler,'D.H. and E.G.R. Taylor, 1953( "The Doctrine of
Nauticall'Triangles. Compendious. Part I Thomas

Hariot's Manuscript (by Taylor)., Part II :Calcula-

ting the-Meridional Parts (by Sadler)." J. of the
institute of Navigation, London 6 (19,53) pp 131-147.
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Wright, Edward, 1599: ,Certaine Errors in Navigation,

Arising. either of the ordinatie erroneous making or

rising of the sea Chart, Compass, Cross Staffe and

tibles.of declination of the Sunne, and fixed Stirres

detected.and corrected, London, printed by Valentine

Sims, 1599.

Note; Historical,material in this paper has been drawn

almost totally from"(Cajori, 1915) and (Crone, 1966)

only. Other references are given to allowLthe reader

quick access to the literature for'further research.

In this brief paper, complex historical ideas have

-naturally been compressed more than they deserve. Any

inaccurate impressions that may be ponveyed as a result

are the sole responsibility of the author of this paper.

34
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8. ANSWERS TO 'EXERCISES

a) crx [1 ro tan (2 (2-x)11

tan

1 1/ cos
2
y

2 sin y/cos y

sec2 1-x)) ;- (-1)

1 .1

2 cosy siny sirT)4,

csc
2

- x) = sec x.

b) ( 1n. (sec x + tan x ))
dx

where y =
(iT

X)

= csc(2y),

1

. (sec x tan x + sec
2
x

,
sec x + tan x

1=
sec x + tan x

(secx + tan x) sec x

' g. sec x .

te

c)
Cl

n tah + x))]dx

1
1

lltan. IA +
sec xl)

2

t

1 for z = x ) just as in (a) above.
2 sin z cos z

1si7-riz csc 2 + xJ sec x

2.. The area of Veenland is approximately-840,000 square miles,

and the area 'Of Africa is 11,706,727 square miles.

3 5
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3

phi

fsecydy - fsec
( 180 ) 180

x dx
6. (Sample answers)

,.178,2"fsecill xjdx

180
In seC 1.12.x

w

= in Isec y + tarry ( + c.

Change of variableS:

180
yAir x

10
dy = dx

4. With 5° steps,
1300

0
F t ino

With 1° steps,- l'" secf df = 0.5506730838.
0

+ tan [180 x)1
cV

seNit d$ = 0.5564789339.

ef

The construction of the Mercator map leads us to discover
fsecx dx as a limit of integral sums,: derivatives do not
enter theoproblem. The integral was adequately approximated
decades before an antidifferentihtion formula was disCovered.

b) Ideas that are now part of the calculus and problems ialljng
for the calculus were "in the air" long before Leibnitz and
Newton. For example: Cavalieri's integration of, xn;
Mercator's need for fsecx dxr Gregory's geometric calculation
of integrals.

c) Yes, as a finite integral sum E(secx;)Ax or by use of
finitely many terms of Wallis' series.

d) A rhumb line is easy to sail because the pilot simply keeps
an eye. on his compass. He wants to keep the compass needle
reasonably still. One disadvantage.se'the rhumb line-opath
is its greater length in comparison to the great circle path.
Extra distance costs time, fuel, and money,

e) The north pole needs to b located a distance

o 4 o p(i) . Rf:"'se 0 d0 = °°
) ,

`Equation (3) gives j'" sec. df = - In tan 0 --'f))+=i-

2,,o .
away from the equator. It is off the map!

0 4=0 o. 0 If an inch of map diStance at 40 N represents A earth-= .

miles and an inch at 50°N represents B miles, then

A sec 40°
B -ie"C-5-g

= 0:5493061443.

5. From Figure 15,

tan $

so, D2($) = R tan f

must be compared to

D1f) ec $ d$ .

s
because of the "stretching" of earth distances as they
are placed on the Mercator map' Thus A # B.

g) The scale changes continually along north-south lines
of a'Mercator map. Thus a mostly north-to-south distance
like that from Chicago to New Orleans is quite hard to

The easiest way to show Do(f) > D(f) is to notice that the
deriyatives are easy to ampari:

d.; D201 = R sect R sec f =t D(f)

Since 171(0) = D(0) = 0, we can conclude that 02(f) > D($) fqr

all fe (04).

140

calculate from the map.
)

7 dx
.

sec x dx
I dx .
cos x sin [x +

2

dx
j 2 sin y cos y

)2
dx

2

sin y
cos

2
y

tan y
cos y

36 = }n tany +
.

141
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a) Easier Ablution due to Ronald Shubert, Chairman, Department
-of-MatheastIci, Elizabethtown College; Elizabethtown; Pa.:

A A

AA'-sin .2 sin2' I;
, 'tan 2

'" 1 - cos A
. - cos y- 2 sin 1- cos 1- sinA

cscA- cot A,,

and thus,

tan
[it +
2

.

My own s

tang 1(it 4.

. csc (x + 1 - Cot (x + 1
2 2

ow sec x + tan x .

utlon is longer: Recall that
C

lea)
r A + tantan (A + B) It 1 Stan A tan B

and .

tan
(Al 1 = cosA
2 1 + cos A ,

then

tan
tan + 1

1 - tan2

sir

i+ X !. +j1. cos X
1 + COS X. 1 + COS X

1

-,177---SX
1 -1110SX

1 + COS X 1+ cos X

1 COS X 1- COS X
-1 + 1.+ Ca X

+ 2 1.+ cosx
1

'1 - -cos X .

+ cos X

. 2 + 2 /(1 -cosx) (1 + cos x )
1 + cos x' 1-+ cos x

2 cos x
1 + cos x

2 + 2 cos x SieX + tan x2 cos x

142

b) This easy 't see in the form

- tan (4-+ y), y = ,

when the graphs are drawn. A proof will drag you into
straight-forward use of formulas like (**) above in 8a.

9. . jtan xdx

Jsinx cosx (1 + sin2x

Put in y = sin2x
:

+ sin4 x + sin6x + ...)dx.

=---1 1(1 + y + y2 + y3 + ...)dy

2 3

c + y + +,,.)

siniex sin6x
.. (c + sin 'x +

2 3
+ ) .

10. The integral is infinit and we get this absurd divergent series:

Ix cot x dx I co§
sin dx

0

it or

cos x in x

si x

cos 'x sinx dx%68,

1 ;s 2x

1

2

v. .
1 I ,+ y + y2 + y. + ...)dy
2

1
2° u3

= (c + y

th y cos 2 x

The left is + e2 and the "right slifelooks negativel,
111K

11. a) A term by term comparison with

C

r+Y3 +r5 +yI 4. .
(a convergent geometric series with y sinx<) shows'
the convergence .of Wall is' series.

143
39
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POWtR

OF SIN(X) INCLUDED
IN PARTIAL SUM

(

. 1

3
00P...M1-87:71:55791:67811

i 5
7

0..86931325
0.87294015

9 0.87785062 -
11 0.87965544
13 0A.138070933
15 0.88107761
17
19 0°,:8888113241391278

21 0.88134566
23 0.88136067
25 0.83136758
27. 0.:83137078
29 0.88137n6
31 0.88137296
33 0.88137329

i 0.36682540
11 1.28128n0
21 1.31169002
31 131604511
41 , 1.31675696

51
-,.,

1_31 495'
61 1-31 09
71 1.31
79 1.,31695747

1 0.96592522
51 1-99537299

101 2:02425779
151 2.02717058
201 2.02753181
251 2.02758099

.

301
335

2.02758805
2.02758893

b) The ratio test tells us to talr.ulate, laro3urnef6is RIGHEtT
,

. .
. 9, 1

)n o10 17----it

..
v2n+1

G I

.

R go lint
. ., 2 n+3 /on+3) .

'

y2//+! /(2n+1)

, 4 . 20 ..=.115°Since R < 1, the series IS convergent. Zither teejszs way
also be used.

1 .--- .88137358
c) The rat io- tartne in (b) tells -us That 'Milehemmer bas

converges when y < 1 (1 .e. , -1 < y -< 1 ) .and dd 'remiss tqkben .
y2 > 1 (i.1,., y > 1 or y < -1). Tor .y==-1.weettaa
divergent series. For y 1 -1 -we get a =memoirs aziteer-
nating series. Thus we have convergence 'fcrr -41 « yy « 11 ' ..
exactly. Now, what x gives -1 K _strix 42 .A11 mail >cc,

...except ....?

42,c, Computer results for x = '5°, 15 °, 300, 4313, re, amid
80° are below.

x = 5°
The correct integral
is .08737743

HIGHEST POWER
OF S1N(X) INCLUDED

INePARTIAL SUM

a

fRfiliTPAL SSW

1

3
3

.X1127135-10e
3335873f602
a:oda-B-043

X". 159

1 gm .26484224

" 4

1

3
5

.

,
5

. to'

, .

012159882904

C0a647,51814
aLUNt3352

co226184693
012268812221

,

R. 30°

'6 .54930614

1

3
5
-7

11

.13
15
17

004449999995
Q15511 i66666
e055410666
m554903273
m553914975
00S493504
01$4990352
0DS4990556
01554990601

4y.

xx:.--- 60.°

fil33699789.

a

mt=--- 71j0

J. =2,02758941

.

a 145 1
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x 80°

I. 2.43624604

HIGHEST POWER
OF SIN(X) INCLUDED

IN,PART1AL SUM PARTIAL SUM

1 0.98480775
51 2.21986109

.101 2.39058930
151 2.42057205
201 ,2.43044352
251 2.43400011
301 2.43535054
351 2.43588126
401 2.43609499
451 2.43618263
501 2.43621907
551 ,2.43623439
601 2.43624088
651 2.43624365
701 2.43624482
751 2.43624532
801 2.43624552
811 2.43624554

For x nearing 90°, sin x near 1, we need quite a few terms in

a partial *sum to get good accuracy!

1
a) arc tan x.= dx

0 +1 X2

x

(i X2 X4 X6 X8 '") dx
0

X 3
X

:
X
7

. X
3 5 7"

b) use the ratio test:

x2n + 3/ (2n -+
R = lim

2x2n 4- 1/ 12n + 1

= X

Thus the series 'converges when-x2 < 1, diverges when

x2 > 1. For x2 7 I (x = .4.- 1) we get a convergent alter-

nating series. Thus the series converges for - 1-< x7< 1.

d) Plug in -x for x and thaw arc tan (-x) = - arc tan jx):

146 42.

9. SPECIAL ASSISTANCE SUPPLEMENT

(S -l]

The system of latitude and longitude is trased

on the geographic north and south poles, but com-)
lz

pass needles do not usually ,point' to the geogra ic'
north pole. Instead they point to the north ma e-'

tic pole at -75° N. latitude, 101° W. longitude i

far northern Canada, north of the Dakotas. Naviga-,\

tors are used to correcting compasS readings for fi

that discrepancy. Thus we will speak conveniently

of compass north ag the north pole, 90° N. when
that is not true.

Compasses, in fact, must also be corrected for

deviations due to the magnetic iron.in a ships hu1,,0A

or cargo holds and even for iron ores in nearbnd
masses. The hncyclopedia Brittanica articleundeT

"compass" discusses this in more detail.

A great circle on a sphere is a circle of the
largest possible circumference, like the Equator. All
the meridians (north-.south lines of constant longi-
tude) are great circles. The circles of constant

latitude are (except for the equator, latitude 00)
not great- circles because these east-west directed
circles get smaller in size as we progress from. the

equator toward either pole'.

Notice that there is a full set of meridian'

ghat circles reaching from the North Pole to alil the
t other points on the spherg, ant that all of them also

pass Through the South Pole, opposite the Nort Pole
on the Sphere. Thus there are infinitely man great
circles routes \between the two poles. If w/ need to

/
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ti

6

connect the North Pole *wiih any other point P ex-
.

cept the South Pole, there is a unique great.circle

passing fhreugh N and P. The shorter arc between N

and P. along that unique great circle is the shortest-

path on the globe connecting N and P, the gret circle

route between them.

Similarly, there is a full set of great circles

through any point Q on the globe. Between Q and its

opposite p 'nt R there are infinitely many great

circle route . Connecting Q and an other point R

(not opposite to Q) on the sphere, ere is a unique

great circle and along that circle lies the great

circle rout, again the shortest between Q and R.

The Project would like to thank Marjorie A. Fitting of
San Jose State University,tBarbara Juister of Elgin Community
College, Roland Smith of Russell Sage College, and L.M. Larsen
of Kearney State College for their reviews, and all others who
assisted in the production of this unit.

This unit wat field-tested and/or student reviewed in
prelimary form by Alan Shuchat, Wellesley College, Wellesley,
Massachusetts;.Peter Nicholls, Northern Illinois University,
DeKalb, Illinois; Richard G. Mokgomery, Southern,Oregon
State College, Ashland, Oregon; Kurt Kreith, University of
California at Davis; Robert L. Baker, Jr., U.S. Naval Academy,
Annapolis, Maryland; James Bradley, Rqberts Wesleyan College,
Rochester, New York; and Jonathan Choate, The Groton School,
Groton, Massachusetts, and has been revised on the basis of

so
data received from these sites.
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'Intarmoduiar DOScription Sheet: .UMAP Unit 207'

Title:- MANAGEMENT OF A BUFFALO HERD

Author: Philip M. Tuchinsky
Department of Mathematical Sciences
Ohio Wesleyan University ,
Delaware, Obio 43015

Review Stage/Date: III 12/28/77

Classification: APPL LIN ALGAARVESTING/LESLIE-TYPE MODEL

0

'Suggested Support Material: Kay exercises call for computer use.

References( See Section 6 of text. '

0

Prerequisite_ Skills:

1.. Matrix - multiplication; matrix-inverses; calculation of the
inverse by row (Gaussian) elimination (optional): over-
determined lineal equations;' elementary matrix algebra.

2. No eigentheory is used. No background in biology/ecology/
ranching is eeded.

Output Skills:6
1. Calculate with linear difference equations on computer. /-"`

. 2. : identify overdetermined linear equations and decide when
,. they have a solution.

3. Set tip and solve matrix equations from word problems.
: 4. Sum finite geOMettic seria for matrix case.

5. Despribe an application, hat uses linear equations to model ,

birth; aging and deathin a population. Specifically, detail
use4mf a matrixAo transform that population through time.

6.- Differentiate between matrix level and entry level calcula-
tIonsand give example's where both are helpful.

7. Explain context where polynomial functiOnslof. a matrix
inevitably arise'.

8. Discuss major strengths and weaknesses of a linear model,lp
a nonlinear reality.

OA
f

, "-

9._ Simulate several policies of hary est- king varied
use of a computer simulation.'

)

Predicteereaching Time: 2-3 class periods,, including discOssion

. ..of computer project results. This assures.that class time
is mostly related to the Math and studehts read the biolosical
content for themselves.

.

- ; -

Suggested Uses:, Sections 4 and 5 are independent of-each other;
either can be done first. Sections 4.6 and 5.2 are hai-der

than the other three a0Olication examples in 4.1, 4.3, 5.1.
Section 4.3 -rnii

. .
kwide range Of basic linear algebra skflis can be tled'
'together by wprkinglhroughthis module.' Computer experience r
with a linear transformatIon is a key benefit of this
'module -- if at all possible; I 'recommend use of some of

:exercises .3 - 8, Section 2.6

'15i
11

hismodille is suitable for a first lineal algebra-course ,
or a post - ,linear- algebra course in mathematical modeling.

It is suitable for presentation by advanced students in a
seminar.

The matrix is not diagonal:sable: Tor pursue the calculations
'

in Section 4.5 further, the natural path is to seek the
eigenvalues of matrix M. But the more general

a

0

0

0

0

0

0

a

0

0

d

e

b

0

0
0

0

0

b

0

0
0

0

0 0

0 0

c 0

0 c

0 0

0 -0

has

Jordan
form .

0 I
0 0 0

0

a
x

u **

where a,b,c,d,e are all E(0,1), and the eigenvalues are zero
/twice), parameter a, real x>a, and a complex conjugate pair
u, u. The characteristic equation that yieldS.these roots is:

det(M
1

- AI) A2 (a - A) ( -A3 aX 2 + bcel- 0-

The eigenspace of zero is unfortunately one-dimensional; thus

the 4ordan form above: The.square, cube, and higher power's of
Jordan form are diagonal.

© 1977 EDC/Project UMAP
All Rights Reserved.
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1: INTRODUCTION
. -

1.1 What Harvest,Should You Take?

Imagi -ne yourself.as the.operator of a buffalo ranch. 1

YOu have a certain herd on,hand-, and each year you "har-

vest'Ya number of mature buffalo for their meat. You

permit the remaining herd, for the next year, to replenish

itself through its own natural breeding. The herd has

a certain known structure: it is made up of

portions of adult vs
./
immature animals, of

males. Here are some questions you might ask while

simultaneously trying to gain a goa frrveSt and maintain

.,the'herd for good future harvests:

Known- pro

vs.
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What harvest policy will lead to'a herd next

year that has thesame size and structure as

this year's herd?

-1 What annual harvest will permit 'the herd to

grow steadily.s0 thSt in ten ;rears it will

have doubled in size while keeping the same
,

proportional structure?

-- Do substantially different future heids result

if more, the time number, or less females are

harvested than males?

1.2 What Herd Should You Start With?

NeA,'imagine yourself as planning to enter the

buffalo-ranching industry. You set goals (based on your

costs, capital, desired income, etc.) for-a-desired

'harvest. That is, you select, as a basic parameter of
your business, a number of mature animals that you'

;(intend to harvest each year. You might ask:

I

Although buffalo management is not a Major industry, this paper is
developed in terms of it because a widely available Computer pro-
gram named BUFLO is based on the same model. The methods discussed
here are-the subject of research in human population dynamics; cat-
tle, sheep, and other ranching industries; forest, fishing, and
wildlife management. See the references.
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--' Mat initial'iize and structure of herd will

provide the desired harvest?

How sholad the quota be distributed among male

and female animals to achieve a herd Hof smallest

size that will continue to yield the quota?

1.3 Wildlife Management

Finally, imagine yourself as the manager of a game

preserVe4 Conditions here are quite unlike those on a

ranch because. the buffalo herd lives among its natural'

predators, such as theftolf. You have a limited amount

of land, and its vegetation must support the herd. What

' quotas of male and female buffalo should you license

hunters to kill each year to maintain the herd at an

appropriate size?

1.4 The Task'Ahead

In this paper we will consider a mathematical model

based on linear algebra -- of a buffalo, herd. It will be

possible to answer the questions above using the model,

but the model is a much simplified version,of the situa-

tion in nature. We will consider'the underlying assump-

tions of the model and their limitations to some extent.

While we.will look at the model mostly as a management

tool, we will also be in a position (in the exercises in

SectInn,2.6).-to study historical issues concerning the

.destruction of the vast U.S. buffAlo populaticuO.that

thrived on the Great Plains in the early 1800's.

2. THE MODEL

2.1 Herd Components 4 Their Survival Rates

We consider
2
six c s of buffalo within the

herdi'ecaves are in their first year of-life, Yearlings

in their second, and all older buffalo are adults. Each

age group is broken down in male and female categories.

2-
The mode] hat taken' from computer program BUM. See the

references for fu/11 acknowledgement.
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2

Each 100 adult Cows will bear approximately 48 male

calves and 42 female calves each year in, late sprOV. ,

This 90% reproduction rate is almost unrelated:to the 4

number of adult males in the herd because male buffet()

are polygaMdus. P

. Buffalo naturally suffer different death rates at

different ages.3 Because of deaths at birth and sla

natural enemies as the wolf and coyote, only about 60%

of the calves survive to become next year's year4ngs

and about 75% of the yearlidgs become adults.-,Once they

reach maturity, buffalo are quite safe frdm their,eneiei

until they Oeaken from illness, injury, or old age: 93%

of the adults survive from each year to the-next. We will

take these numbers to be the same for males apd females ,

and the same year after year.

2.2 Basic Model Equations

It is easy to organize this data into a mathe ical

model. Let

AM =

AF-=

YM,YF =

M,CF =

number of adult males '-
.

"
number of adultfemale;

humbers of male yearlings, female yearlings "

numbers of male calves,-female

or more specifically, let these _be. the numbers of

buffilo.at the' end of,iTlis year" jut after-the hlryest. :

Let 'AM"
:
AF',.,., CF' be the comparable counts' for next

year's herdt also.at the

harvest. - Let

QM'

QF'

(It

completion Af (next.year's)

e
= number of adult males harvested "next year"

= numbas of adult females harvested "next year" t

is our pone); to harvest only adult buffalo.)

-
Then, the breeOng.process, followed by harvest, is

contained in these equations:

3 This will be true in the wild. On a .ranch, survival to adulthood

J.-mid be more likely. Oata in-this paragraph appliesto wildlife.
See Sections ,2.5 and 3.1 The references offer similar data due

to Fuller.
3

1. 5 e

4.

a

.

a9
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-

AK' .95 AM* .75 YM OK'

AF' .95 AF + .75 1F 0
1111 al .60 CM

(2) YF' 00,60 CP ,

-

CM' 0..48 AF

CF' las .42 AF

Let's read these equations In cause off
natural deaths, .95 AM represents tthe sera timans rdeeott

year among this year's adult males and .73 '144 tips tblee Tram--

her of this year's yearlings who survive 's° thsozoree aakialtt

males. Thus .95 AM + .75 YM represents the =mil off aathaltt
males just before harvest next year. (-We 4ma4iree dal= tfiee

harvest takes place at one specific moment eea h yrear

perhgps-on-e'da'the .41.....er-anarzwestt
total., AN', is correctly given in the frilsieequatibamciff
(2). The second eqUation treats the stbil-t
larly. The third and fourth .equations .Pay tthat WM off
this year's calves survive to become -next 7yeear' v)eetac-

lings. The last two equations say that, 14.1.4 MEatithfumed-r&d

adult cows after harvest this year, the iteiblwwil'LL ggrom

by 48:. male calves and 42 female calves totiticelliarmnreext
year.

2.3. The After-Harvest Model in Vector -an4 44411:71iiiCc
Notation

c
Now label "this year" as "year "neateneezrir... ams

d so on. Define the vectors:

.rtb0, N. herd structure after 'harvest .linmiteij ifeear
(Jo- 0, 1, 2, 3777)

In our earlier notation, the first pi' 'bhp ..1-1x-edirmstr- 0
sional vectors are: .

AK
AF
YK ,

YF
CM

CF.

21M

We must gather the harvest quotas 1=0 41:15CitrIXES, trail%
Put °.

157

a

. I

QK'
QF'
0
0
0

_

as an example of.

harvest in jth year (14;t four entries are aliwaws
zero).

With this notation .etablsbed, it is time to re-
t.trite (1). as

QT."

AM' .95 0 .75 o 0 a
AF' 0 .95 0 .79 0 0
yiv a 0 a Q .6 a
YF" 0 a 0 0 a .6
CM' 0 _48 o o 0) m,

.[CF'''. 0 -.42 0 . 0 0) 0

.
a

a

(3) ft m 60 -

wit M i's- the 6 x 6 matrix just abore.... The year-to-,
year process is given more generally as

(44, _0. , - . j = 0, r 3,,j Q

This: is the after harvest model because it learolres &era
cnnunts taken just after the harkt.est is otarpletecl_

We may call,M\the transformation
mudt, Cwi.r of our

riroxiel-,. fur- it transforms its input,,, beta structure
just after harvest, ints the berd, structtrze tkat birth
a.ggiat& and deatl w 11 .produce° just before barwest nm the

N -1534low,ing. year.

2:44 The Before-Harvest Model

The model just discussed is useful Rf we bare a
her±and. want to examine what next Feats barireSt will
ggii.0m.a. as' a: new herd. But Suppose we are trying to
stdec= this year's harvest so that next year's bead 411
mar he studied. Then we want before-harwestAterdi
cna art. to whiche can apply the harvest.. They ieseawe
as notat:imr of .their own: \

()E1 15
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Hj = herd before harvest.in the jth year
j0, 1, 2, ...

Thus .6.
J

= - and the last paragraph of Section 2.3

says that Hj.4.1 = MGj,j = 0, 1, 2, ....

Thebefore-harveet-modelrelatesH.to Hsi.
Clearly, Hj is diminished by Qj at harvest and the new

herd H.
J

- Q.
J

undergoes the breeding transformation. Thus

(5) Hi+1 =
J

- Q.), j = 0, 1, 2, 3, ...

2.5 Survival Rates Would.Be Larger on a Ranch

One more comment. The birth and death rates were

given for a herd living in the wild, subject to its

of man as a predator arenatural predators. (The effects

reflected in QM and QF, not the

of our effort, however, will be

relate to

predators almost

. fractions

' there are

ranching, where herds

given percentages.)

with questions that

Most

are fenced and natural

absent. We would expect much larger

of ,each category to.survive the year. However,

no accepted numbers to use in M, and, rather

than arbitrarily pick ,some, we will use the same matrix

114.for both wilderness and ranch applicatiofi's. The

results will be qualitatively the same for 'higher sur-

vival rates (as the author has checked in some detail).
5

2.6 Exercises and Computer Projects

1. 411 the.week before harvest last year your'ra h had a buffalo

r. herd with this struoture:

AM = 200 YM = 300 CM =,,520

AP= 1000 YF = 300 CF = 500

Your harvesting policy each year Its_ to take 100 adult males

and 200 adult females. Calculate the structure of the herd

a.

b..

c.

d.

e.

after last year's, harvest

before this year's harvest

after this year's harvest

before next year's harvest

after next years harvest

15J
6

f., Is the herd likely t grow r shrink if you continue

this policy into th future, orlian't yOU ktell? Justify

your answer.

2. Use equation (4) rep telly to show that,,over several years

involving different arvests, an initial herd G0 will 'transform

into

-fi'Mt
-t. 0 -Qv

-62 . M2Z0 - Q2 -

M3b'0 - Q3 - MO,2 - mr11, etc.

Now, provide a b'ological meaning for each

For example, M
2
G is the herd that resulti

no harvests are taken. The other terms in

correct this to account for the harvests.

term mean?

term in the equations.

after two years if

the second equation
.

What does the MQ
1

The remaining' problems if) this sec9,on call for the vse of

a computer.

3, Write a computer program that will calculate next year's

herd size from this,year's, using the after-harvbtt model.

It should receive as inputs: (1) the initial herd structure

(2) the constant harvest; (3) the number of years the
0

herd is lo be studied. The program should loop tp calculate

the herd size year by yejr for the number of years requested.

It should print out the successive years and the herd structure

that would result for that year, using our model.
4

4. The U.S. Buffalo Herd in 1830. The authors of theBUFLO

compdter,program (from which_cmeMOdel is taken; see the

references) state that the total buffalo herd in the Unite?

States in 1830 consisted of 60 million animals distributed

as follows:

beware of this trap as %pm work your program: if you compute the

components,,of next year's herd in their usual order., a new value of

AF will be computed.before the old value can be used-to calculate

CM and CF. The old value of AF must be saved before it is

replaced with the new one.

160 7
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P.
.

.

30% male adults

9% male yearlings

14% male calves

27% female.adults

8% female yearlings

12% female calves

(These figures should be taken as good historic guesses;

estimates of the total herd size vary widely above and beloti

60 million.) Let this data give your initial herd. Take a

constant 14rvest of 4 million animals annually for a period of

ten years. Distribute that harvest in various ways among

males and females, trying to find a,harvest that leaves the

herd approximately unchanged after a years. That is, split

. \ the harvest among le and female adults in a specific way

and trace the herd r ten years using your computer program

for Exercise 3. Then try other splittings of the harvest in

the same way. Several computer"runs can bebse or you can

loop. A convenient way to get the number 60 mi ion into the

machine is 60.E6 in Fortrenkor Basic.

5. Start with you computer. program from 'Exercise 3 and the initial .-

herd given in ExerCise 4. Take a 4 million animal harvest

annually for twenty years, using thgse strategies:

a.

b,

c.

d.

hatvost 100% adult males

harvest 75% adult males,

harvest 50% adult males,

harvest 25% adult males,

25% females.

50% females

75% females

e. harvest 100% aduft females.

The results are strikingly different. Discuss the biological

reasons.

6. Repeat Exercise 5, takingra much larger harvest (say 12 million

animals) annually. Compare to other results you have.

7. Let's examine the effects of a natural

range fire, etc.) onfa herd. Take the

Exercise 4 again; Pad set the constant

catastrophe (flood,,

initial herd from

annual harvest to

zero. Drastically.reduce the birth and survival rates in

the matrix M and transform the herd forward 'for one ygar, to

simulate a catastrophe: Now put our usual nOmbers back in M

and trace the herd forward for nine more years, still-taking no

harvest-Othat are the long-term effects of the catastrophe?.

161 v,
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8. Repeat Exercise 7, but this time take constant annual

harvests (in the catastrophic year and thelOthers) of 1

million or 4 million animals, splitting the harvest among

males and females in the ways listed in Exercile 5. Comment

on the combined effects of catastrophe and harvest. Which

harvests worsen the effects of the
1
#atastrophe? Which

overcome it?

3. ASSUMPTIONS, STRENGTHS, AND WEAKNESSES
OF THE MODEL

3.1 The Model's Basic Strengths

The examples in Sections 4 and S will show that -.c

can really calculate with this model; it is a workable

management tool. It does reflect the hasit processes

Of birth, aging, and death among buffalo. The equations

in Sections 2, 4 and 5 all have teasonable biological

Orleconomic interpretations

The actual numbers used as birth7:hnd survival rates

are reasonably, close to correct figures. One,piece of

evidence fo vhis is that, among adult buffalo? a life '

span of approximately 25 years was the rule 5
at the k

t

time when great wild herds'roamed the plains. Our model

predicts an A erage life span of 21.5 years (where we

count buffs o that!die between their 2nd and 3rd birthdays

as age PI, etc.)

. In Example 3, Section 4.6, we will show that no more

than about 14% of a herd may be harvested annually without

evdntually depleting the herd'.- This vatue would vary in

nature but the model is qualitatively.cvrect enough

to convince me that a steady hdrvest of (say) 20% of

the herd would destroy the herd in time. Exercises S and

6 provide strong evidence of his.

5
See E.D. Branch, The Hunting of the Buffalo, University of Nebraska

,Press, 1962, p. 11. Branch's figure of 25 is presumably drawn
from journals of the 1800's and may well be high.

162
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.) l
3.2 Limitations' of the Model

Whether one should blindly accept advice from the

model is anotherLtatter. The_ model is built on a number

of assumptions that do not correspond to nature. The

most important of these is that the birth and survival

rites used in M are assumed to be constant year after

year; this would not be true in nature. We can regard

the survival rates in M as averages for 'normal" years

that provide generally,favorable weather and feeding

conditions. Aknormalconditions like severe storms,

range fir drought, floods, And disease might temporarily
\

_cause muc wer birth and survival rates. Our model

does not provide for such catastrophes, 6
although they

might not be rar,ein-4e.wild or on a'ranch.

.. The constant birth and survival rates ao not permit

the study of overcrowding or overpopulation... Instead,

the model assumes that unlimited land, food and water

.are available for.the herd, In the wild, an overpopulated

herd would eat poorly anti its birth and survival rates

would decrease. it would be more subject to disease."

,-,Qn a welt-run riliFh`we' would not expect overpopulation.

We Will see in Sections 4 and 5 Oat the herd size '

can be related to the harvest in ways that make over-

Jpopulation manageable: In any case, the model is one of

:UnliMited exponential growth for the herd, tempered by-

wthe harvesting process.

Another Weakness of the model is that harvesting-

..is done only once'a year, rather than stead ly or several

:, times yearly. Ftealit; was different: Plat s Indian

'tribes held lengthy summer and winter buffalo hunts.

White men slaughtered the buffalo continually in the. 11400's.
. ,

On a ranch today, the:herd v4Oul4 be thinned as, meat

prices and the availability of rangeland and water
.

dictate. ,

We have considered an obViot4 way to simulate a-catastrophe with
the-model in Exercises 7 'and 8, Section 2.6.

!-cW,".
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Yet another weakness is thg/t no economics its in;in-

cluded infihe model. The actual 'quotas harvested would.

surely be related to the price.of meat andk,the cost 3

of feeding the herdcon any ranch. The managft:Of a game,

preserve might not be troubled by such questions (if

Lhis grazing lands are sufficient for the herd so that

no feed is to be purchased)., there:is no single obvious'

wayto extend the model so tha;\lconomics is_effectively

included.

The breeding m hanisis of the model are not ideil.

'HI fact, _buffalo begin to reproduce at agesttwo onithree;

we have AsvmeA that all two-year-olds are full adults.

And the.numberof calves born has been made a simple

fraction of tnenumber of'adult females. This is //

roughly true in a Volygamously mating herd if reasonable

numbers of adult bulls are in the herd. In.6ur model,

a value AM = 0 would not interrulit)the mating process,

as it would in nature. In fact, the actual' herd would .

be in danger of extinction if any of the six categories

greW too small. This can not be included.in a linear

model: In using the modal, one could.declare the herd
. r

"extinct" if any category were to grow too small..

-Finally, we hive lumped'all adult buffalo into

two categories and declared them all equal in their

ability to survive and breed, ignoring the obvious

variations with

Despite all these defects:, and othe thet I've un-

doubtedly missed, the model as pregented offers a useful
.

simplificationef the herd. Let'..s.put it tot use.

'4 4!

4. APPLICATIONS: ESTABLISHING A HERD

4.1 A }lei:And Harvest That Continue Year After Year

. Example 1. What -size and structure of herd do,

must we have (or put together) this 'year so that next

year we may take a pre ichosen harvest 1.1 and then have a

herd e such that e
1 0

?

164
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A businessman planning to create a ranch mig t

ask this 'question. He choos.eschis annual "product"

bti and wants to know what "capital'investment" d
0

he
, .

. should make so'that it will "maintaTV itself from year
- .

.tb year'( = d
0
) and yield product -0 l' Since we end

...

e .

_.

'110 with = G the process of harvesting 14'1 and

t; b , Thainiaining a herd ofthi-Aaiiie-ilze and 4tructure'can

continue year after year: Ke'call the heid.and hariest

vectors ateadktetate.1

.
A'S'the chosen notation indiCateA-, it is natural,

dto use the after- harvest -count 0, 'f or the

because the year-long study-period for the herd progresses

i( from initial herd through the breeding process to the

.pre-set harvest at the end of the period.

,i6)

Thus we know and want to solve' for do in

G1 =GO

= -
1

[compare (3i1 .

We can replace di with do in-the second equation of (6),
getting,

4

t 4. Mt (i
0 0 1

and reArranp to read (I is the 6 x 6 identity matrix)

(7) (M -I)t =
0 1 .

This is &set of six linear equation for the unknowns
d0; -I I and

1
are known. In fact we are asted t6.solve

-.05 0 .75 0 0 0

0 -:05 0 .75 0 0

=0
0

o

b

0

-1

0

0

-1

.6

0

0

.6
to

0, .48 0 0 -1 0

, 0 . 0 0 -1

,

There is a unique solutition-because M-I> iA non-
singular. 'We will calculate (14-I) .1 in5ectioir1,2,
beloW. In terms of it we can write our

12. :

10.

0 a .

to the'Aprobleril posed in Example 1 as
D-

,

(9) '.... Go = (M -I) -1 Q1

Notice that we've completely solved the problem at

matrix level:,ele can write the silution in (9) ,without

actually looking at any of the specific numerical entries

of M; we use M as a single itc4, not a collection of

36 mumbers, Nowe'irex, we do have to use the entries

of.M to establishthat (M-I) -1
exists and to actually

calculhte the solution in.(9): that work is at entry

level, not matrix level.

4.2 Calculation of (M-I) -1

We would need (M-I) -1
to proceed 'further with (9),

so we have the opportunity to carry through an:unpleasant

matrix pivbting Gaussian-elimination caac4lation by hand,

in detail.

The reader who would benefit from such an example

is invited to follow along, eleCtronic calculator in

hand, verifying each step. The reader who prefers to

see how the answer is used in the rest of this section ip

welcome to do so: skip to the paragraph containing equa-

tion (10) at the end of this section.

Recall thai, to find the inverse 7, we list M-I

and adj in to it a six.-by-six identity' matrix to create
a 6 x 12 matrix:

-.05 0 .75 0 0 0 1 0 0 0 0 0

0 -.05. 0 .75 / 0 0 0 0 0 0 0

0 0 -1 0 .6 0 0 0 1 0 0. 0
o o 0 -1 . 0 .6 0 -0 , ,0 * 1 0' 0

0 ,48. 0 0 _ .0 0 0 0 O. 1 0
o .42 0 0 0 -1 0 0 0 0 0. 1

Now we reduce the left side to a six-by-six

identity matrix using only elementary row operaMone:'
we may (1) multiply a row (all 12 columns) by a non-zero

1( '

7There are other', less efficient methods.

13
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. .

scalar, or (2) add a sealir multiple of one row to
another row, or (3) interchange any two rows., To work
now: multiply the top two_rows by -20 each (to convert
the -:05's into l's for the 6 x 6 I). Get

check 4.
these
rows

1.

0

0

0

0

0

0 . -15 0 0 0

1 .0 -15 0 0

o -1 0 .6 0

0 0 -1 0 .6

.48 0 Al a '*1 6

-20 0

0 -20

0 0

0 0

0 0

0

0

0

0

0

0

0

1

,o

0

0

0

.42 0 0 0 -1 0 0 0 0 0

The first column on the left is fine. Make the second.
coltIran fit the goal of a 6 -x 6 I by subtracting .48
times row 2 from row '5, and .42 of row 2 from row 6.
The.se two elementary row operations give us

0 -15 ' 0 0,
0 1 0 -15 0 \ 0'

0 0 -1 '0 .6 0 0

0, o 11/40- -1 0 .6 0

check 4 0" 0 0 7.2 -1 0 6
these. 4.

13%. 0 0 0 6.3 ** 0 0.

'Multiply row 3 by -1 and usetplat new

.1

0

0

0

new
row 4
gotten.*

first

-0.

You

1,1 0. 0 0 -9 0

1 0 0 0 -9

0 0 1 0 -.6 0 '
0 0 0 1.

0 -.6
o o « a -1 4.32

0 0 0 0 2.78

should be able to decide

-20 0 -15 0 0

0 -20 0 -15 0

0 0 -1 0 0

0 .0 0 -1 0

0 9.6 0 7.2 1

0 8.4 0 6.3 0

how we get to the next

0

0

0

0

0 matrix. The result is:
0

0 0 0 0 -38.88 -20 -86.4 -15, -64.8 -9 Os

1
0 1 0 0 0 -9 0 -20 0 -15 0 0

0 0 1 0 0 -2.592 0 -5.76 -1 -4.32 -.6 0

0 0 0 1 0 -.6 0 0 0' -1 0 0
1OF

+,0 0 0 0 -4.32 0 4.6 0 -7.2 -1 0

0 0 0 0 0 2.78 0 8.4 0 6.3 0 1

-20 0 0 0 0 0)

0 -20 0 0 0 0

(in the 1,3 slot) Joy adding 15 of
to tow I:

check 0 0 0 4 0

-is 0 0

0 -.6, .9
-1 , :0 .6

7.2 -l .0

6.3 -0 =1

-these
rows o 1 0

0 0 Cl
0 0 0
t

0 0 , 0

L%' 0 0 "64

0

0

9.6
8.4

TOW

the

'-20 0

0 -20

0

0

0

0

0
0 0

.9.6 0 0 1 0

8.4 o 0 0 1

1 0

0, 1

o 0

o o

3 to kill the

new .row 3

o 'o
0 0

-15 0

0' 0

0

1

-1

0

0

0

0

0

'0
0

0

The first three coluAs now Atch'a-6 x 6'1. Pleaie

notice that what. we-are abouiliO do in coludn 4 does not.

.disturb,-three.coiumifs: -14 gain this because

we-w*k,fros left to rishileairinu friendly'zeros

chehincy..,Multiply TOW 4 by *l to get a new row 4. , Add

,appropriate moktiples of this new row4 to rows 2, 5, and

,A.so"that. the rbst of _column 4 is zeroed. Reach .
. 4, - 14- . -.

ti-

Firtally we multiply the
sixth column to reach

-20 31.080

0 7.1944

0 2.0720-

I 0 1.8130

0 3.4533

b 3.0216

4
4

4

4
4

6th row by ,277-- and clear the
4.,

-15 23.310 -9

0 5.3958 0

-1 14.5540 -.6
35972 0

0 .2.5900 -1

0 2.2662 0

13.986

3.2374

.93237

.21583

1.5539

The matrix that has appeared.on.the right is (M-I)-1.
The first, third -and fifth ckinans are exact.,and,the
Others are correctly rounded tofive significant digits,
which is more than we can make'good use of below.
Keeping four significant digits, our final result for
the inverse is:

.

-20. 31.08
.

-15 23.31 13.99

0 7.194 0 -5.396 0 3.237'

0 A.072 --1, 1.554 r.6 .9324

.0. 1.813 0 - .3597 0 . .2158

0 3.453 0 2.590 .-1 1.554

0 3.022 0 2:266 0 .3597

168
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4.3 "A Steady Harvest Plus Controlled Growth of
the Herd

Example 2. Our ranch-planning businessman now wants

a herd that yields harvest. 4 next year (and every year-

thereafter) while it grows by 40% during the first two

years. The larger herd is to have exactly the same,

proportional structure as the original one.

Again we.regard as known and use the after-

harvest model. After a year's growth and next year's

harvest, initial herd to (which we will calculate)-will

become Jop

-a; = nto
a

The next year's growth and eventual harvest yields

=141 -ft (same Q each year),

= M(Me0- 4) - Q

2-==M6O-MQ -Q

and we want,40t growth (plus the harvests) after two years:

(lic) G2 = (1.4)c.

Frail (11 b,c) we conclude

2= .' J. Z.M
o

- MQ Q = 1.4 to

and we rearrange this to

(12) (M - 1.41) 60 = (M

known 6x6 a .known

matrix unknown vector

In (12) we have a set of 6 linear equations that have a
unique solution. (We won't prove that M2 - 1.41 has an
inverse, but it's, true.) Oueproblem has this solution,
written at matrix level:

(13) to = 1.4I)-1 (1+ 1) Q

4.4 Exercises

9. a. Write equations comparable to (6) or (lla,b,c) for'this

situation: Were given an annual harvest Q. We want to

-169
16

choose the herd -O0 so that, after growth and a harvest

next year, we will have a herd that is 12% larger. it

is to have the same structure as e
0

(i.e.`be 1.12
0
).

b. Solve your equations from (a) at matrix level for "a-
0'

10. A buffalo herd G will be 'allowed to grow until next year, when

harvest swill be taken. The resulting herd ti will be
.

allowed to grow another year, when a large( harvest 1.1i will

be taken. Calculate t
0

so that this proces's leads to a final

resulting herd G2 such that G2 =
2 0'

11. From this year's herd to a harvest (swill be taken next year.

After another year's growth, a harvest 1.2 Q will be taken.

The final resulting . herd

(i.e. -4; = 1.25 to).

.a. Write

b. Solve

G2 is to be 25% larger than GO

equations for this situation comparable to (11a,b,c).

for G. .
0

12. A herd GO grows for five yeats with no harvest being

In the flfth year, rvest ti is subtracted. The'resu-ltpinghslis

herd G5 is exactly ddu le e-
0'

Find G0.

taken.

13: Find -a'
0

if, after 5 years during. which the same known harvest

Q is taken at the end of each year, the herd is to double:

= 2 GO
0'

14. Find t if theherd is to'double in six

Assume that the same, known "harvest Q is

fourth, and sixth years of growth.

4.5 Mathematical Insights

The example of Section 4:1 and 4.3 and the exercises
°

,of 4.4 should have provited you with experience that makes
these comments believable:

a. When calculating with matrices, we find that algebra
arises that is much like the algebra we learned long
ago for numbers. Most ofwhit we can do

Is

with numbers
is also correct for matrices. (Key exception:matrix
multiplication is not commutative.) We can even sum
geometric series -- see Section 5.2 below. It pays

17.

years (46 = 2 GO).
IP

taken after the second,

4
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to think of a matrix as the analog of a -si-7141t =vitraw.

b. We may naturally need to calculite high _paws (41.i4ee

M10) of matrices. An easier, way to ibt) this Wainki htee

very welcome. There is one: when you iihcatt

"elgenvalues and eigenVectors" you FM Ott
technique.

c. Expressions

M2 m

in the

way and are

In the same

like M2 - 1.41, M + I , t9 -+ 148 -+ kM-7 .-+

M + I (see Section 5.2), called -palyncimild.1,5

(square) matrix M, enter our -work in a ruttartal

worth study. They are polynomilat-s Ai
7

sense that 4x- - 3x -+ 5 is a -pt ilyz

in x, i.e., they are sums of integer rata , COT,

equivalently, linear combinations of I -- 141°.;14:M:1)P

qtc.

d. All our calculations in the example Mere at nustfruoc,

level and at that level we got a lol done. awm

further progress with expressions like xrr P3)

requires that we go to entry level (eouardual awTd1)..

Matrix algebra is a powerful too] , but -by .xled.kinT

with the matrix as a whole we are out xff.-tauthm..tit

the individual entries, and their intcrimatixrnirmay

be critical:

4 -.6 An Efficiently Small 1-ierd

Example 3. For any specified harvest Aucm*s$.:QM

and QF", we have found an appropriate -s-teady-iiStxttehharld

(which will yield those quotas) in ExamOle 11. adt

perhaps our real goal is 'simply 'to 'harvest 1'

with T = QM + QF. Naturally, we wish to jdo tttriz %wait

the smallest pnssible herd -(which would 7re:ciutre tilve littaa5St

land, feed, fencing, handling by employees, -papenwrkk,

etc.) Is there some way to split up T imo XM aanki qt*F

so that the herd is smallest?

We set _up the algebra in this .way: 'QM A..t.01bbe ssorre

fraction of T, say QM = pT where 0 cp <1. -23_:hnibadli);,

QF = cT with 0.< q < 1. Since T = QM -+ CIF, A? -*.:Aq .=- 11.

;

-UR
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(FOrr example, if weed up selecting a harvest a T5%

malli.es, and_ 25% females p = .75, q = We tm

chaaw p- and q.

Thus-, in (9), using ew scalars p q1 amxfl 'F. the

q

0

0
0

and = (m 0)1'

tD

Tf-

The herd -6-0 is now a multiple of the total harvest 1T_

We can think of

0

0

0

..xs, thee "herd structure per animal harvesteE" ar thole minti-lberd1

meedeoLto produce one harveSted animal. because %diem mml-

tinned. by T, it becomes.-the' total herd Ga.
,---

The her.4gi'ae (the total number tuff animals im the

herd),flai- a herd GO will' be

4.

(06) (1.1.1.1,1,1). to (ro,r,t01.111-em-n1-1
FY)

tD

tD

a)

becausmultiplying by this vector C111111lb

addSs up; the entries in to. Since thi is a maniple aff

we. simplify by studying

HS = "herd size per arrima311 Hanv.esttedl"

= "herd size"/T '
(1,.t,r,t,T,004-1311

172
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Again: our goal is to select p and q to make HS as

small as possible.

To this point, we have dealt at matrix level,

aside from setting up with scalars p, q, and T.

From here we must work at entry level, calculating the

individual equations. Weylug in (M-0-1 from (10),

Section 4:2, and calculate

p + 31.08q

7.194q

`2.072q
1.813q
3.453q

3.022q

(17) HS (1,1,1,1,1,1) . -20 p + 48.63q.

Here we have rounded to two \ecimal places.

The goal was to select p and q such that

0 < p < 01;< q < 1, p +q = 1; and HS is minimal. That's

easy: as p increases, q must decrease and HS grows

steadily smaller; thus, p,= 1, q = 0 is the "right

ansier," and. the correct herd size per animal harvested.

is HS = -20! Clearly'nonsense!

- We have ignored two biological restraints that will
correct this nonsense. -First, the herd size per animal

harvested,put be positive: HS>0. This imposes another
condition oR p,q:

HS,- -20p + 48.63 q > 0
48.634. p< q 2.4313 4:

Since p+ q = 1 we have 1 - q < 2.4315 q<->q "> 1/3.4315 =
.2914 and p < .1086: itus our nonsense value p = 1

is ruled out.

' 4. S'condly, all'six components. of the mini-herd that

produces one animal for harvest [see (15)) must be
positive. Once we-plug in p sand q, these components are
'given by the column vector shO'wn in (L7). (Trace the

./7 calculations until yoti.see this) Adl six will )be posi-
tive if we insist that

t.

*e.
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-20 p + 31.08q > 0

44. P < 32008 q = 1.554 q

- q < 1.554 q'

<4. q > 1/2.554 = .39154

p < .60846.

ConclUsions: by takirig p < .60846 bust close to that value,
and q =1 - p, the herd size may be taken close to minimal.

In Table I, various values of p and q are used.

The resulting values of HS and the resulting herds are
shown. The percentage breakdown of the herd into its
six components is given (or equivalently, an actual break-
down for a herd of 100 animals is given). Retail that
NS is the size of the mini-herd that yields one animal

for harvest; thus\l/liS is the fraction of the initial
herd G0 (investment) that is harvested after a year.
Example: in the first column, each 6.90 animals breed

to become 7.90 animals and yield'a 176.90 or 14.5%
"output." These figures are given as "% harvest."

Table 1. Structures of Seven Herds
of Various Efficiencies

CD C) C) CD C) C) CD
p .608 .606 .605 .600 .580 .550 .500
q .392 .394 .395 .400 .420 .450 .500

HS

% harvest

AM
AF
YM

YF

CM

CF

6.90 7.04 7.11 7.45 8.82 10.88 14.3
14.5% 14.2% .14,1% 13.4% 11.3%, .9.2% 7.0%

. 34% 1.8% 2.5% 518% 16.5% 27.4 % 38.7%
40.9 40.3 39.9 38.6 34.2 29.7 25.1
11.8 11.6 11.5 11.1 9.9' 8.6 7.2
10.3 10.1 10.1 9.7 8.6 7.5 6.3
19.6 19.3 19.2 18.5 16.4 14.3' 12.1 '

17.2 16.9 164 16.2 14.4 12.5 10.5-

Here p = fraction Of adults that are males; q = 1 -'p = fraction
of adults that are females. Herds of smaller size HS (animals
per animal harvested) result as p is taken tloser to .60846,

_'which it cannot equal or exceed.

The structure and size of a herd that will yield a

20 harvest of T animals'annually,vdries considerably as me

17j 21
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apportion the harvest differently among adult male and

female animals. In a polygamous herd, there., is no need

to have anywhere near one bull per cow to achieve the

birth rates for calves we have assumed. In this regard,

it is common in cattle ranching to run 1 bull with20-30

cows. The first-three herds in the table above have cow-

to-bull ratios of 120 (= 40.9/.34), 22,-and 16; the

ether herds have much lower ratios. Thus herd O2

to be practical and is fairly close to minimal size.

"-4.1 Exercises _

1

15. a. In Example 3, show that a 25:1 ratio of adult cows to

bulls arises when p = .60624 is used.

b. What value of p leads to a 30:1 ratio

16. Check our, work in Example 3 as follows: take a herd of one

million animals structured like.herd(pin Table 1. (Thus thbre

are 18,000 adult males, etc.) Use the after-harvest model as

programmed in Exditise 3, and take a 14.2t harvest, using the

values of p and q given in the table for herd 2 to calculate

the constant annual harvest. On the computer, trace this

initial herd for 20 years. It should remain roughly constant

in size and structure.

S. APPLICATIONS: CALCULATING THE HARVEST

Now.

We will now ask what harvest should be taken from a

herd already in our possession, if it is toe preserved

in size for the future. We also will discuss harvests

that provi4 for controlled groWih of the herd., This is

in contrast to Section 4, where we "designed" herds to

provide specified harvests. Entirely different difficul-

ties will appear.L.
S.1 Steady Annual Harvests and Herd

Example 4. Given "this year's" herd n, what harvest,

Qb should be taken from it so that next year's herd H
1

till have the same size and structure as this year's

.22

1Th

herd, i.e. go? (The Process can then go on for

'many years, yier4ing steady -state harvests and herds.)

This queStion arises before we harvest, of course;

thus,we use the haunt-before-harvest model. Then wemust

solve

9 H1 HO

M(H0 -.4'0) (compare (5)]

for
0'

when g
a

is known. Simplify the notation to

1 = 1
0
and g = g

0
= g and use algebra to reach

'(18) .HQ = (ti - I) H.

(Here I is the 6 x 6 4dentitymatrix.)40 The,"obvious"

next step is to multiply through by !4-1 and-get the

"right' answer" = M-1(M -*I)g. Unfortunately, M-1 does

not exist!

So far we have woted at matrix level, i.e., we have

used matrix algebra to calculate with the maqices as a

whole, not their individual entries, To make:more Pro-

gress we must go down to entry level and look at the.in-

dividual equations that make up the matrix level full .
.

system. -

Let's examine (18) in detail. We appear to have six

linear equations for the six unknowns in0.. (The right

-side is known.) Howevei, four of the, sientries in

were set as zerolrom the beginning. (We harvest only

adult buffalo.) Thus, in (18) we have six equations in

two unknowns, QM and OF, The equations are overdetermined.

Usually., two conditions (equati-ons) suffice to determine

two -unknowns. Only if we are lucky, by having the ext

four conditions here add no contradictory requirements ,

for QM and QF, will we have any solutions 4 all. s

cf

When are we lucky? The six equations say inaetarlf

8
Up to now we hav,e used AM, AF, etc., as components of the hi,rd,

,
after harvest, QM and QF as the number of buffalo just, harvested.

In Section 5 these variables are components of the herd Wore "°
'harvest and quotas of buffalo about to be harvested.

3. t' fn. 23
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.

"a'
f95 Q14 + :75 1 {Alit- .95 (AM;QM) + .75 tym}
.95 QF = -.05-AF + .75 YF = (AF-QF) + .75 YF

(19b)
Cm}

0.- -YF + .6 {YF =

.
.6 CFI'.

CM1

14! QF '8 qt.:- CM

{CF
:48. (AF-QF)

{.42
)

t2' AF cF) CF = .42*(AF-QF) 4

Now, the' valuei. of AM, AF/YM, YF,' CM,' assumed

to be known, so we could *Solve for our` unknowns,

QF, using equations (19a) alone. Then equation's (19'b

lead to a'contradiction unlOSs'the values of AM, AF,'

YM, YF, CM, CF, QM and QF'already.known happen to satis-

fy (19b;c): 'Any herd fore which these font equations

(191),C) are ITot satisfted cdnnot.'duplicate it*elf from

thii'year to'next no mattvr4lodtlzarvest'is taken:

(11ecAl that -we are requiting tif'= IL*, pith the strict:
i -7

m athematical meaning pf equality for vectors.)-
..11

- This makes sense if we read eqdaticins

logically. Consider (19b): to have lc,. docihis-year'i

yearlings (which, if they survive, are adults in Hi) must

be-exactly replaCed id'H1 by the suiVivors of this year's

calves. Equations (19b) say that YM and CM;.YF and CF

in our lierd H = 110 = di:Aust be in the natural balance

of six yearlings per ten calves for each sex so that,

thesurvival rate of .6 will cause this year's calves to
exactly. replace theyearIingi3opulation asithe year
passes.

-Now interpret (19c): This,years caliles must also be
.

..'i,1-pre,-eriselyreplacedbyrwribotncalvesiffti=kis to `be
. true. After the,hafvest, there will be AF - QF adult

.

females and*Oey 41ill give-birth to .48(AF,--QF) new'calf
ialesand .42(AF - QF) new calf females by next. year.

,Equations (19c) simply *ay that theSe b4tths, forming,,,

the calf populations of al, MIlst exactly'replace CM and
CF in 1r

Thus, the fclir extra copditioni in lie overdetermined
system (19) simply require-that the/herd have a natural ag

' balance so:that, 'considering the survival rates, it will
riplenigh itself despite the harvest.

.- V,

24

5.2 'Constant Harvests From aGrowing Herd

Example 5. We want'to'Setect a harvest 4 so bat,

taking the same harvest every year, the herd will double

in ten years while retaining the same proportional, strut;"
.cure. That is, if do is our initial herd before harvest

tlfis year, then at the end of ten years we want.to have
2d

0
a* the herd structure.,

We use the before-harvest-count because, again, that

is when the,question of selecting a quota arises'. Let

Hj be the herd before harvest ih,the,jth Yea, .j ..0;1,'A

2, ..., 10. Then
-

e

C° M ("To -

= - . - MCI2, 1 1

'2
M (go - MO

= M211 - M2-Qs - MQ

3
= ma2! -

...*=t1 H
0 /*

211 = H = M1GU- - mit-010 0.

10
=, M H - (I + m + m

2
+ + M

9
Pig t *

In this equation, we- know do and want 4.. T-herefoi-e, -

write it as\the set., of °linear equations

.

(20) (I + m + m2 + ... + M9)M 1.1 =,, (il°. -. , ,
2I)Iro

, knowrr 6x6 'matrix \ all.known ,'' :6x6, 'matrix
,, unknown

' .
All of this has\been at matrix level. We push ahead

. .
in that spirit.

Have you noticed t$t I t M + M2 + + M
9
.loolc

geometric, series? When numbers are involved, we

f

know how to add up such expressiohs:

-1+ + a
2

+ 1+ a
n = T-- if a ti 1.--at

cc
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Can we do something similar here, when M and I are square

matrices? '

Indeed we can Put S = M + M2+
Thus S is a 6-x 6 matrix, and MS makes sense: MS =

M + m + M
10

. Subtraction leads to the familiar

Massive cancellation:

. (I - M)S = S'- MS = I M10.

In fact, (I - M)-1 does exist for our 6 x 6 matrix M.

We.Calculated (M -WI in Section 4.2; of course

5

9

,(21) S =
2

+

The analogy to the numerical g ometric series formula'is

striking.' It might tempt is t elieve the infinite

geometr Y¢ series'formula;
Al

-1 3i+m+m = (I - M)
-1

analogous to. "
IT-7R

Indeed, thisfornwla'is_yalid for certain families of

matr&ces- Wand infinite series.of'.maerices is a fascinat-

ing subject mits own xight: We will not explore in

that direction now butope.thing is clear: a sensible

.1 def. r on of ':convergence" for such series would be

o r first task:
. .

We,:.were interested in solving the linear equations

(20) foil. We have made:progress: using (21) in (20)

we obtain: ,

po-LI -'141°)-mt- 041°-- 201.0.
We can multiply rough by I - M, and by

whichcloes exist (proof omitted):'

410--1- m ) ,

(22) (1.-:100)7i (1 M)
(M10

21)46,

Ilkt is as far as we can go at matrix level in this

exa,mple becaused4-1 does nit exist. The right side of

V (22) is known (although unp'l'easant to 5p6Urate). The

.systempie overdetermiced. Sdlne.ht9wanbe doubled in

ten years in-the way we suggested, but most'cannot

4.79.) /
26.

. "'
C...

.

"41

It

4

Of course, we can approximately double the,herd, and

(22) will help us see-how. Weehave_examined whether we

can precisely double it..

5.3 Exercises

17. a. Is the initial hprd given in Exercise 1 a "natural" one

whichif a proper harvest QM and QF were taken, could

exactly reproduce itself next year? Explain your answer.

b. tlepeat a. for the initial hccl Of Exercise 4.

not exist. In how many ways can you18. a. Show that M
-1

does

dd this?

b. If we replace the OA entries in M with arbitrary numbers

a,b;c,d,e:f,g,h, we get

A

a

0

0

0

0

LO

0

c

0

0

g

h

b

0

0

0

0

0

0

011,

0

0

0

0

0

0

e

0

0

0

0

0

0.
'f

0

0n
Stow that (M doo not exist, eitheer. Thus the over-

determineenaturefofExamples 4 and 5 does not depend on

specific birth and survival rates. (The reader who knows, D

about determinants will hive an advantage in this problem.

19. a, Reviie Example 5 ,p that the herd.will grow by,50% in _

ten years. That Is, set H
JO

=X1.5 H
0

and carry through

the algebt% of Example 5 for this hew cases .Reach equa-
a

Mons analogous to

b. Repeat a, with 50% growth over eight years.
.

20. Check our geometric series result in (21) by carefully

multiplying outrhe left side of-(I41)(1+M+M2+...4M9) = I-M10,

to gtt theright side. (Why doelthWconfirm equation (21)?)

identirOC;11 the algebraic properties of matrix multiplication

ancrOditiontha you use,- such as the associati-velaWof

-miiitiplicatio7 n; left dIstribut,iye law, etc.
.

;

*

r
A A 180

. .

27 r
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6 a REFERENCES-

o .

I first met this model when Karl Zinn of the Center

- for Research on Learning and Teaching at the University

of Michigan introduced me to a computer program named

DUFLO; written, by L. Bran nd R. L. Siegel of the

Polytechnic Institute of Brooklyn and distributed national-
lY by the Program Library, Digital Equipment Corporation,
Maynard, Massachusetes 01745, The program and-its .docu-

mentatidn are part of project EXTEND'and the Huntington
Two Computer Project. Program.BUFLO Interactively

qt permits one to follow a buffalo herd throUgh many years
while applying a va.14,e.ty of management policies. 4

o °

Whiletquations'(2) acre ttkeil directly .from

_I am solely "responsible for the mathetatics that follows *. .

in this paper.
s

An alternative discussion of exactly the same model
with different survival rates based on an actual 'modern

buffalo herd may be found in:

Watt, Kenneth E. F., Ecology and Resource',
Management°, McGraw Hill, 1968, p. 358 fft
This is an excellent betook for all readers
in applications of undergraduate-level math
to biology.

The buffalo model discussed there is drawn from:,

Fuller, W: A., "Biology and Management of .the Bison
bf Wood Iuffalo National Park," Canadian
De artment of Northern Affairs Natural Resources

Wildlife'Management Bulletin, Series 1,
0 No. 16, 1962.

As I read Watt, the survival coefficients matrix used-. .

by Fuller and Watt is
.. ,

.9 0 .75. 0 0
0' .9 '0 .75 0 -0
o 0 0 0 .4, 0

. 0 0, 0 °O 0 .4
40, 0 ,36 0 0 0

0 .1r 1 0 0 0 0 . .

and their "guqssiimated" 1,830 herd (4.40 millionor'
buffalo

isstructured as:

181
P.

AM = 16.8 mi.11;on. YM = L2 CM = 2.0

AF = 16.8 , YF = 1.2 CF = 2.0 .

. .
. Our mo el is a simplified variant of the more .

important L kit models for populations with age struc-

ture. The original paper's are! .

Leslie, P.H., "The uses of matrices in certain
population mathema0.cs,""Bibmetrika '33 (1945),
pp. 183-212. .

'
Lelie, P.H., "Some further,,notes on %be use of

matrices in population mathematics,"
Biometrika 35 (1948), pp... 213-245.

Much research-by Lelpfie and'others has followed, with the

goal of overcoming the limitations of Leslie'soriginal

models. These 1.pertations areluch the same as the
Ar

ones we have dWussed,fdt outsimpleemodel: 'use of

constant coefficients from year to year and lineirity of
,,.

the, model. In addition, the Leslie approach has-been

applied to much more than buffalo herds. The interested

reader might start with:
.

.
-

Pielou, E.C., An Introduction to Mathematical
4 Ec010 , Wiley- Interscience ,-- New York,

. Chapter III covers the Leslie model.
. Pielou is a leading mathematical biologist; ...

her ooks are among the basic advanced °

l
work in the field.

Usher, M.B., itA matrix approach to the management
9f renewable resourceswith special°reference
to selection forests," Journal of Applied
Ecology 3 (1966); pp. 355-3q7.

-

.

Usher, M%B.,"A matrix approach to the management
of renewable resources', with special reference
to selection forests -- two extensions,"

. Journal of Applied Ecology 6'(19.69), pp. 347-8.

Usher:19.:B.,"A matrix model for forest managment,'"
Biometrics 25 (1969), pp. 309-315.

Fowler, Charles-W. and Smith, Tim, "A matrix.
.

method for determining stable densities and age
'distributions and its application to African
elephant populations.". University of Washington

t
Quantitative SCience Paper N. 31, Seattle,.
January 1972. (Write Fowler or SMith at
U. Washington, Seattle, 9819S for,more
information.)

4
29
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A A Kell- written disCussion of the Leslie mod 1-with--

application to harvesting of herds (including d foi--

sheep ranching) is'

Anton, Howard, and Chris Rorres, Applications
of Linear Algebra, John Wiley & Sons, 1977-,
Chapters 9 and 10.
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8. ANSWERS TO EXERCrSES

.0* .1

1. I'll write vectors horizontally to save space. We are given

=.(200, 1000,300, 300, 520.1500) and Q. = (100, 200,

0;0, 0, 0). 4111*

and editorial

j

,r a. Zo = Ho - (I"

= (100, 800, 300, 300,320: 500)
0

.
'

'30.

b. HI = Kt
0
= (320, 985:"312, 300, 384 :336)

.

c. ii ; = Hl --'4= (220, 785, 312-, 300, 384, 336)

d. it
2

= mit1 '= (443, 971, 230, 202, 377, 330)
.

(Decimal results have been rounded.)

e. G2 ="it. - -4H. (343, 771, 23011E2, 377, 330)
2

H2

F. The herd is shrinking slowly in key category of

adult femalet. This will continue for ;while, causing

the whoit herd to shrink slowly; ,

....
2. Ovel- two years G

0'
if left unharvested, would become M

2
G
0'

The

harvest Q, is subtracted, of course. We,also subtract, not

Q1, but the defy 40 of the harvested sub-herd Q1 at the end
daq.

of the tVo year period, MITI. The linearity of the model assures

that these sub-herds can all be superimposed.
I. A

3. A FORTRAN, program is-listed in Table 2, pages 34 and 35.

4. This may have been a frustrating problem -- it has no solution.

The herd is inherently unstable because, in 1830, it was

growing exponentially '(or would have beers, had not white man

interfered). A harvest of 1.4 million males, 2.6 minim!, fe-

males will convert the initial herd Of 60 million into a herd..

of 59.984 million in ten years, but the herd stfuctureis

drastically changed. The new herd.has many,fewer calves than

the-original, and theherd is in fact headed for extinction.

Other harvests, of 4 million lead to herds that grow rapidly

or decline.rapidly, but this herd is inherently unstable. OP
mow

And that's the whOl int.

1°5,6. Computer printouts re dispflyed in Tables 3 and 4 (pp.36-42).

The poini'is that, by slaughtering females we.also slaughter

their potential progeny. The effect of harvesting a lot of

females' is to destroy the herd. Also, all of the herds that

involve 20% harvest (Exercise-6) meet a fast extinction.

7. dne examplelis shdWn in Table.5 (Page 43)i

You should try others.

9 :' a. G1 = MGO - Q

G
1

= 1.12 e
Or' .

. -184

With commentary.

.

a.
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b. (m - 1.12/)-1:1/
4 .

10. Equations G1 I. M GO Q

,, s s- G2 = MG) - 1.1t
11-2

3
G2 G0 s ..

1.44 nu:at-ions Mkt t

c.-
4-lead to solution ... .

e- - m t J
s

., to 44(M
2 - /) (M 1.)-1 )32.

t = Me,.

s

5 .4-
"4 4 *

-4-

4
tEt, mt5 is

11. Equations ti = Mt0 -
...?

(
s . t' t

G = MG' - 1.2Q 6-
=

G.,2 1

Gk. = 1.25 G0 condense to

lead to solution ,
i .... _.s. 6.2. . 2 ,...,..

2Sc 7 G.& = 14 ea (1+ # Pit * MA-%

'Go = 142 - 1.2.5I)1 (M -+ 1./1.)11 .
. ' i t i

The mistrials- i s

12. Equations = P1G0 (harvest is-il=33) ta'7 = (het - ZI)4(14.4 -14 fiX1.4-Z)cl..

t2

=

65 mt4 - (final 'harvest)

4.. GS = 2t0

have solution

0
= (M5 7:: t

13.. Equations t = -G1
0

; -1
G3 ms2 Q

.04
MG.3

condense to .

4

h

A t (0
. 0 5

6**, Tus;

/t

le

= 015°- an-10 4;45 44.41i24*'

1
J

32

155 171; .606E4

166 Ai. computer printou.t appears as rahlle & (hEri3P WO- 111z-sat's
ace right on- target..

17;. to: giVe lust one reasons:mans' rmerty mutations OW)

are natt satisfied by = 520 = 313)1.

at: Na; again-, equatians (.1'31:)! are not smtilsifiledi tby a3 Rena

with- 12%. fettstIe calves and itt Fest:mile waacrilErsg3s..

1%. as. Change the equations to s-, .

It19--' =-tPli-a - Met +Mi+ MX s...... * mhti

ip-, ... 1.5 ir
TM CD '

The& gz) is replaced by the cateadettamtEcerfi syistenn

latZ w tr. n.crITP a K(!tic° - 11:51)A9-. 9

NC t& Air
4- mi 4- pit

z

T-511i;

Itacktcx this rep/at:went frnr (g22))::

$ 3

1.
1

186_
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TABLE 2

IP

C PRINWRITET TABLE OF
104

PERCENTS(5,1
A listing of my FORTRAN program, used to create all the WRITEIS.1021

104 FORMAT( -IHOrIBAr'PERCENTAGE DISTRIBUTION OF HERD')

printouts that follow, is given below. It does more than Problem 6 LL.LONG*1
00 30 1(.1.LL

asks, because it gives the results,irOpercentages and in actual NyEAR. K-1
WRITE15.101 NYEAREISAMK,J10.101

millions of buffalo. The program wasrun on an IBM1110 computer 105 FORMATI 211.12.5x,f5.1,6X,61F4.1,6X11

but should easily adapt to any standard FORTRAN,.
30 CONTINUE. WRITE15,106) Q11110(21

106 FORNATITHO.,CONSTANT ANNUAL HARVEST IS 'F6.2' MALES, ' F6.20 FENA4
IES (To MIL1 LIONS)01
GO

# ENO
THIS PROGRAM ACCOMPANIES THE 'APPLICATION PAPER

e

CC

E 'MANAGEMENT OF A BUFFALO HERD'
C
C
-c
C

' C
C
C
C
C
C
C
C
C
C
C OUTPUT IS GIVEN IN MILLIONS Of ANIMALS AND ALSO IN
C AREAKOONN OF THE HERO. YEAR -or YEAR:
C

DIMENSION re(6$03161,SAvE(50.71,
l

1 REA0(2.100) H.0111.0121,LONG.
100 FORMAT( 6F10.4/2F10.4,121

CALL EXITIFIHIII.LT.D)
.

wRITE(5,,1011 Y
101 FORMAT.( IH1.24x.TILLION.S OF BUFFALO')

NRITE 15,102) -'

102 FORMAT 1 lx,0yEAR TOTAL AM AF

IF .Cm CE,I
. NvEAR0 t '

TOTAL° ' -,

MIS LIr6 . Note All of (his

5 TOTAL.TOTAL.HILI
wRITE(S,1031 NYEAR.TOTAL,H*

' code simply sets

CONVERT TO PERCENTS AND AVES 'FOR LATER PRINTING.
up the initial
herd properly103 FORMAT) 211.12,4A,F7.3.613A,F7.311

SAvEII.11eQ. 600r
.

DO ID 1.2.7
LLL -I
$AvEt1.0HaL)/ToTAL100

10 SAvE(1;IVX.SAVETTTI)Y,ttstetilL-1-
MAIN LOOP . °

,00 2S R.I.LON9
NYEARK
TENPOH121
H(11 .9500 f 1 .754(3) - 0(1) Note TEMPO is used to avoid a key

H(31 .614(51 i
trap tn. the program if I fail to save .H(2) .gs.H(2) .75.'4141 - 0(21 /

11(41.#0.6eH161 ,

the old value of M(2). I will not tave*

NISI .411.T6mPO , It to use in the correct calculation

H(61 .42TENP04.. 0

TOTAL .0
of m(S) and n(6)

00 IS 181,6
15 TOT AkeTOTAL *NIL I "

WRIT (5,1031 NYEAR.TWALOI
%AR.' . ..

. sAve(oc,i),..p
00 20 L.2.7

. Ikliki.k1 H(LL1/TO TAA.100

fg ct4T(.4 t 1

) ..sAvEIKK.1).sAvfm,i,
. _ . . .

ANO ODES THE CALCULATIONS REQUESTED IN PROBLEM 3 OF THAT PAPER.
IT RECEIVES PAIRS OF OATA CAROS AS INPUT. THE FIRST CARD pima()
LIST THE SIZE OF THE INITIAL HERD IN ENE USLAL SIx CATEGORIES. IN
6 F 10.1. FORMAT.'IN MILLIONS THIS TELLS THE PROGRAM THE INITIAL
NUMBER OF ANrAF0NOF,CN,CF. THE ,SECOND DATA CARD LISTS THE CONSTANT
HAirvE5T oF MALES, INfN FINALES, 'IN 2 F r0.6,FORMAT (GIVE THESE IN
NILLTONS,,TOO) AND THE NUMBER OF NEARS THAT THE HERD LS TO BE
TRACED, IN 12 FORMAT IN MAIMS 2'1,22.

'PLACE PAIRS OF DATA CARDS BEHIND ONE 'ANOTHER. PROGRAM TERMINATES
WHEN A FAKE OATA-CARO-PAIR IS FOUND WITH A NEGATIVE ENTRY IN THE AM SPOT.
THUS MANy'HERDS_ MAY BE STUDIED WITH ONE COMPLTER RUN.

The data cards that produce the printout of Table 3, page 36,

are these, given as samples. Many pairs of data cards can

precedethe fake pair.

18. 16.2 5.4 4.8 8.4 7.2 (initial herd) ca
x

4. O. 20 (harvest of males, females; years traced) A
.

X
-100., (fake data-card-pair to terminate program) Zg

blank card

Li

8"

p

r

. 18,

.
...continued Rest *se

r

.

. ,

34

lk

188 35

4%.
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Case a)

TABLE 3.

Twentyuyear.printouts for the five cases
called for in Exercise 5 follow.

MILLIONS OF BUFFALO
YEAR TOTAL AM AF YM YF CM CF

0 50.999 18.000 16.200 5.400 4.800 8.400 7.200
1 60.079 17.150 18.990 5.040 4.320 7.775 6.803

.2 .63.191 16.072 21.280 4.665 4.082 9.115 7.975
3 67.453 14.768 23.278. 5.469 4.785 10.214 8'.937
4 72.276 14.131 25.703 6.128 5.362 11.173 9.776
5 78.165 14.021 28.440 6704 5.866 12.337 10.795
6 85.242 14.348 31.417 7.402 6.477 13.61 11.944
7 93.521. 15.183 34.704 8.190 7.166 15.081R 13.195
8 16.567 38.344 9.048 7.917 16.658 14.576
9

.103.11

114.141 18.524 42.365, 9.9.95 8.745 18.405 16.104
10 .126.736 21.094 46-.806 '11.043 9.662 , 20:335 17.793
11 141:039 .24.322 1.713 12.201 10.676 22.467 19.658
12 157.210 28.257 .134 13.480 11:795 24.822 21,719
13 -175426 3X.854 /63.124' 14%893 1`3.01 27.424 23.996

,14 195.884 38.477 69.742 016.454 14.397 30.299 26.512
15 218.803 '44,894' 77.053 18.179 15.907' '33.476 29.291
16 244.425 ° 52:284 85.431 20.085 17.575 36.985 32.362
17 4273.018 60.734 94.056 22,191 19.417 40.863 35.755
18 304.879 70.341 103.916 24.51 21.453 45.146 39.,503
19 40.338 81,,21'^1,)47810 27.088 23.702 49.879 43.644

. 20 3 .759 93.468 126.846 29.927% 26.186 55.109 48.220

YEAR TOTAL
0 100.0
1 100.0
2 100.0

3 100.0
4 100.0
5 '106.0
6 100.0
7 100.0'
8 100.0

' 9 100.0
10 100.0

11 99.9

PERCENTAGE DISTRIBUTION OF HERD
AM. AF YM YF C4 CF

°30.0 '27.0 9.0 8.0 14.0 12.0
28.5 31.6 8.3 7.1 12.9 11.3
25.4 (3316 7.3 6.4- 14.4 . 12.6
21.8 1343. 8.1 ' 7.0 15.1 13.2
19.5 35.5 8.4 '7.4 15.4 13.5
17.9 36.3 8.5 "7.5 15.7 13.8
16.8 36.8 8.6 7.5 16.0 14.0
16.2 37.1 8.7 7,6. ,/ 16.1 L4.1
46.0 37.1 8.7. 7.6 16.1 14.1
16-2 37.1' 4.7 7.6 16.1 14.1.
16.6 36.9 8.7 7.6 16.ä 114.0
17.2 36.6 8.6 7.5 15.9 13.912 100.0 17.9 . 36.3 8.5 7.5 15.7 13:813 .100.0

14 100.0
15' 100.0.
16 . 100.0

17 99.9
18
19

20

18.7 35.9 8.4 0 15.6 13.6
19.6 35.6 , 8.4 7.3 .15.4 73.5
20.5 35.2- 8.3' 7.2 15.2 13.3.
21.5 34.8 '8.2 7.1 5.1 13.2
22.2 34.11. 8.1 , 14.9 13.0.100.0 23.0 34.0' 8,0- 7.0 14.8 12.9

100.0 23.8 33.7 7.9 6.9 14.' 12.8-100.0 ,24.6 33.4 7:8 6.85 14.5 , 12.6

CONSTANT ANNUAL HARVEST IS 4.00 MALES, 0.00 FEMALES (mamas)

189 t-

Case b)

TABLE 3 (Continued)

MILLIONS OF BUFFALO
YEAR TOTAL AM AF. o YM YF CM CF

0 59.999 18.000.. 16.200 5.400 4.800 ' 8.400 7.200
1 60.079 18.150 '17.990 5.040 '11..320 .7.775 6.803
2 62.291' 48.022 19.330 , 4.665 44.082 8.635 7.555
3 65.158 17.620 20.425 5.181 4.533 9.278 8.118
4 68.251 17.625 .21.804 5.567 . 4.871 9 804 8.578
5 71.941 '17.919 23.367 5.882 '5.147 10.466 9.157
6 '76.300 18.435 25.059 6.279 5 494 11.216 9.814
7 81.324 19.223 26.927 6_729' 5.888 12.028 10.525 0
8 87.075 20.309 28.998 7.217 6.315 12.925 11.309
9 93.631 21.707 31.284 7.755 6.785 13.919 12.179
10 101.063 23.438 33.809 8.351 7.,307 15.016 13.M
11 109.452 25.529 36.599 9.009 7:883 16.228 14.200
12 118.890 28.010 39.682 9.737 8.520 17.567 15.371
13 129.480 30.913 43.088 10.40 9.223 19.047 16.666

141.332 34.273 46.851 11.1428' 10.000 20.682 18.097
15 154.574 38.130 51.008 12.409 10.858 22.488 19.677
16 169.341 42.531 55.602 13.493 11.806 24.484 21,423
17 185.788 47.524 60.677 14.690 12.854 26.689 23.352
18 204.084 .53.166 66.283 16.013 14.011 29.124 25.484
19 224.417 '59.518 72.478 17.474 15.290 t 31.816 27,839
20 246.995 66.648 79.322 9.089 16.703 34.-789 30.440

PERCENTAGE'DISTRIBUTION .OF HERO
' ?

YEAR TOTAL AM AF YM YF CM CF

.

".

°

0

1

2

3

4

5

6'

7

8

9
lb

11

12

13

14

15

16

17

18

19

20

100.0

140.0

100.0

100.0 ..

,99.9

100.0 ".24.9
- 100.0

99.9

100.0

' 100.0

100.0

.100.0

100.0

100.0

--.--100.0

100.0

100.0

100.0

100.0

100.0

100.0

30.0
30.2

28.9

27.0

25.8

24.1

23.6

23.3
23.1

23.1

23.3,

-23.5

23.8

24.2
24.6

25.1
2535

2620
26.5
26.9'

' 27.0

29.9
31.0

31.3

31.9
'1432.4

32.8

33.1
- 33.3

3333!114-

33.4

.33.3
'33.2

33.1
32.9
32.8

32.6
32.4

: 22.2

'52,1

9.0

8.3
7.4

7.9

8.1

8.1

8 ,2

8.2 .

8-2

E
8.2 .

8.1

8.1

8.0
8.0

7.9
7.9
7.8

7.7

7.'

.8.0

7.1

e.5

6.9

7.1

7.1

7.2

7.2

7.2
7.2

7.2

7.2%

7.1

7.1..

7.0

7.0

6.9
6.9
6.8
6.8

6.7

14.0 '

/12.9'
13.8

14.2

14.3
: 14.5

14.7 \
14.7

14.8

14.8 .

14.8

. 14.8

14.7

14.7'
14.6

-14.5

14.4

14.3,1.

14.27'
14.1

14.0

12.0

11.3

12.1

12.4

12.5

12.7

12.8

12,9

.12.9

13.0

13.0

12.9

12'.9

12.8

12.8

12.7

12:6

12.5
12.4 .

12.4

12.3

36

1

CONSTANT ANNUAL HARVEST IS 3.00 MALES, 1.00 FEMALES (MILLIONS)
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a,

10

Case c)

YEAR TOTAL

TABLE 3 (Continued)

CM CF

Case d)*--.

YEAR TOTAL AM

TABLE 3 (Continued)

CM CF

MIL'LPONS OF BUFFALO
AM AF YM YF'

MILLIONS OF BUFFALO
AF YM YF0 55.999 '18.000 16.200 5.400 4.800 8.400 7.200 0 W999 18.000 16.200 5.40o 4.800 8.400 7.2001 60.079 19.150 16.990 5.040 4.320 7.775 6.803 I 6o.o79 20.150 15:989 5.040 4.320 7.775 6.8032' 614391 19.912, 17.380 4.665 4,082 8.155 7135 2 60.491, 21.922 15.430 4.665 4.082 7.675 6.7153 62.863 20.473 17.573 4.893 4.281 8.342 7.299 3 60.568 23.325 14.720 4.605 4.029 7.406 6.4804 64.226 21.119 17.905 5.005 4.379 8.435 7.380 4 60.20; 24.613 14.006 4.443 3.888 7.065 6.1825 65.717 21.817 1845 5.061 , 4.428 8.594 7.520 5 59.493 25.715

-Y6.609
13.222 4.239 3.709 15,723 5.8826 67.359 22.522 .18.701 5.156" 4.512 8.781 7.684 6 58.417 12.343 4.033 3.529 6.346 5.5537 69:126' 23.263 19.151 5.269 4.610 8.976 7.854 7 56.928 27.304 11.374 4.808 3.332 5.925 5.1848 71.038 24.052 19.651 5.386 4.712 9.192 .8.043 8 55.002 27.795 10.304 3.555 3.110 5:459 4.7779 73.120 24.889 20.203 5.515 4.826 9.432 8.253 9 52.610 28.071 9.122. 3.275 2.866 4.946 4.32710 75.389 25.781 20.812 5.659 4.952 9.697 8.485 1.0 49.715 28.125 7.815 2.907 2.596 4.378 3.83177.864 26.737 .21.486, 5.818 5.091 9.99 8.741 11 h6.277 27.944 6.372 2.627 .2.298 3.751 3.28212

13

14

Is

80.571

83.533
86.781

90.3.44

27.764° 22.230
22..1371. 23.052

30.069 23.960
31.367 24.964

5.994

6.18$_
6.402
6.639

5.244

5.414
5.602

5.609

i,0.931
10.670

11.065

11.501

9.024

9.336

9.682
10.063

12

13

14

15

42.251

37.587
32.229

26.115

27,517
26.830

25.865

24.603

4.778

1.069

-i.080

2.250
1.835

1.376

0.868

1.969

1.605

1.204

0.760

3.058
2.293
1.447

0.513

2.676

2.006

1.266

0.44916 94.257 32.778 26:072 6.900 6.038 1E982 16.484 16 19.174 .23.025 -3.456 0.308 0.269 -0.518 -0.45317 ,98.559 .34,314 27.297 7.189 6.290 12.514 10.950 17 11.329 21.105 -6.081 -0.311 -0.272 -1.659 -7.45118 103.290 35.991 28.651 7.508 6.570 13.102 11.465 18 2.495 18.816 -8.981 -0.995 -0.871 -2.919 -2.55419 180.496 37.823''30.146 '.861 6.879 13.752 12.033 19 -7.423 16.129 -12.185 -1.751 -1.532 -4.311 -3.77220 114.;30 39.82.8, 31.798 8.251 7.220 14.470 12.661 20 -18.533 13.008 -15.725 -2.586 - 2.263, -5.849 -5.117

YEAR TOTAL

0

PERCENTAGE DISTRIBUTION OF HERD
AM AF YM YF CM CF

_ -

PERCENTAGE DISTRIBUTION OF HERD
YEAR TOTAL AM AF YM YF ° CM CF0 100.'0 30.0 2.0 9.0 8.0 14.0 12.0 0 100.0 30.0 27.0 9.o 14.0 12.01 31.8 28.2 , 8.3 7.1 12.9 11.3 1 100.0 33.5 26.6 8.3 7.1 11.32 100.0' '32.5 28.3 7.5 6.6 . 13.2 11.6 2 100.0 36.2 25.5 7.7 6.7 12.6 11.13 100.0 32.5 27.9 7.7 6.8 13.2 11.6 3 100.0 38.5 24.3 7.6 .6.6 12.2 10.6,4 92.9 32.8 27.8- 7.7 6.8 13.1` 11.4 4 1,00.0. 40.8 23.2 7.3 6.4 11.7 10.2

5 99.9 33.1 -27.4 7.7 6.7 13.0 11.4 5 1014.0 41.2 22.2 7.1 6.2- 11'.3 9.8' 64. 100.0 33.4 -27.7 7.6 6.6 13.0 11.4 '6 100.0 45.5 21:1 6.9 6.o 10.8 9.57 100.0 33.6 27.7 7.6 6.6 12.9 11.3 7 loorp 47.9 19.9 6.6 5.8 10.4 9.18 99.9 33.8 A, 27.6 7.5 6.6 12.9 11.3 8 100.0 50.5 18.7 6.4 5.6 9.9 8.69 100.0 14.0 27,6 7.5 6.6 12.9 11.2 9 100.0 53.3 6.2 5.4 9.4 8.21,0 tom 27.Z 7.5 6.5 12.8 '11.2
,17.3

10 100.0 56.5 15.7 .5.9 5.2 8.8 7.71,11 99.9 , 34..3 2i.5 7.4 6.5 12.,8 11.2 11 100.0... 60.3 13.1 5.6 4.9 8.1 7.0.1 10W.0 .34.4 27.5 7. 6.5 12.8 ' 1122 ), 12 100.0 65.1 11.3 5.3 4.6 , 7.2 6.3
1.3 34:5 4 27.5. .4 6.4 .124. 11.1' 13 100.0 71.3 8.o 4.8 4.2 6.1 5.314 100.0' 34.6 27.6 7.3 6.4 1247 11.1 14 100.0 80.2 3.3 4.2 3.7 4.4 3.9'15 100.0' 34.7 27.6 7.3 6.4 12.7- 11..1
16 .100.0 -34.7 27.6 7.3 6.4 12.7 .CONSTANT ANNUAL HARVEST*IS 1.00 MALES, 3.00 FEMALES (MIL IONS)17 100.0 34.8 27.6 7.2 6.3. 12.6 `ii.I . The date for years 15120 is nonsensical, and means that e18 100.0 34,8 27.7 7.2 6.3' 12. 11.0 herd is extinct: after the 14th year, the required hary t of19 , 100.0 34.8 27.7 7.2

F

k.3 12'16 -,-/11.6 adult fema,les is not available.20 , 1Q0.0 348 27.8 7.2 6..3 12.6 11.0

CONSTANT ANNUAL HARVEST IS 2.00 %ALES, 2.00. FEMALES (MILLIONS)

. 191
/
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Case e)

TABLE 3 (Continued)

MILLIONS OF BUFFALO

14

Mao

YEAR TOTAL AM AF YM YF CM CF,

0 59.999 18.000 16.200 5.400 4.800 8.400 7.200

-I 60.079 21.150 14.989 5.040 4.320' 7.775 6.803
2 59.591 23.872 13.480 4.665 4.082 7.195 6.295
3 58.273 26.178 11.868 4.317

1

3.777 6.470 5.661

4 56.175 28.107 10.107 3.882 3.397 5.696 4.98'4

5 53.269 29.613 8.150 3.418 2.990 4.851 4.2,45

6 49.475 30.696 5.985 2.911 2.547 3.912 3.423
7 44.730 31.344 3.597 2.347 2.053 2.873 2.514
8 38.965 31.538 0.957 1.723 1.508 1.726 1.510

9 32.099 31.254 -1.958 1.035 0.906 0.459 0.402

r

.

PERCENTAGE DISTRIBUTION OF HERD
../

v
YEAR TOTAL AM AF YM YF CM CF

0 100.0 30.0 27.0 9.0 8.0 14.0 12.0
I 100.0 35.2 24.9 , 8.3 7.1 12.9 11.3
2 , 100.0 40.0 22.6 7.8 6.8' 12.0 10.5
3 100.0 44.9 20.3 7.4 6.4 X11.1 9.7
4 100.0 50.0 17.9 6.9. 6.0 - 10.1 . 8.8
5 100.0 55.5 15.3 6.4 5.6 9.1 7.9
6 100.0 62.0 12.0 5.8 5.1 7.9 6.9
7 100.0 70.0- 8.0 5.2 4.5 6.4 5.6
8 100.0 80.9 2.4 - 4.1 3.8 4.4 3.8 ,,"

..1

CONSTANT 'ANNUAL HARVEST IS 0.00 MALES, 4.00 FEMALES (MILLIONS)
Exting&jon occurs as a result of the hanoest fo)lowing the,
eighth ear. .

-YM YF CM

r 9.o 8.o 14.0

9.6 8.2 14.9

9.8 8.5 19.1

as.

193

o

FABLE 4

Twenty perOgnt harvests lead to early extinction in all fit,
cases requested ierjxercise 6:

Case
MILLIONS QF BUFFALO

YEAR TOTAL
...."

AM AF YM YF

0 59.999 18.000 16.200 5.400 4.800 8.400
1 52 079 9.149 18.990 5.040 4.3P, 7.775
2 47.591 d,472 21.280 4.665 t$4.082 9.115
3 44.633 -8.051 23.278 5.469 4.785 10.214

PERCENTAGE DISTRIBUTION OF HERD

s's;

CF

YEAR TOTAL AM AF

0 100.0 30.0 27.0
1 100.0 17.5 .. 36.4

2 100.0 0.9 44.7

-YM YF CM

r 9.o 8.o 14.0

9.6 8.2 14.9

9.8 8.5 19.1

.803
7.975
8.937

CF

12.0

13.0

16.7

CONSTANT ANNUAL HARVEST IS 12.00 MALE'S, 0.00 FEMALES (MILLIONS)

Case b)

Case c)

.40

4 MILLIONS OF BUFFALO
YEAR TOTAL. AM AF ..YM YF CM CF

0 59.999 18.000 16.200 5.400 4.800 A.8.400 7.200
1 52.079 15.149 12.989 6.040 4.320 7.775 6.803
2 42.191 12.172 9.580 4.665 4.082 6.235 5.455
3 30.863 .9:063 6.163 3.741" 3.273 4.598 4.023
4 % 18.446 5.415 . 2.310 2.759 .2.414 2.958 2.588
5 4.627 1.214 -1.994 1.775 1.553 1.108 0.970

PERCENTAGE DISTRIBUTION OF HERD
YEAR TOTAL AM AF YM YF CM CF

0 100.00 30.0 27.0 9.0 8.0 14.0 . 12.0
1 100.00 29.0 24.9 9.6 8.2 14.9 13.0
2' 100410 28.8 22.7 11.0 9.6 14.7 12.9
3 100,b0 29.3. 19.9 12:1 10.6 14.8 13.0
4 100.00 29.3 12.5 .14.9 13.0 16.0 14.0

CONSTANT ANNUAL HARVEST' IS 6.00 MALES, 6.00 FEMALES. (MILLIONS)

194

.665 4.082 6.235 5.455
3 30.863 .9:063 6.163 3.741" 3.273 4.598 4.023
4 % 18.446 5.415 . 2.310 2.759 .2.414 2.958 2.588
5 4.627 1.214 -1.994 1.775 1.553 1.108 0.970

PERCENTAGE DISTRIBUTION OF HERD
YEAR TOTAL AM AF YM YF CM CF

0 100.00 30.0 27.0 9.0 8.0 14.0 . 12.0
1 100.00 29.0 24.9 9.6 8.2 14.9 13.0
2' 100410 28.8 22.7 11.0 9.6 14.7 12.9
3 100,b0 29.3. 19.9 12:1 10.6 14.8 13.0
4 100.00 29.3 12.5 .14.9 13.0 16.0 14.0

CONSTANT ANNUAL HARVEST' IS 6.00 MALES, 6.00 FEMALES. (MILLIONS)

41

194

41
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4

4%

-Table.4 (coritinued)

.Case d)

YEAR TOTAL

\

L
MILLIONS OF BUFFALO

AM AF YM YF

5.400 4.800
5.040, 4.320
4.665 4.082

2.877 2.517

0 59.999 18:000 16.200
1 52.079 18.150 , 9.989
2 39.491 18.022 3.730

3 23.978 17.620 -2.394

PERCENTAGE DISTRIBUTIONAF HERD
AF YM' YF

27.0 9.0 8.0

19.1 9.6 8.2

9.4 11.8 10.3

YEAR TOTAL AM
0 100.00 30.0
1 100,00 34.8
2 100.00 45.6

CM CF

8.400 7.200

7.775 6.803

4.795 4.195
1.790 1 .566

CM CF

14.0 12.0

14.9 13.0

12.1 10.6

CONSTANT ANNUAL HARVEST IS 3.00 MALES,
e/
9.00 FEMALES IMILLIONS').

Case e)

MAR TOM,
0 59.999
1 52.079
2 36.791

4'

YEAR TOTAL
0 100.00
1 100.00

OF BUFFALO
AM' 4 AF YM YF

18.000 16.200 5.400 4.800

21.150 6.989 5.040 4.320'.

23.872 '-2.119 11.665 4.082

OERCENTAGE DISTRIBUTION
AM AF YM

30.0 27.0 9.0

40.6 13.4' 9.6

CM

8.400

7.775
3.355

CF
7.200

6.803
?.935

OF HERD -

YF CM CF

8.0 14.0 12.0

8.2 14.9 13.0

CONSTANT AN,IJAL HARVEST IS 0.00 MALES; 12.00 FEMALES (MILLIONS)

195

)Data or Exercise 7. As one mole, the initial herd

transformed for one year n this ca .strophic way:
.60 0 .40 0 0 0

o . .60' 0 .40 0 0

0 0 0 .15 0

0 0' 0 0 .15

0- .25 0 0 0

TABLE

was

0 .20 0 0 0 0,

and then transformed further for 19 more ye'rs using the usual

matrix M. The results:
MILLIONS

YEAR TOTAL AM AF

0 '59.999 18.000 16.200

1 34.229, 12.960 11.639

2 39.973 13.257 11.867
3 44.113 14.416:`11.731
4 48.371 16.20 14.294
5 53,.526 17.962 15.823

. b 59.212 15.814 17.438

7 65.418 21.911 19.267

8 72.286 24.233 21.295

.9 79.885 26.788 23.526
10 88.275 29.611 25.991

11 97.543 32.130 X8.716
12 1p7.783 36,175 31.727
13 119.095 , 39.980 35.053

14 131.5930 .44.184 38.728

15 145.400 48.828 42.788
16 160.655 53.958 47.273 11.153 9.759

17 177.507 59.625 52.229 12.323 10.782

OF BUFFALO
YM /YF ,\ CM CF

5.400 4.800 \\8.400 7.200

1.260 1.080 4:050 3.240

2:429 1.943, 5.586 4.888

3.352 2.933 5.'96 4.984

3.417 2.990 6.11 5.347

3.666 3.208 6.861 6.003

4.116 3.602 7.595 6.645

4.557 3.987 8.370 7.324

5.022 4.394 9.28 \8.092Vr

5.549- 4.855 10.221 6:943

6:132 5.366 11.292 9.880

6.775 5.928 12.475, 10.916

7.485 6.549 13.784. 12.061

8.270 7.236 15.229 13.325

9.137 7.995 16.825 14.722

10.095/ 8.833 18.589 16.265

20'.538 17.971

22.691 19.855

25.070 '2f.936 -t.

23,698 24.216

30.602 26.777

,18 196.126 65.886 57.7Q5 13.614 11.913

19 216.697 '72.803 63.754 15:042 13.161

20 239.423 80.445 70.438 16.619 14.541

YEAR TOTAL

PERCENTAGE DISTRIBUTION
AM AF YM

OF HERD
YF CM CF

0 100.0 30.0" 27.0 9.0 8.0 14.0 12.0

' 1 99.9 37.8 34.0 3.6 3.1 11.8 9.4

2 ^ 100.0 > 33.1 . 29.6 6.0 4.8 13.9 12.2

'3 99.9 32.6 28.8 7.5 6.6 12.9 11 41.,

4 100.0 33.5 , 29.5 .7.0 6.1 12.6 11.0

5 100.0 33.5 . 29,5 6.8 5.9 12.8 11.2

6 100.0 33.4 .29.4 6.9 6.0 12.8 11.2

7 --400.0 33.4 '29.4 6.9 6.0 12.7 11.1

8 100.0 _33.5 29.4 6.9. 6.0 12.7 11.1

9 99.9 33.5 29.4 6.9 6.0 12.7 11.1

10 100.0 33.5 29.4 6.9 6.0 12.7 11.1

11 100.0 6.9 6.0 12.7 11.1

12 100.0 ZLIIr 6.9 6.(1 12.7 11.1

13 100.0 31.5 21.4 6.9 6.0 12.7 11.1

14 100.0 I 33.5 ' 29.4. 6.9 6.0 12.7 11.1

15 100.0 33.5 29.4 6.9 Et.0 12.7 11.1

r.
16

17

100.0

1Q0.0

33.5

.33.5 4

'.29.4

29.4

6.9

6.9

6.0

6.0 .

12.7

12,7.

41.1
11.1

42 18 100.0 33.5 29.4 6.9 6.0 12.7 11.1

19' 100.0 3.3.5 29.4. 6.9 6.0 12.7 11:1

20 100.0 33.5 29.4 ,7 6.9 6.0 12.7 11.1

ANNUAL HARVEST IS 0.00 MALES, 0.00 FEMALES,(MILLIONS)

196
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TABLE 6

Data for Exercise 16. The herd does indeed 'emain very stable.
There is some roundoff error: the harvests taken were .086 and .056
annually (males, females, in millions), rather than the .086052 and
-055948 that the table's data for herd 2 indicates.

YEAR TOl'AL'

MILLIONS OF BUFFALO
AM AF YM YF CM CF

0 0.999 0.018 0.403 0.116 0.101. 0.193 0.169
1.000 0.018 0.402 0.115 0.101 0.193 0.165

2 1.000 0.018 0.402 /0.116 0.101 0.193 0.165
3 1.00o 0.018 0.402 0.115 0.101 0.193 0.169
4 1.000 0.018 0.402 , 0.115 0.101 0.193 0.169
5 1.000 0.018 0.402 0.115 0.101 0.193 0.169
6 1.000 Q.018 0.402 0.115 0.101 0.193 0.169
7 how 0.018 0.402 0.115 0.101 0.f93 0.169
8 1.000 0.018 0.402 0.115 0.101 0.193 0.169

9 9 1.000 0.018 0.402 0.115 0.101 0.193 0.168
10 0.999 0.018 0.402 0.115 0.101 0.193 0.168
11 0.999 0.018 0.402 0.115 0.101 0.193 0.168
12 0.999 0.018 0.402 0.115 0.101 0.193 0.168
13 0.999 '0.018 0.401 0.115 0.101 0.192 0.168
14 0.999 0.018 0.401 0.115 0.101 0.192 0.168
15 0.018 0.401 0.115 0.101 0.192 0.168
16

,0,998

0.998 0.018 0.401 0.115 0.}01 0.1p2 0.168
17 0.998 0.018 0.401 0:115 0.101 0.192 0.168
18 .0.997 0.017 0.401 0.115 0.101 0.192 0.168
19 0.997- 0.017 0.401 0.115 0.101 0.192 0.168
20 0.996 0.017 0.401 0.115 0.101 0.152 0.168

YEAR
0
1

2

,3

4

5

6
7

. 8

9
10

11

12

13
14

15

16

17

18

19
20

TOTAL,
100:0

100.0

100.0

100.0

100:0

100.0

100.0
100.0;:

1,00:0,

100%0
100.0
100.0

100.0

1,00.0

100.0

100.0
100.0
100.0

100.0

100.0
100.0

PERCENTAGE DISTRIBUTION'OF NERD
AM AF YM YF .

1.8 40.3 11.6 10.1r °

1.8' 40.2 11.5 10.1
1.8 40.2 111.6, 10.1
1.8 40.2 11.5 10.1

J.a 40.2 11.5 10.1
1.8 40.2 11.5 10.1
1.8 40.2 11.5 10.1

40.2 11.5 10.1'
1.8 40.2 ' 11.5 10.1
1.8'-110.2 -11.5 10.1
1.8 40.Z 11.5 10.1
1.8 40.2 11.5 10.1
1.8 '21 40.2 11.5 10.1
1.8 40.2 11.5 10.1
1.8 40.2 11.5 10.1'
1.8 40.2 11.5 10.1
1,8 40.2 11.5' 10.1
1.8 40.2 11.5 10.1
1.7 40.2 11.5 10.1
1.7 40.2 ' 11.5 10.1
1.7 40.2 11.6 10.1

CM

15.3

19.3,

19.3

19.3
19.3

19.3

19.3

19.3'
19.3

19.3

19.3

19.3

19.3
19.3

19.3

19.3

19.3
'19.3
19.3

19.3
1,9.3

CF

16.9

16.9,

16.9

16.8

16.9

16.8-
16.8

16.8

108--

16.8
16.8

16.8

16.8

16.8

16.8

16.9

16.9

16.9

6.9

1 .9

169

1

197
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STUDENT FORM 1

Request for Help

Returnta:
EDC/UMAP-
55 Chapel St.

Newton, MA 02160

Student: If you have trouble with a specifiC part of,)this unit, please fill
out this. form and take it to youk instructor for assistance. The information
you give will help the author to revise the unit.

Your Name

Page

0 Upper

()Middle

Lower

Description

OR
Section

.Paragraph

f Difficulty:. (Please be specific)

OR

Unit No.

Model Exam
Problem No.

Text

Problem No.

nstructor: Please indicate your resolution of the difficulty in this box.

Corrected'errors/in materials. List corrections here:

Gav studentltetter explanation, example., op ?rocedure than A unit.
G e brief outline of your addition-here:

(2) Assisted student in °aciluirini general learning and problem - solving,
skills (not using examples from this unit.)

\\-- . _

L
193

el

t
structor's Signature 1,

P1 se use reverse. if necessary. 4

t4

o
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Name

Institution'

STUDENT FORM 2

Unit Questionnaire'

Udit No.

Course No.

Date

Return to
EDC/UMAP
55 Chapel St.

Newton; MA 02160

Check the Choice for each question that comes closest to your persodal opinion.,

1. Now useful was the amount of;detail its the Unit?

Not enough detail to understand the unit

,

AUnit would have been clearer with more detail
ppropriate amount of detail

Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted

,2., How helpful were the
d
problem answers?

Sample solutions were too brief; I could not do the intermediate 'stelis
Sufficient information was given to'solve thetproblems
Sample solutions were too detailed; I didn't peed them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor: friends, or other-Books) in order to understand the unit?

A Lot Somewhat 'A Little N. Not at all

., 4. How long was this unit'in comparison to the amount of time you generally spend on
-

a lesson (lecture and homework assignment) in a typical math or science course?.

Much' . 'Somewhat About Somewhat Much
Longer Longer the Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
. as many as apply.) P

Prerequisites
Statement of stills and concepts (objectives)
Paragiaph headints- '

Examples
Special Assistance Supplement (if present)
Other, please explain

(1.

6. Were any of, the folkowing parts the'unit paiticularly helpful? (Check as many

as apply.) i',
.

Prerequis.ites
,

Statement of skills an4 concepts (objectives)

Examples
Problems

'Paragraph he dings,
Table of C tents
Special Assistance Supplement (if present,Other,, please explain

%...

,Please describe anyttiM in theunit that you did not particularly like.

*

Please describe anything that you found particularly helpful. (Please use the back of

this sheet if you need more space.)

'H 1°)
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MODULES AND MONOGRAPHS IN UNDERGRADUATE
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Dollars

,

demand

by Philip M. Tuchinsky
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supply

Price P

price domain
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,Unit 209: General Equilibrium: A Leontief Economic Mdef.
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ECONOMIC EQUILIBRIUM: SIMPLE LINEAR MODELS

PARTiI: SUP2LY AND DEMAND FOR VSINGLE PRODUCT

-.
'1. Price Equilibrium

A product is "in equilibrium" of "at its equilibrium

price" when supply equals demand for it. This means the

amount of the'product aVailable from,sellers equals the

amount that purchasers want to buy.. (We include any

commodity, service or'manufactured product under the

general umbrella of "products" here.)

Of course, supply and demand are seldom exactly equal,

for any produdt and even .ifachieved, equilibrium Is

momentary. If supply exceeds demand, sellers lower their

prices to attract%buYers; i.e., prices tend to decrease.

-If demand exceeds supply, the buyers who'most want the

product bid up its price, and prices rise in response.
.

It is exactly when supply equals demand that, these:two

opposite economic foi:ces are balanced, leaving the price
at a standstill. Thgt balanced state of opposing for,ces

is exactly the usual meaning of "equilibrlup."

2. The Purpose of This Paper

We will study teve;a1 versions of a Very elementary

.mathematical model of price equilibrium ih this paper.

Hopefully, the eco emit content is clear and interesting,
o NCbut our main goal is m ical. We will discbver that

mathematical economists in: itably find themselves using
linear algebra to express heir ideas. If we went beyond

our simple model to some o ,the multitude of economic
models proposed in rec&nt decades we would find more

advanced mathematical tools in use;. queueing theory,

differpntial/difference equations, time series forecasting,
4

1

linear programming, etc. All of%these use linear algebra

and linearizing methods to achieve. practical results--so

1
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r

--a very simple linear algeSraic introdbCtion to mathematical

economics is appropriate.

Our work here can serve as one instance of an

important phenomenon: linear algebra is a basic tool
uted in virtually all areas of applied mathematics.

3. Assumptions about the Economy

We will assume an economy that is grossly simplified,
from reality, a classic, competitive, capitalistic
economy of theAdam Smith variety. 'Prices are not

controlled by government, buyers or sellers' in this

economy--they fluctuate freely in response to supply and
demand. There are no monopolies, no cartels, no collusion -

among buyers and sellers, Inflation is not modeled; the

entire discussion is in termsof "1967 dollars" or some

other standard monetary unit of purchasing power.

$1.1yers and seller in ,our economy have "perfect

iliformafion." This means that they all knot/ the current

supply, demand and price, as if all buying and selling

were done in one large auction room with all potential

buyers ,and sellerS participating.

4. Supply and Demand depend on Price

Let's 'analyze supply and demand for one product. bLet

, D = current demand for the product (in dollars)

(1) t S = current supply ofthe product (in dollars) bill

P = current price of the product (dollars/item)

We might have expressed D and S as the amounts demanded
an supplied in production-units (boccar- loads, dozens of
eggs, etc.). H6wever, we will want to compare oneiproduct
to. another later, so we'll express D and S in dolears
from the start. Once the current price P is known we

convert the amounts demanded and supplied into dollars to
calculate D and S. (If 4 million dozen eggs are demanded

205 2
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)

at a .wholesale= price of jo.s dollars dozen, we.have a
. .

$2 million demand D for eggs.)

In fact, it is natural tg regard.D and S as functions

of the price P. ) This goes bandin-hand with our assump-

tion of a purely, capitalistic economy of,vatue-conscious

buyers and profit" conscious sellers. (In reality supply

and demand depend on price as well.as such emotional

elements as style, fads, and 'the effects of fantasy-

oriented advertising.)

5. The One-Product Model

The simplest way to make D and S functions of p

is to us$ straight lines. .That is, let's- take as dur

mathematical model

(2)
D = a + bP.

S = c + dP

' where a, b, c, and d are real constants. What can we

say about a, b, c, and d on valitative grounds As the

priceP grows, we expect demand to drop (at a highe

price there are fewer buyers), so slope b < 0.

to

Since

D L'0, we know a > 0. And as P grows, the supply S

grow because more companies find it profitable to make

the product, hence slope d > 0.,.,Figure 1 sketches this

situation and shows c < 0; let's see why. There will be

some price -.of- first - supply Ps (namely, the cost of menu-

faCtur4g) such that no supplier will make the produCt
if P < P

s Thus our's'iraight'line must cross the price

axis at positive Ps and c, its intercept on the vertical

axis, must be negative.

Figure 1 also shows.the price-of-last-demand Pd at

which the dethand linereaches zero: at prices.rP > Pd Ind

one is interested in buying the product. Only non-
.

negative yalues of D and S make economic sense, of course.

1Thus we'll' consider P only in the domain (Ps,Pd), as

shown in Figures 1 and 2.

I

D and S,
Ddtlars

.1

14:

Figure 1.

D and S,
Dollars.

. .

actual domain

Supply and demand lines for one product.
=

equilibrium

ecp

price domain ''

Figure 2. °Che one-prodrt model.
-0
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Equilibrium in the One-Product Model

, The price equilibrium occurs when S = D (supply

equals demand). As thdtsketch shows (Figure 2), there

. is one price P* for which our model predicts equilibrium

(see Exercise 1). The corresponding dollar amounts S*
and D* are also sketched. We can calculate P* by setting
S = D in (2) end solving to get

(3a) a cP* A b
By plugging P*back in for P in either equation of (2)
we also find the &11,1ildium demand/supply level:

(3b) S* D* da be
d b

What have we achieved with this bit o igh:school
algebra? Under the crude assumption that simple eqUations
like (2) hold, we can predict the pri'ce P* a prOTact

should sell at and the amounts S* = D* that people should
make and will buy! Our next goal is to extend this model

to more complicated cases of general equilibrium where
many competing.products are in equilibrium simultaneously.

Exercise le Find P*, D*, S* if the formulas--forsupplfseddese,ifid--

are

D = 22 1.5P

S + 5.25P.

(Ise these three methods:

a. algebraically solve for P*, D*, S.

b. identify a, b, c, and d'and substitute them in (3a,b)

c. graph the lines and read the equilibrium point off

the graph.
4

Exercise 2. Repeat'Exercise 1 for

4 D = 30 4P

S= 6P 2.

S

208

° Exercise 3. Equations (2) with a > 0, b < 0,c > 0 give

linear functions of real P.

a. How do yoll know that these lines meet exactly once'

somewhere in the plane?

b. How do you_know that the point of intersection

(P*,S*) = (P*,D*) satisfies Ps < P* <.Pd and S* > 0,

D* > 0? (This requires an economic argument. Show that

it is nut true based on the mathematical facts alone.)

PART II: THE ANALOGOUS TWO-PRODUCT MODEL

7. Modeling Two Interrelated Products

In a real economy, the supply and demand for a

product depepds on its price and on the prices of other
related produc s (and on other factors). When products

can substitute for each other, this is especially - clear.
For ex e, s large cars have become expensixe to buy
and ope e, people have substituted smAler. cars. It

is logical to think of the supply and demand amounts for
large cars as functions of°both lhige car and shall car
prices. The demand function for cars of....41,zy size might

also depend on the price of labo'r for having t e car
serviced and repaired, the price of gasoline, he'price
of auto parts, etc. It'does not depend on mo t other
prices (like that of perfume) but there are i portant

interrelationships amoung products and, to ma e our

mathematical model more realistic, we should nclude many
of those relationships.

I

As a first step, let's study a two-prod4ct market.

, S1, Pi = demand, supply, price for the first produce
(large cars, say)

'

S
2'

P
2 demand, supply, price for the second product

Put

(4)

(small cars? say). ,

'6
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.

''.

We assume

prices P1,

we assume

(2));

- ,

(5)

. , . .

Di, Si,,iir-27,S2 all 'to be functions oofsthe two

P2 and all are expressed it dollars:,

the simplest functions (compare notation with

'
.

Di al + b11P1 + 1)12'32'

D2 = a2
b21P1 b22P2{

,

7

(6)

and shift to

-D.1

2

S2

the

-

obvious

al

a2

c2

.111 b12

-b21b21 422

d12

d
21

d
22

matrix notation.

1)2

-P1

P 2

Define
.41

si cl + d11P1 + d12P2.,.

=,c2 d21P1 d22P2'

-

The a's, b's, c's and d's are all known real constants.

In the context of our large cars--small cars exatule, we
. ,

can predict the signs of these constants. The demand for

large cars, D1, should be positive, should decrease as . a

and rewrite (6) ps
P
1
increases and should increase as P

2
increases (i.e.,

-
v..

as small carstecome more expensive and hence less '
.

attractive to buyers): Thus a 0, b
11

< 0 b > 6.- (&). . 1 , 12
Similarly, a2 >. 0, b21 > 0, b22 < 0. The supply Si of

large cars should grow as P1 increases and also grow as

P
2
increases (because higher pries for small cars shoujd

shift-demand,to their competitive large cars and hence

stimulate productiop of large cars). Thus c1 < 0 (for

.....__the_vme threshold-of-manufacturing-costs reasopsas
t $before), d11 > 0 and d12 > 0. Similarly, c2 "'0, d21 > 0,

(.9) S = D.
. ,

-L''d
22

> 0. 'c

(7)

=

-D I
.1

S1,
D2 S2 V

D = a.+1)P

S = c dP.
n.

Compare (2). Notice how naturally (2) has been generalized

through-the use of lineal 'algebra. The "supply equals

demand" equations are now S1-- and $2 = D2, i.e.,

'8. The Two-Product Model in'Vector and MatrixNotat,ion

Of course We will set S1 = D1 and S2 =..D2 (supply
. .

'equals clemand) and try to calculate the equilibrium prices

P1 *, P
2
* But that will be easier to dc; after we arrange-

(Si 4s1

/

210 7

.a. ' T.I:

The equilibrium price vector P* =

I
is the value

.

P'*

of P we get by substituting (8) into (9):
.

c + dP* a + bP*.

Elementary matrix algebra leads to ,

(10)' (d-b) P*j= a-c,

.211
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I,

to.

which is a set of linear equations for P*,'We'll assume
thgt the 2 x'2 matrix d - b has an .inverse and,we'll

multiply through by (d-b)-1 from the left:

(11a) P* = (d-b)_r (a-c).

Compare this to (3a): multiplication b©y the'matrix

inverse of d-b here very naturally replaces multiplication

by the reciprocal of scalar d-b there.

*1k

Exercise 4. Finathe equilibrium prices if

1) = 12 - 1.5P- + P
I . 1 2

D2 = 20e+ 2P
1

P2 4

. .T .S1 = -6 + 1.6P1 +, 2P2

by

S
2
= -5 1- 4P

1
+ 5P

2

a. direct caleulatilp from S1 =

b. ' identification of a, b, c, d and substitution in (11a).

9. Equilibrium Supply and Demand in the Two-Product Model
,1

Segkii4 a complete `analogy between_ (3a,b) and the

two- product model', we next sub.i.titu4 P* from (11a) into

the equations for D and S to find D* = S*. We get:

D* = a + b(d-b)
1

(a-c)

S* = c + d(d-b) -1
(a-c).

44

Hmm . . . that doesn't look much like (3b) . . in fact,
, .

.i.t's not so obvious.that D* = S* at all. Has our analogy
dio4-'t a'

e..24.

212
9

I-

Exercise 5. Substitute your P* solution from Exercise 4 into the

equations to calculate D* =

. Of course,' D* anli.S* in (11.b) are equal, a4 we should
.,expect fromthe way woatalcVlated P*.,B-*--and S. A little

matrix algebra will show this:

D* = a + b(d-b)-1(a-c)

= (d-b)(d-b)-1; + b(d-b)-2(a-c)

(because a =_Ia = (d-b) (d-b)-1'al

= d(d-b)-1; - b(d-b)-1:

+ Ii(d-b)
1 '

a b(d-b)
-1

c.

After the.can9eLlation:

Exercise 6., With thiesstart,

S* = c + d(d-b)
-1

(a-c)

'

= + d(d-10-1(g-c),

show that

S* = d(d-b)
-1'"
a - b(d-b)

-1
c

also.

By writing (,3a) rater clumsily as 1

da - be = da be
d -b d-b d- b

d
_1 bia

b
fd _1 bjG

= d(d-b)
-1

a b(d-b)
-1

c,

(12.-)
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we disCover that the analogy between (3b) and' (11b1 is

not dealOt all, but who would ever write (da-bc)/(a -b)
.

in so comelicated a way?!: unfortunately, the liberties
4 we enjoy with scalar arithmeticwe could use any, pf

da-bc
(d-b)

-1
(ad-bc) = (da-bc)(d-b)-1

ad-cb
d-b

among .they formsare simply not*available when b and d

trices andpapc are,vectort, ,,,The main problem is

that matrix multiplication is not commutative.,00-

Exercise 7. Prove that

J°
if and only if db = bd.h

d(d=b)
-1

= (d-b1 Id /)

-Exercise 8. Prove that

b(d-b)
-1

= (d-b) b

if and only, if db = bd.

Ordinarily we must expect that matrices b and d will

not commutecommutative matrices are the'exception and

not the rule in mathematics.

If b and d happen to commute, we would have'

D* = S* = d(d-b)-la b(d-b)-lc

-1
(da-i5c)

as in (3b); but we would be wiser too c6nsider the "natural"

form of (3a) to be (from (12))
.16

" D* =,S* = dl
la

b4 )c,

Only,the commUtativ&ty 1)f multiplication of real numbers

allows a simpler form like (3a).

214

11

-10. Matrix Level vs. Entry Level Calculations

We used exactly thg same steps to calculate P*

(see (3a) and (11a)) from the one- and two-product models.
In the two - product case, all calculations were at matrix
level: we thought of a, c, Pp.)), S, b, d, b-s, (b-d) -1

as, vector and matrix entities; single objects, without

thinking about the individual numbers a..; c., bii,
J

dij,,etc., that make them up. All the calculations in

Sections 8 and 9 ahoge were at matrix level.

qt)

ms

To actually calculate the components Pi* and P2*
of P* in (11a),,however, we mbst calculate the 2 x 2 matrix

inverse of d-b and multiply it by the vector a-c. Such

calculations are at entry level (they use the entries, the

numbers that form the vectors and matrices). This calcu-
lation is quite. a bit more complicated than the single

*4

division needed to compute P* in (3a). The great beauty

and wonder ofqinear algebra .is the extertt to which we

can do useful calculations at matrix level, as if we

had single "numbers" (the matrices and vectors themselves)
to work with. Eventually, we must complete our work

with grubby arithmetic at entry level, however.

. It's to our advantage to seek (at matrix level) a
form of our expression' that is least painful' to work with -

at entry level. For example, we used
Ok

= S* = d(d-b) a - b(d-b) -1
c

to show that D* = S*. If we actually use this to cal-

culate D* = S* we will compute one matrix inverse and k

four matrix multiplications. We don't have to work that

hard:

D * c= S* = a + bkd-b) -1
(a-c)

=.2 d(d-b)-1(a-c)

each involve one matrix inversion followed by only t/9

matrix multiplications.

If , 12
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a.,

PART III: GENERALIZATLON TO n-PRODUCTS Now suppose that products 2, 425 and 7514 (small cars,

motorcycles and rapid transit fares, perhaps) compete .

11. The Model with n-Products with product 1. As their prices rise, product I looks

Why stop with supply and demand functions that 4nd bmore attractive to buyers, so
1,425 a

b1,7514
interrelate two products? Suppose an economy is made up are all positive while the other b

lj
a're'all zero. A

of n products, commodities, services, etc., and let rising price for a competing product tends to increase

the supply of 'product 1, as explained in Part II. Thus-
D Si, = demand, supply, price for thesjth product, d

1,2'
d
1,425

and d
1,7514 will all be positive while the(13) 1' ,

for j = 1, 2, ..., n. other dij are zero.

We still assume that Dj and Sj.,depend linearly on the

prices but we permit any and all toossible interrelation-

sHips by using all the prices in each demand or supply
function:

(14)

D1 = al + b
11

P
1
+ b

12
P
2
+ + b 'P

ln n

D2 = a2 + b21P1 44b22P2 + + b
2n

P
n

D=a +b P +b P + +bP
iv .11 la n2 2 nn n

+ d
11

P
1
+ d

12
P
2
+ + d

ln
P
n

n = c
n
+

1
+ d

n2
B
2
+ + dnnP

n

Please compare this to (5) and (2), which are simply the
special cases n = 2'and n = '1.

For the reasons di9cuaped in Part I, all a. >-0 and
all ci < 0. Most of-the bij,and dij will be zero; they

will be,nonzero only whdh i and j are competing products.

Consider product 1, which might be large cars, for

example' Naturally b11 <0 and dii > 0: as their prices

rise, demand foK large cars decreases.and supply increases.

13

Following the pathway from Equations (5) to (6), we

rewrite (14) using matrix products:

D
1

D
2

_Dn

ra
1 b11 b 12 '" bin'

a
2 b21 b22 b2n

a b
nl

b
n2

b
nn

c1 d11 d12 .: a ln

c
2 d21 d22 "' d2m

c
n

d
nl dn2 d

nn

1

P
2

P

,1

P
2

P
n

Naturally we introduce these vectors and matrices:

P.

D =

_ _
Di

D2

D
n

, S =

1

S
2

S
n
s-

$ P

1

P
2

P
n_

2/6 ; 217
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(16)

and write

a =

(15)

a
1

a2

a
n

,c
2

c
n

compactly:

b=

=

+

b
11

b
12

b° b
21 22

,

bnl bn2

dll

d d
21 ,22

d
n n

...
bin

b
2n

bnn

dln

d
2n

nn

01' ,41114

ak

level effort needed to calcula e (d-b)-1 increases

rapidly as n increases. We would need a computer to

deal with the large n we would want to use in a genuine

economic study.

PART IV: HOW DID WE GET THIS FAR?

13. Makdng'a Start

Let's take on the role of the applied mathematician

who first developed this model. How do we start? What

brainstorms along the way lead to progress and why do

they occur? What have we learned from earlier modeling

work that we put to use here?

- So, we must now imagine that we do not know about

this model. An economist comes to us with a question:

(17)

D 4 a + bP

S= c + dP.

This is an exact copy of (8):

12. &caution of the n-Product Model

The matrix .level calculations that led us from the

two-product model (8) to its soutions (11a,c),are not

limited to 2-vectors and, 2 x2 matrices. One of the

. gieat advantages of matrix level work is that it applies

to n-vectors and n xn matrices for any n. Exactly the'

same reasoning and algebraic operations that led us from

(8) to (lla,c) work On (17) to give' us its equilibrium

solution:.

= (d-b)
.1

--C.* 6- )

lk

(18)
S* d(d-b)-1a

T,Areally calculatei P'*
'

*P
2
*

'

P
n
* and thecomponents

-

of D* and S* does depend on the dimension n: the entry
15

A

218

"Supply, demand and price have these clear intuitive

relationships. Can mathematics help us understand the

relationship more accurately? Can we predict the price

and supply/demand at which a product will/should sell?"

We do some prelidinary reading and thinking and talk with

the economist until we understand the main mechanism:

when supply/demand is in excess, this causes a shift in

the price downwafds /u1wards towards a "fair market value

price" where the forces of supply and demand are in

balance. In that wording, it seems that price is influ-

enced by supply and demand:
3

price = f(supply,demand).

We also turn around the language, however: as the price

increases/decreases, the supply should inorease/decrease

while the demand decreases/increases. This wording

suggests that supply and demand are influenced by price:

supply = g(price) and demand = h(pTice).

As experienCed applied mathitaticians,' we prefer to

work with the latter approach:,,,we have more equations 16

219



www.manaraa.com

4.4

and can easily express supply = demand. Thus we make
tht basic decisions that lead to the model of Part I:
We'll think about the simplest conceivable economy (one
product) by expressing supply and demand s functions
of the price. We hope to writesdown cor rete functions:

S = g(P) and D = h(P)

4
and to solve S = D, a single equation in the one
valuable P:

g(P) - h(P) = 0

for the equilibrium price P*.

The details of Part I now follow when we decide to
make g and h very simple (Equations (2)) as.a first
thort. And we,are successful: we predict I;*, D*, S*
in (3a,b) .,

*14. ,Improving on Our First Effort

The answer to one question leads to the asking of
many more! Here are two reasonable- ones:

A. Can we chodse functions g. and h more

.realistically? How can we know and measure
that.we achieve better realism?

B. Can we include more of the complexity of a

real, interrelated economy in the model?

Both tplestions have received lots of attention from
applied mathematicians.

Since owe can't do many4things at once and'want to
proceed by small steps, we choose arbitrarily to attack
(B): What factorsof a complex economy should we include?
The emotional elements like fads look difficult to get
a handle on. We decide to considel: two competing
produdts: Copying as much of our successful model ion
Part I as 'we can, we decide to make su-gply and demand

17

for both products depend on the two prices and we
specialize to the easiest concrete functions, in (5).

Aha! A mathematical brainstorM--we can write (5)
using matrices as in (6). Our skills with linear algebra
take over introduce the vectors and matrices of (7),
reach the "same" model in (8) that we had in (2), set
supply = demand and use matrix algebra to reach P*, D*,
S* in (lla,c). AlMost nothing is new here: based on
our skills with linear algebra we have transformed the
success of Part I into results for a more complex economy

410
in Part II.

Now the jump to n-products is easy--we follow the
path that linear algebra points out to us, exPanring
two-vectors and 2 x 2 matrices to n-vectors and n x n
matrices. It works again!

15. Hindsight is Perfect

' Now that we have the Model of Part III and see that
'-

the modelt of Parts I and II are just the special cases,
n = 1 and n = 2, we know that'the.n-product model (17)
and its solutions (18) are what we were'after when we
began! We didn't know then'that matrix inverses would
be involved or that we would find 200 interrelated
products just as easy to handle (at matrix 1.del, anyway)
as 20, or 2,000, but now that all seems clear, natural
and inevitable!

PART V: TWO ECONOMIC INSIGHTS FROM THE MODEL
eo

16, Total Demand

In the one-product model (2):

D i= a + bP S =c + dP

we might call a the total demand because it is the amount
'

la
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of demand if the product were free(1).= 0) and thus

the largest conceivable demand.

Suppose the total demand shifts in otir economy from

a to a+Aa, i.e.; thp economy grows and is able to absorb

.more of our product. The shift in -total demand causes

a shift in the equilibrium price'from (see (3a)

P*
a-c

d
a+Aa

b

)-c
. Thus the resultingTT -,

change in equilibrium price is

AP*
(a+Aa)-c a-c Aa

d -b' a7F UTE'

This change is positive when Aa > 0, as we should expect:,

a larger total demand implies larger demand at any price

level and thus upward pressure on prices. Our model

agrees with economic common sense. 4ut it lends quantita-:

tive detail to that common sense, too: we have predicted

the amount of the price increase. Common sense alone

does not do that.

Exercise 9. In the two-product model, let. the total demand change
4

from

causing an equilibrium

AP *.

11 [44:

2

1

2

],

rom P* to P.* + 4*. Calculate

Exercise 10. Repeat raise 9 for the n-product model.

Exercise 11. In the one-product model: as the total demand a

changes to a +.Pa there is a change in the equilibrium price, as

we've analyzed above. There is also a change in the equilibrium

supply demandlevel from 9* = D* fo + AS* = D* + AD*. -Starting

with (3b)

we have

E* = D* =
da - bc
d - b '

222
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1

S* + AS* = D* + AD* =
d(a+Aa)-bc

d-b

8alculate AS* = AD*. Explain why its sign is reasonable, based on

economic good sense.

Exercise 12. Repeat Exercise 11 for

a. the two-product model

b. the n-product model.

17. Free Supply

Again, in (2),

D = a + bP, S = c + dP

we c -en -call c the 'free supply or supply in nature because

it is the supply when P = _0. For most products or

commodities, c > 0 makes no sense because no product can

economic illy be given away for free. 'However, in many

places oil American frontier ?'n the 1800's, fresh water

was a free commodity in 'plen;iful supply; until redently,

road maps were given away fret by gas station owners.

Suppose a product has a free supply c and this

supply changes to c + Ac., This causes a change in the

equilibrium price of the product from P*
.

= (a-c)/(d-b) to ff%

,

a-(c+Ac).
thus AP* = -

Ac
rg.

4

The sign of AP* again corresponds to economic intuition:

as the free supply increases,(Aq > 0), the demand, the

amount of the product people Vint, buy,4ould decrease

(since more of the product is supplied free) and thus

its'price should decrease: AP* < 0.' As with total

demand,, we are able to predict the amount of the price

drop.,

ig,
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Exercise 13. Repeat the free supply discussion for the two-product
s model:- what change AP* in equilibril price occurs when the free

supply changes from c to c + Ac?

4

Exercise 14. Repeat Exercise 13 for die. n-Rroduct model.

Exercise 15. As the free supply c changeg'to c + Act the equilibrium

price changes by AP* (above) and the'equilibrium amount changes from

S* - D* to S* +°AS* = D* + AD*. Calculate AS* = QD* for

a. the one-product model

b. thik two - product model

c. the n-product model.

PART VI: ARE LINEAR FUNCTIONS CRUCIAL TO THE MODEL?'

N.1
18. . A Job for Taylor's Theorem

Of course; it is unrealistic to take supply and
demand as linear functions of a product's price and the
prices of, its competitors. Yet all our use of linear

algebra--our whole ability to. calculate equilibrium
pricesseen to depend on having such linear functions.
How can we resolve this dilemma?

First of all, in the one-product model, how might
'more realistic functions D(P)imkn(P) look? Since the
supply increases and demand 'decreases as prides rite,
we take curves with the 'appropriate monotonicity for
D(P) and S(P). When we put such curves (choosing them,
as'a first exarupld, to be continuous and differentiable)
into Figure 2:14e arrive at Figu're 3. Both curves have
[Ps,Pdf as domain, as in Sectio S. From Figure 3 it,'
is clear, that there' is still a un que equilibrium pace

1""Ps'Pd]'

af we needed to

price domain (Ps,Pdl, we woul

now_S and a for all P in the full
,

be stuck with these
21

2,24 f-)

S* = 1)*

D and S,

Dollars

a

demand

.6

equilibrium

--,

supply

Price P

price domain

I -Figure 3. Smooth' nonlinear suppy and demand functions.
6

nonlinear curves D(P) and S(P). But recall our go4l:
we .want to calculate P*, so we only have to think about
values of P close to P'-*-7.,Probably we know (or'can guess
Qn economic grounds) /14 price Po that is fairly close-to
P*. We could'replaceD(P) by the'tangent line to D(P)
at P0, getting

e

B(P) 4D(P0).+ D'(P0)(P-P0)

= (D(P0 n PoD'(Po)f + DI(P0)P.
ft

We have written D(P) as a +.1DT above, with constants-5r---."

and b that we can calculate once we know P and D(P)-.
Recall that D,(P) ii'a close approximation to D(P4 for P
close to PoL

-We can similatly-take the tungen

S(P,' = S(P0) + S'(P0)(P-P0),

(19)

(20)

ine at P
0

to '$(P), ,
,

= (S(P,0).- 5S'(30)] + 5`'(p0)P

a

225. -
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as a close approximation to S(P) for P near P0.

4 shows these two tangent lines.

D and S,

:Dollars

Figure 4.
curves.

4

0111o

Tangent lines approximate the supply and demand

Equations (19),(20) are a linearized version of the

-nonlinear one-product model. These equations are exactly

(2), with ,

-

a = D(P0) - PolP(P0)5

c = S(P0) - PoS1(P0)

When we solve
.

linearizet equations

b = Di(P0)

d
1(1)0)*

for-the `price equilibrium of the approximate

we get.

S(p0)-D(P0)

P1 PO S.1(P0).7D'(P0)'

This is of,course the price where

in Figure 4, and P1 11-13*.

226

the tangent -lines cross

23

.

Exercise 16. Substitute a, b, c, d above into (3a) and thus derive

(21). Also calculate, from (3b),

S'OWD(12

S,)-01(P

)S(P )
0

0

0
6(P1) = S(Y1) 4 u u'(P

0
)-D'(P )

Exercise 17. (For readers who know Newton's Method of approximately.

solving f(x) 0 for a root x given an iniqal guess x
0

close to the

root.)

Equation (21) clearly has a relationship to Newton's Method.
;

What is that relationship? Wliat function f is involved?

Figure 4 suggests that P
1

is .better approximation

of P* than our initial approximation Po was. Theory (we

omit' it here)

close to P.

P
1

as our new

tangent lines

calculate P2.

proves this true if Po is sufficiently

We can of course repeat the process: taking

guess, we write down equations of the

to D(P) and S(P) at P1 and use them to

Aftgr a few rounds of this, we will get a

very good approximation of P. The method does generaliie

to Multi-product cases.

So, when D(P) and S(P) are smooth functions of the

price, with more work we can still approximate P* (and

thus, D* = S*),closely. .The crucial assumption about D

and S seems now to be that they-change smoothly as ''.P

changes. It is not crucial that they be linear.

19. Discontinuous Supply and Demand Curves

And is it realistic to expect that supply and demand

curves will be smooth? Unfortunately, no. The supply

curve, especially, may have jump discontinuities, as

shown in Figure 5. ,

For there will be threshold values of P (such as P
a

becomes economical to open a new

shift on an assembly line, causing
24

and P
b

shown) where it

factory or put another

227
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D and S,
Dollars

D(P)

A

Figure 5. A discontinuous supply curve.

D and S,
Dollars

S(P)

D(P)

1

1

Ps

1

1

1

J

1

Price P
110P

a
P
b

Pd

V
Figure'6. A more difficult case of ismooih supply --anti demand.
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I

supply to jump dramatically: However, in this example,

the equilibrium we seek happens to fall in a part of the

price domain, namely (PapPb], where both S(P) and 1(P)
are smooth; we chn apply bur methods after restricting
the 'pfice domain to (Pa,PbI. We can draw other examples,

like Figure6, where the method doe not apply.

PART VII: SOLUTIONS TO EXERCISES

1. P* - 4 dollars/item, S* = D* =46 dollars.

2. = 3.2 dollars/item, S* = D* = 17.2 dollars.

3. a. In a plane, two straight lines with unequal slopes always

have exactly one intersection. The slopes here are b< 0

and d > 0.

b. Twq lines with a > 0, b < 0, c < 0, d > 0 yet S*= D* < 0

can be easily drawn:

on economic grounds, if there is any market for a product,

its.demand must"be positive at P = Ps, the minimal price.

In that case

D(Pl.= a + bP
s

> 0

S(Ps) = c + dP = 0

P
d' d ad 2 bc > 0..=t> - a -

c
> O p 4*

26
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Since d-b > 0 we have S* = D* = lEtS 7 0 from (3b). Since D* > 0 we
I

havel*r.<4.!, .Pd and S* > 0 implies p* > Ps. i',
7,

:.

4,5. P * '= [25 5], S*7= D* = [2;7.5]. rl
. t

12. From (llc) we have

This I Is the same sign as Aa, as we should expect: when total

dema d goes up (Aa > 0), there is naturally an increased demand

at 11 price levels, including price P*.

6. S* = c + d(d-b)
-1

(a-c)

= (d-b)(d-b)-1C + d(d-b)-1(a-c)

-1 -1' -1' -1'
= d(d-b) c-- b(d-b) c + dZd-b) a - d(d-b) c

'
= d(d-b)

-1a
- b(d-b),

-1
c.

7. d(d-b)
-1

= (d-b)
-1

d

,

-1'4> (d-b) [d(d-b)-3](d-b) (a-b) [(d-b) d] (d-b).

4> (d-b)d = d(d-b)

t> d
2
- bd = d

2
- db

4> bd = db.

8. Handle as in solution to 7, above..

41
1,010. The supply equals demand equation is

Since

a + Aa + b(P* +.AP*) = c * d(P + AP*)
4

P* 1-'AP* = (d- b) -1(a + Aa - c).

P* = (d-b)(a-c),

P* = (d-b) Aa.

11. AS* = AD* = (S* + AS*) - S*

d(a+Aa)-bc' da-bc dAa
d-b d-b

230)

at

27

r'N

S* + AS* = (D* + AD*)

--"'
= d(d-b)

-1
(a+Aa) - b(d-b) c

'
and S* = D* = d(d-b)

-1
a -yd-b)

-1
c.

Subtraction gives

AS* ; XD* = d(d-b)-1Aa.

13, Equating supply and demand we_get
14.

+ b(P* + AP*) = c + Ac + d(P* + AP)

P* 4 AP* = (d-b) (a Ac).

Since P* = (d -b) -1(a -c),

AP* -b) -1Ac.

15. From (llc),

S* + AS* = D* + AP*

while /

Thus
.

AS* = 5D* = -b(d-b)
-1-'

Ac.

This may be applied for 1, 2 or n.

subtraction gives

---
=$d(d-b) - b(d-b)

-1
(c+Ac)

S* = D* = gd-b) a - b(d-b)
-1-'-

c.

.16

231 te.
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17. We really want to solve S(P) = D(P), i.e.,

S(P) D(P) = 0,

for P. Thus f is the supply function minus the demand

function and the usual Newton's Method forimula

x = x -
1 0 r(x)

f (x)

is exactly (21).

232
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STUDENT FORM 1
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Return to:
EDC/UMAI

55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out 'this form and take it to your instructor for assistance. The information
you give willehelp the author to revise the unit.

Your Name
Unit N

Page

1.11313cr

()Middle

Q Lower

OR
Section

.

Paragraph.

Description of Difficulty: (Please be specific).

OR

Model Exam
'Problem No..,

Text
Problem No.

Instructor: -Please indicate your resolution of the difficulty in this box.

(2)Corrected errors in material's. List corrections here:

Gave student better explanation, example, or procedute than in unit.
Give brief outline of your addition here:

Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

A
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Return el):
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55 Chapel St. .

Newton, MA 02160

Check the .121)!.ce for each question that comes closest to your personal opinion.

1. How:useful was the amOunt'Of detail in the unit?

,Not enough detail to understand the unit
Unit would have been clearer with moreAdetail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
'Too much detail; I was often distracted

.2. /kow helpful "were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
'Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructo;t friends, or other books) in order to understand the unit?

'A Lot Somewhat A Little Nat at all '

4. How long was this
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Much
Longer
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1. INTRODUCTION T.

With his famous 1941 book (31, Professor Wassify

Leontief began the study of the economy as.an input-output

system. For this work, he received the Nobel Prize in

Economics in 1973.

His method has been applied in more than fifty

natibns and international agencies as a predictive tool

for economic planning. In Section 5 we will discuss the

uses and shortcomings 9f the method; first, let's examine

it in some detail.
-

1.1 One-Product Companies as Input-Output Machines

Imagine an economy made up bf companies that each,

make one product. (We can, at least in,theory, mentally

split up a multi-product company tb satisfy this.) The

manufacture of one, unit of the product requires g known N

recipe of input products, commodities And services. For

example, the manufacture of a ton of writing paper re- .

quires specific amounts of wood fib,r, recyclable paper,.

water, capital investment in the form of machiiery, labor,

electricity, etc. A-paper-Making company can tie thought

of as,an "input-output machine" that conyerts' arecip

of inputs into a uJIit outbut many times a day.
.

will think of all the companies in this way, each with

.its own recipe for making its one product.
"

1.2 Consumers 'and Conihnies 'Bor*Til"-a COMplex ,Econc10
e 4 ;

The companies' are elaborately intetitIatath, Whe

output of a steel company' is an input to a.vistAiiiipe

Of other companies whiCh make autos: applianceh steef!'

nutsand bolts, steel alloys, and the thousands of'ottipr,

steel-using products. The output of a textile manufac

turer is a input to the manufacture of cloAing:uphol.

stered f

direc

niture rpet, etc., and cloth is also sold

to the Oh ic. We draw a distinction between

companies (which convert a product into other products

230

. so that the dnput products are not really consumed but

are "replaced" on the market by the output products)

and the public, considefed as the "final consumers" of

finished goods. The amount of a.Ooduct demanded by the

public is the "final demand" for that product; suppliers

(companies) must satisfy,that final demand in addition

to providing input matefials to other companies.' For

some products (like steel), Linardemand is almost zero,

while for others (like blenders), final demand is a very

large fraction of the tot demand.,

- 1.3 The Problem: To Balanc upply and Demand

A sensible economic questipn: how much ofeach pro-
f
duct should be produced to closely satisfy the total demand

for the product by all users? That is, how can we match

, outputs to inputs throughout an elaborately interconnected

. economy?" To answer 'this guestionois-lo find a "generp

equilibrium" (as economy' ay); that is, we seek the

production amount for ea, ood that will simultaneously

make supply equal demand for them all.

Leonti'ef applied linear algebra to this problem.

We'll look at his simplest model in this paper. From a

kn9wledge of the final demand f f each product (that is,

the market basket of all goods th t the public is to buy),

, we can calculate the production a ounts that will supply

, that final demand. Some restrict ve economic assumptions

are involved.

2. LEONTIEF'S MODEL
.

2Pf Notation for Production andFinal Demand Levels

We will look At an economy made up of'n companies,

each creating one product, commodity or service from a
* Y

filed recipe of input "ingredients.." We assume that

P
..prices are constant and known for each produc t; we will

'441/..:that the ith company makes x
i
dollars worth of

woducZ. Let di dollars of this be the "final demand"
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(sales

.

to households) of pibduct i while the rest of xi
is used as inputs by, other companies. We take the di,
as known (thus assuming at there is some known mix of

yproducts that the public is ready to buy) and hope to,.

i
icalculatethexvalues needed to produce a "final demand

vector" (d1, d2...idn) containing the desired final
amounts of all the products..Xhis

vector is really just
the total public "market basket" of all products con--
sumed, in dollar amounts.

2.2 Leontief's Input-Output Coefficients

Next, we need o express the recipe that4lie ith

company converts in o one dolar's worth of its output.
'(That recipe, multiplied through by xi, will yield xi

thdollars of output for the i company. This is an
assumption called "constant returns to scale;" more about
itlater.)Letaijbe the dollar amount of'product i
that-is used to make one dollar's worth of product j.
Thus a47 = .23 would mean that, to make a dollar's worth
of product 7, we use 23* worth of product 4. The full
mix of Prodcts 1, 2, 3, ...,n used to make one dollar's
worth of product j is aij dtllars of product 1, a2j of
product 2, These numbers form the
j
th

column of the matrix A = ,(aij). Since less than a
dollar's worth of inputs are used in making a dollar's
worth,of the output (or company 5 would be out of busi-
ness), we know that

110101.

a
ij

< 1 and of course a > 0.
1=1 ij

Thus. the columns of A have sums of less than one. (The
rows of A have no coMparable economic interpretation.)

2.3 Concise Summary of the Notation

For i and j, each running

x.
d

i

= total dollars produced of product 1,

= total' dollars worth of product 1 that is sumed
by households = "final demand ".

= amount in dollars of product 1 used in making one
dollar's worth of product j,

241
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2.4 Equating Supply and Demand

The,supply of.prol,V i will be xi dollars. The
demand for product i w ill be'di dollars of final demand,
plus ailxi dollars (of product i) used in making the
x
1 dollars of product 1,--plus a

i2
x
2 dollars (of product i)

used in making x2 dollars of product 2, and so on. The
"supply equals demand" equation for product i is '

(2) x. = a
il
x
1
+a

12
x
2
+ ... +a x + d

in n 1

We have such an equation for each i.= 1,2,...,n, thus
n equations in all. Our goal, once again, is to calculate
all the xi from given di and known technological constants
aij. The model. provides for the use of each product as

)an input to every other product including,ttself; of/
course, many of the a

ij
will be zero.

2.5 The Model 1n Matrix Notation

We are ready to switch to matrix notation: put

(3) .

'di

d
2

do

all a
1?

. . .

a21
a

2 22

ant
6
n2

. . . a
nn

Then the n equations of (2) may be compactly written

(4) x
A

= Ax
A
+ d
ki

( 5 )

Or

O ', A)--Ix a d .

The problem is now almost solved. In (5), we know the
nxn matrix I - A and the n-vector J.: Then (5) .is simply

a set of n non - homogenous linear. equations with the

wanted xi as the unknowns. '

2.6 Solving for the Production Levels

You recall that a, set of equations like (5) may
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have no solution, exactly one solution,-or infinitely

many solutions. In our case; although we will not prove

it, 'there must be exactly one solution. In fact (I - A)
-1

must exist for our given matrix A. (This is true for any

matrix where a.,
ii

> 0 and the column sums satisfy
-- -.

Ei a. < 1.) We may use the inverse,to solve for
ij ,

. P

( 6)'. x
_.%

a/ t
,

(I- A)-1 , di
V', 411I

'

X

We have achieved our goal': to produce a market

of final consumer goods, we should ,p4oduce the

x given in (6).
#

Two questions arise at once. Oni is

the consu afford to pay fur the slarlvet

sumers u wally pay for goods and services

in (5):,

basket t

amolSnts

.

economic: can

basket a? Core-

by .exchatiging

/ their labor. Can we fit the cost of labo.r.into the model,

whet-1,e has not been mentioned so far? -We'll discuss

thiscn Section 4'

The other question 'is mathematical: in (6) ye are

askedto calculate (J A)-1 for.a matrix that may well

be SOO x SOb or even 10,000 x 10,.,000: we mustinclude

many companies to treat the economy wit any realism. Is

there some way to calculate (I,- A)I 1 easily? See

Section 3.

2.7 Exercises

1. Although we have considered individual companies laking specific

products like stoves; the'model can 'be applied to broadly-drawn

sectors of an economy. TA "two- company" fictional exampleis

taken from 181, page 61; In hundreds of 6illion's of dollars;

-let'the flow be:

CONSUMPTION

+FROM/TO 4

Agriculture
Manufacturin

Households

Total

AGR1CULT.

g

MFG.' HO.

4 6, 10

'8
18 4

8 . 6 6

20 30 20

243

TOTAL

-20

30

20 t.

10

This array should be read as follows: there is a total fl9w

of 70 (hundred-billiondollars) among two "companies," agri-

culture and manufacturing, and onp "open sector," households.

Agriculture uses 4 units of itsown production, 8 units of
o

manufacturing production (fer tilizer, machines, etc.) and 8
a

units of household production (labor), 20 units in all, to

produce 20 units whichbre distributed as follows: 4 to agri-

culture, 6-tompufaCtuPing, 10 to households. The input of Y

6 units of blsehold production (labor) to household consumption

is domestic labor -- the labor of housewives, for example.

The data above is not the Leontief input output array we have

studied, butillNe Can calculate the Leontief matrix from it

440 easily. The recipe of inputs to agriculture is 4/20 from

agriculture and 8/20 from manufacturing. The recipe of inputs.

to'the manufacturing sector is 6/30 from agriculture and 18/30

from manufacturing. Thus the technical matrix and final

demand vector are

4

A = (181//;(0)
1/3360] (.121 .26]

and t =
(11

a. /'Using the A and d just above, hand-calculate the solution

x of the set of linear equations

' (I - A)x' d

1_,.b. Calculate (I - A) and then find f:again fr:om x = (I - A) d.

c. *How could you have predicted your answer to a. aJ d b.

from the table in the exeCtise?

(Continued in Exercise 5.)

2.: in this exe rcise, alter Exercise 1. so that agriculture,

,manufacturing and households are the three sectors or "companies"

involved, while savings is the open sector. Each "company"

produces its product (which is still labor in the case of the-

households) so as to supply the other two companies and create

a'fInal product called investment, while invested funds, called`

savings, are inpmiked only to the household sector (say, to

build houses. This example, again in hundreds of billions of

dollars, is 'from 181, page 182:
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, +FROM / TO 4'

CONSUMPTION

AGRICULT. MFG. HO. INVESTMENT TOTAL

Agriculture
Manufacturing

4

8

6

18
3

1

* 7

3

20

30
Households 8 ` 6 4 2 20

Savings 0 0 17 0 0 12

Total 20 30 .20 12 82

Convert this data into a 3-company Leohtief model by f.indine

A and d by the method explained in Exercise 1.

b. Predict g from the table above without any use of the

leontief model.
e

c. Solve (I A); = CI for ..;C: Show your calculations'tn4etall,

0airtaate-iI A) -1 -anct:ttretr-get-X -from x

Show your,calculations.1

Answers to b, c, d shoUld alt by the same. Thig exercise is

ccptinued In Exercise .6.

,3./ An

3. HOW TO CALCULATE- (I

Old AcquaintariCe Returns

-
A)

1
EASILY

There is an elegant way to calculate (I-A) -1
.

In the back of your mind, you should think of the matrix

single number (say a) 'and of I

Then (I -A) -1 becomes analogous to

.
and

4-a 1--
should make you think of" -- geometric serie,p!7-You recall

the geometric series fOrmula '

(7)

For our matrix.A, a0e.mondilionsai. > 0

1" take the place of I al < 1 and

A as thcligh it were a

as though it were 1.

1 + a + a2 t a3 + (if 4a1 < 1).

and "column sums

it is true thatE.1
17

.

(8) I.+ A + A21. + A30+ = (1 - A)-1,

a complete analogy to (7)...

3,2 How the SeTiesAids Calculation of (IA)-1

We'll consider a plausibility argument

shortly (an ironclad proofisjust a little

-245

for (8)

beyond the
(

.7-

I

1 .

intended level of this paper because it requires "matrix

norms "), but first let's see the usefulness of (8). If

A4, A5, A6 and all the higher power terms are "negligibly
°small," then the 4-term partial- sum I + As+ A 2

+ A 3
is a

goad approximation of the hard-to-compute matrix inverse
(r-A)

1
needed for (6)': (The inverse is nasty to compute:

think of the methods of matrix-inversion you know and

Consider applying them to a 30 x 30 or 2000*x 2000 xatrix

I-A.) In fact, a partial sum of quite a few terms

from (8) is cheap and convenient to compute by comparison

to direct computation of (I-A)-1.

:

3.3\ An Example*

calculation

so that I -A =

goese put

.9 -.2 '-:1

0 .8

-.2 0

0

.9

and,

Just

A =

to four

to see how the

.2 .1

.2 00

.2 0 %1

decimal places,

(I-A)-1 0

.2532

1.1392 .2848
1.25

.0633 1

.1266
0

.1392

You shoUilcheck all the calculations here. Use an

electronic

of the geometric

I+A =

calculator. Let's

series:

1.1 .2 .1
0 1.2 0

look at some partial sums

.2 0 1.1

..03 .06 .02 1.13 :26° .171

A
2

. 0 .04 0 thqs,I+A+A
2
= 0 1.24 o

.04 .04 .03 ' - .24 .04 14.13

.007 .018 /0005 = 1.137 .278 .125

A3 = 0 .008 0 thus I+A+A
2
+A

3
= 0 1.248 0

.010 .016 .007 .25 .0'56 1.137

.0017, .005 .0012

A
4..

0 .0016 0 r thus

.0024 :0052 .0017

I +OA
2
+A

3
+A4 =

E1.1387

0

.2524 .

246

.283

1.2496

.0612

.1262
0

1.1387

1
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This five-term partial sum'is convincingly close to
(I-A)

-1
. This example was fabricated so that the

/ series would converge within a few terms: entries like
.1 and .2 bec..mm.e_ rapidly smaller when multiplied by one '

anothe,in matrix products. However, in a large matrix A
the eak'ies would mostly be small and many would he zero.
Remember, all al. are > 0 and the column sums are less
than one. The geometric series is a practical way to
approximate. (I-A) -1

.

3.4'' Why Geometric Series Extends'to Matrix Cases

A plansibility argument for the truth of (8) was
promised. This matrix calculation closely mimics the
usual proof of the scalar case (7): notice that, for
any finite partial sum,

(9) (I + A + A2 + + Ak'l) (I -A) -I - Ak.

All 9ther`term cancel out. For matrices like' our A
with smalrpOsitive entries, the powers A k approach the
zero n x n matrix 0 as k increases, because products '

of small%positive numbers get smaller. To say
lim A

k
= 0

means that all n 2
of the matrix entries approach

as.k increases, and this is true 'for the matrices we'
are studying. Now let +co in (9):

(I+ A + A2 + A3 + ...)(l- A) =I- 0 = I.

But this exactly says that ,(I-A) -1
= I + A + A2 + A

3,S (I-A)-1.Will Have Nonnegative Entries

From (8) we can conclude that all the entries of
(I-A)-1 will be > 0. (This means that'negative production
levels xy cannot arise in (6), which comforting: we
would throw away a model that, failed to yielld all the
x. > 0.) To see that (I-A) :1

cannot have negative entries,
simply recall that a.. > 0 for all i,j. Thus I, A, A 2

,13

'14

A
3

, A
4

... all contain entries that are > 0 (think about

247 9

11,

3c

./1

the multiplication A-A = A-,.and so on.) Then their sum
I + A + A + (I-A)-1 'als.o has non negative entries.

3.6 Exercises '

.6 .4

.4)

1
3. Using A =

(.3

a. show that (I - A)-1
5/2 10/31

.

b. Write and run a'short computer program that calculates and

p r i n t s I
A 2

etc. Print part;a1 sums until you have (1(- A)-1 well

approximated. This will take quite "few Items.

c. How many terms must you include in the partial sum in b.

before you have approximated (I - A)-1'within .5 in each
. entry? Within .05? Within .005?

.

4. Verify the matrix calculatio,9,..ln (5). State each law of Matrix

clgebra you use (e.g., the "left di'stributiye. law").

15. (Exercise 1, continued) Foethe matrix'A and demand vector d
of Exercise 1, calculate fly computer successive approximate

solutions

(I + A)

(I + A + A2) CI

(I + A + A2 + A3) a

etc.

These will converge slowly to your solution x in Exercise 1.$,,
6 (Exercise 2, continued) For the matrix A and'demand vector

' d of Exercise 2, Calculate
successive approxiMations of x by

using partial sums of the series for (I A)
-1

.

4. MODELING LABOR IN LEONTIEF'S ECONOMY

4.1 The Value of-Labor

Now let's turn to the economic question we raised in
Section .2.6: can the public contribute enough labor to
the economy to pay for thefinal-demand market basket d
it'has ordered? It'is easy to calculate the value of
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labor in,our economic model. To'make one dollar's worth
jth
.

of the 3 product, we recall involves a,1 . dollars of
3

product 1, a2j dollars of product 2, ...,.and anj dollars

of product n; in all the dollar's worth of product j
contains

alj a2i + anj < 1

dollars worth of input materials made by the n companies.

The maximum amoit that can be paid for labor is

a
03

= 1 - a..tj
i=1

. 14'
f

The proof involves more matrix algebra, First, no-,_

tice tpat,"by inttoducing an n-vector contain4ng'all,ones,
-., ,

u = (1,1,1,...,1)
1:.

we can write the right side as a

d
1

+d
2

+ dn =,(1,1,. .,1)

1

1Now we can write the n equations

matrix

d

d
2

dnJ

of

prodgtf
/ .1.,

= u

.

(10) cOmpaOtly als

dollars per dollar's worth of product j that is manufactured.

The new constant a . (for j 1, 2, n) are labor's

Maximal slide of the/pie. When x dollars of product j

are made,,labox receives aojxj dollars in pay. Thus the

total economy-wide earnings of labor are at most

n

jEl
ao, xi = (a01' a02, a03' "" aft) x

1

.2

3

xn

0 (a01, a02, a0n)''
Here a denotes the row-vector (a

4.2 Labor's Earnings and Consumption are Equal

The total worth of the final demarikOvector'd is

d
1
+ d

2
+ + d

n dollars. Thus the final demand vector

is feasib/0((can be paid for by the public) if

(12) a
0

x > d.+ d
2

+ . dn
1

AP
.

We will now prove that equality must \told in (12),

a0 x = di + d2 + + dn., if we use production levels

x calculated from the Leontief model,from (6), and pay

labor its.maximal earnings, the aoj from (10). We will

be proving that labor's earnings exactly payfor the

"market basket" that households consume. This turns

out to be true because we have build
-
"conservation of

value" into the model: the value of output is equal'to

the value of input products and labor if we use (10).

11

(13) (a01,a02,...00n) (1,1.7.,1) - (1,1,1,...,1) A = u (I-A) t
/1The_(1,1,...,1) A term here gives the dolumn gums that ,

'appear in (10). Now
/s

( 1 ) a0 x = (a01,. ,a0n) x-
=, u (I- A) lz

1.1
(I -A) il:T) 1

cancels .

4,= u,' C c1 f 4* d; + + d
n
- " t

5. ABOUT THE MODELAND iTS USES

5.1 Open. SndClesed Leontief.aconomiet
,

.

.

The, model we bave.looked at is knoWn as Leon ef's

open model because of the eprate-treatment of ompanie

and public. In a closed' model, 'theepublfc (or abor

force or households) istreated as one more ompany to
,

-which the k2put recipe is the market-basket dtwhile the

output is the tabor rngredient in the input recipe elf mope
,

traditional companies. As we have-just seen, 44re ditalar- ."

worth of inputs to the household sector Will equal the

dollar-worth of its output (labor) in the same way that-

the inputs of-goods and labor /(o a manufIcturer equal

the value of its output. The open and Lased models are

equivalent. The distinc,tion between "final consumption

goods" in our open modei and inputs that the household

/20
12

'/
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sector "processes" into an outp'ut product canoed labor

in a closed ilioderis of economic,interest, but makes no

mathematical difference:

5.2 Profit and Savings Have Been Included

We have emphasized so strongly the equal value of

the inputs and outputs of each company that you may

wonder how a company can make any profit. In fact,

profit is one of the input ingredients to'each company.

One of the products or commodities that flows through

the economy we have modeled is money: The paper manu-

facturer mentioned at the beginning.of this paper
really receives a few pennies of money along with the
physical inputs (like wood

North

and labor-tiMe in
exchange for the dollar's '4,orth of output (paper) made
froM these inputs. The public receives some money as

'part of its market'basket -- this is "avings. Money
is simply one of the n 'products "manufactuied" by n com-
pariips: one company in this economy is a,commercial bank

Certainly the role played by money is unrealistically,

simplified -- we have not built an investment or credit
..sCructure into -the model. That can be done, however.

This model is only concerned with tile Complex

_fl of goods among the companies and consumer/labor sec
to of the economy. No risk is modeled.-- each compan'
knows how much of its product it can sell to the public;
prices do not change. We are modeling the distribution

process of the economy, n9t'Its other aspects, ,

5.3 Using Lineay,Aliebra in Economics -- Benefits
and Difficulties

0

. -- Leontief hSs chosen linear algebra as his' mathematie. -

cal tool. He benefits from that -- to find x in terms

we-simplysolve a-llarte-set-of-Tinear equatiens,
which we know how to do. The great contribution

t

of

Leontief's models is that they permit actual calculation
of-general equilibria in terms of input data (the tech-
arological constants

17
3

and final demands d.) which we

25.1

z

13 'p"

s

can hOpe to actually know. Other models that attempt

to equate supply and demand (i.e., to study general equi-

librium) tend to

l
)e so theoretical that no useful numbers

__can be calculated from them; one can instead use them-to

prove that one or more general equilibria must exist!

In fact, several Leontief models have been fully researched
and are in use as planning delfices.

.

.

But there is a price paid for the use of linear al:

gebra; the models are subject to a key criticism. We

have assumed "constant returns to scale," as economists
say. This means that, if a specific recipe of inputs ;

makes one dollar''s worth of output for a.given company.
then N copies of that recipe will make exactlyN dollar's
worth of output. In'reality, companies can redUce the

cost-per-unit-produced by enlarging their production.

For example, once an assembly line has been purchased and
installed, it can be used for one, two or three eight-hour
shifty daills. When used for three shifts, the capital

investment in themachinery is spread over three times
more output than is the case If Tne shift is used. The
input-of capital to any one unit of production is much
less when the machines are used to capacity. (There are
extra exiienses involved in running machinery a'roupd the
clock -- repair and mdintenance expenses, extra pay for
nightwork done on ig4ht shift, etc. -- but these expenses are
easily ot,ercome hy the three-to. ne savings.) It is

generally less costly (per unit of produCtion),to.mass-
, produce more of any itroduct than less; that is, there-are
"economies of scale." This phenomenon is an important
reason for the clear tendency toward large corporations in
our economy.

. Linear equations like (5) cannot deal with economie40s
of scale. Inde'ed, doubling d'in (5) leads to a new 'solu,
tion x that is double the old x o "Constant returns to
scale" isan inevitable assumption if linear algebya's
calculation advantages are to be exploited,

25 14-
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4

Theuseofconstanttechnologicalciata,theaihas
j,

also been widely criticized. The input-output process in

each company is excessively rigid in the model. In reality,

a furniture manufacturer might very casually switch from

one upholstery cloth to another. However, that amounts

to creating a whole new economy in our model! The recipe

for the furnitur04 maker must be alteree.(changing a column

of A) and new production levels must be calculated for all

companies. This is another prize for the use of linear

algebra -- all the companies are rigidly interconnected.

5.4 The Model is Widely Used as a Planning Aid

When a nation, a region or a city needs to know

theimpact that alter ative development projects -- a

steel mill, a cultural center, an auto assembly line, a food

processing plant -- will have if built, input-output

analysis is of great help. The model can predict the flow

of.goods and services, including transportation needs,

new employment and pollution problems (such factors may be

added to the model we haye discussed) and point to serious

Alaortfalls or Oversupplies in tie current economy. ,Its

answers are only approximate, of course, but the, -give

crucial insight into a very complex problem.

The United Nations and e World Bank use Leontief

models. The Bureau of Labor atistics of to U.S. fed-

eral government hgs been a ma %r sponsor of Leontief's re-

search and employs a massiv odel of the U.S. economy.

Government agencies of mo than fifty other countries,

including the Scandin an nations, Western Europe, East-

ern Europe, the USSR and Many developing nations use such

models. ,

5.5 The Model's Great Impact on Economics

In Sdience magazine, Walter IsarXand Phyllis

Kaniss (10) reviewed Leontief's contributions at the time
10:

Hof his winning the Nobel Prize. They highlight the power

of input-output analysis for planning, but concede that

the model's predictipns have contained large errors'when
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WASSILY W. LEONINE was born\n Leningrad in 1906.

He fled C9mmunist rule ip Russia in the early 1920s

with his family. At the age of 22, he completed a

doctorate at the Unive;sity of Berlin. Froth 1929

to 1931 he was economic advi5or to the Chinese

government; in 1931 heSjoined the National Bureau

of Economic Research in New York. His pain input-

output methodology matured during the '30s. He was

chief of the Russian Economic Subdivision of the

Offlice of Strategic Services ddring World War II.

Lecntief has been a professor at Harvard since

1946. Sources (9) and (10).

the method has been used by inexperienced planners. Such

errors an arise, they,point out, in these key ways:

-- constant coefficients in the matrix A make the "recipes"
of inputs used by companies inflexible;

-- the effects of inevitable changes in technology are
gnat included;

-- the extensive and precise data needed for the model
is often unavailable, "borrowed" from another region
or nation, etc, This has been a problem in developing
nations, especially.

-- one product can sometimes be substituted for another
in our economy; Leontief does not include this possibil-
ity in his models.

Aside from planning and predictive uses, Isard and

Kaniss report-a major impact upon economics. Since the

4del requires d'011ifiete, consistent data,.it has forced

many nations to take economic data gathering more 'seriou'sly.

Uniform definitions of products and sectors of an economy

and uniform accounting procedures have been needed; thus

planning and data collection agencies in many nations

have coordinated their programs. Much easier comparative

study of related national economies has resulted.

Writing in Newsweek [9), Paul Samuelson (himself a

famous doctoral student of Leontief's at Harvard) ment
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these uses of input-output analysis:

-- As the Vietnam War wound down, Leontief predicted the
results of the shift of a billion dollars in gross
national product from War to peacetime production.
He conclided that there would be- an expansion in
employmeri.

-- Leontief dicovered that exports from the United
States are more labor intensive than our imports,k'
confounding those who decry thee use of "cheap foreign
labor" as a source ofunemployMent here. His conclu- i

sion is that th net result of importation and'export-
1\tation is to in rease use of U.S. labor.

-- The U.S. Congress discovered the greats impact of
steel-price raises on inflation in the Unitgd States.
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The author wishes to thank Holden-Day, Inc., for per-

mission to draw exercises and data from this source:,

S. Andrei Rogers, Matrix Methods in Urban and Regional

Analysis, Holden-Day, San Francisco, 1971, pp. 59-77.

I found the three magazine articles listed below to be

particularly understandable and horthvhile. (There are

many articles'by and about, Leontief in periodicals that

almost all college librarie:=. will-have. Look

in the Reader's Guide to Periodical Literatyre.)

9. "Nobel Laureate Leontief," Paul Samuelson,

up "Leontief"

Newsweek,

Vol. 82, Nov. 5, 1973, p. 94.

10. "The 1973 Nobel Prize for Economic Scienc " Walter

' Isard and Phyllis Kanisc, Sciamce,_Vol-18_2, Nov. 9,

1973, pp. 568-591.

'Input-Output Economics ' Wassily W. Leontief,

Scientific American, ctober, 1951.

7. Exercises: Th6bYugoslavian Economy,

in 1962 and 1958'

7. In [8] page 69 ffc there is given an eight-"company" model

of the Yugos,lavian, economy as of T962. The data is reproduced,

by permission of Holden-Day, Inc.The closed sectors or

"companies" are given in rows/columns numbered 1 through 8.

A variety of open sectors are given in columns 1'0-14; use the

total in column 16 to represent a single open sector. The

input-output matrix A is given also. You All have to construct

d as in Exercise 1. k

Your assignment, should you choose to accept it:

a. Use a standard linear-equations solving program,' arready

available for your computer, to find the production vector
-
x for this model.

b.' Write a linear-equations solving progrS'm that, say, uses

Gauss-elimination, to solve the equations (I -A) x = d for

this model. (This is a fairly large project.)

17 C. Have the computer print out successive approximate solutions

.25c
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for this model, as required in prOblem 6.' Convergence wil l

not be inmldiate but will occur by about the twentieth round.

8. Consolidate the data in the tables used in Exercise 7 so that the

production and consumption "industries'! are.

8

1. "manufacturing," made up of old manufacturing (1) and

construction (4);

2. "agriculture," vide up'of the old agriculture (2) and fOrestr;

1 (3) ;

3. ser4kces, made up of the'bid sectors (5), (6),(7), (8).

Tganipen sector is. the subtotal row/column-16 used in

Exercise 7. ReepatExercise 7 for this consolidated model.

Compar4Z.X0 the results of Exercise 7.

9. Comparable data (to that of-1962 used in Exercises 7 and 8) for

1958 appear on p.21. You should regai'd rows/columns 1-8 as the

"companies" and subtotals

as-in Exercise 7:

in column 14S3-4.14 single open sector,

a. 'Calculate the appropriate matrix A and final demand, vector
A

Q.

b. Solve he linear equations (I-A)7( = d.

c. ApprolOmate x by thing successive partial sums of the,series

for (I -A) -1, asrequirgd in Exercise 5. #

25

Tables for Exercises 7 and 8, reproduced from NJ, by permission,
of golden-Day,'Inc.

Input (WM Table fog the I uppttarbin Economy 1961 (In Million: of Owns)

Desionalrun

Orlon

1.64duulasliams
2 Agrisuliute
3 I ',vestry
4 Construstton
S Transpori and .

Communisal ..... s
, 6 Thine

../.1/7 Sersices and
Crafts

/....,8 Others

8,

htanu
fasturatig

1

9 Sibtutal 4101

10 Osprwalion
II Personal !maims:
12 As untolation

isamast

13 Subtotal (9 121

Con
struchon

4

Transport
and

conununo
cahoots

5 '

Trade

6

Sawa
and

(falls
Others Subtotal

(1 -8)

7 8 9 9.
1,849.873 81 371 4,5114 253.527 118.369 37.904 43.704 9,326 2.397,665

230.1941 52 ,9 3.566 CM 3.997 44 760,834.79,122 466 5)0 6.656 220 1,299 370 ' 76 88.759
16.086 1.522 1.235 137.391 26,189 31113 403 703 196.447

166.311 11,114 2.453 39,900 32.946 12.299 1.25'3 859 207,37571.643 14.292 746 20,508 6.407 5.579 10.714 894 130,783
11

31.624 9.028 959 8.939 8,561 7,069 1,613 614 68.406
39.256 237 130 2,100 1.063.-s 2.849 378 277 46.290

2.423.135 641 .106 54.222- 469.021 193,833 74.009 58.484 12.749 3.880.'59 *
149.(.66 42.677 11.459 21,300 54.785 16,112 2,096 2,106 300,2004ei'.748 525.599 60.257 173,067 94.313 120.266 38,621 16,090 1,430,961

1,060.309 203.281 30,673 202.9.60 134.187 340,115 34.764 37,$7V2.045.179
4.036.258 1.412.663 116.610 866.34 477.1111 551.122 133.965 68,815 7.662.899

51,671
20.247 9.588 845,261

866,348 497,365 551,122 133,965 78.403 8,539.931

14 IAA fCJN: tn./ ....,

Slost, ' 1).9'13 37.598 .2.090
I5 Imports . 669,171 146.113 1.122

.,
16 7owl (11 ti) 4.716 412 1,596.394 119,822

Input Output Table for the Yugoslavian Economy 1961 (Continued)

s.

Destination
........

Ns

r higin,
. .

t se to
Stos.1,

Gross
Insestment

,

J.
Expoits

eonsumptton
Subtotal-(10:14)

Total
Output
(9+16)

Personal
Con-

surnoton

General
Con-

sutnpttsin

Total Con-
suntpoon
(13-14)

10 I I' 1; 13 14 15 16 17 '

1 hlanufaoiirini
2 AgIliulture
3 forest'',
4 Constiuction
5 Transport and'-......)

Conunu nilations
6 Trade
7 Services and

Crafts
8. Others

1782252 ' 463.62d 552,553 960,817 162.802 1.123.619
6 9 72.637. 731,979 24,0* 756,005

681 8,835 20.423 1,124 21,547
655,773 9103 23,748 23.748

:'s3.501 . 6.733 109.758. 150,151 19,1 , 169,998
6.106 39,485 51.571 306,870 1 .323.177

1,204 2,645.. ' 10,694 11.626 61,710
26.4 , 1,008 10,190 20.651 30.841Ata, 1.----......

2,318,747
835.560
31.063

679,901
. -

289,990
420,339

65,559
12.113

4,716.412
1.596.30

119.822
866.348

497.365
551,122

133,965
711.403

9 Subtotal (1.10
-..--

196,945 1.168,940 796.742 2,231.814 278,834 2,510,645v.., 4,673,272 8,559,831

'Za..,J ra Stutot hem (1966j 'Itautobno Odndu Provrednoh Detainetio Juandavoe u 1992 GodonCrIntersndustry
turns of the 1 usorlas k onum) on 1902") Beograd

0 3920 0 0510' 0 0313 0:2926 0.2310 0 06118 0,3262 0 1190'
0.0489 0 3277 0.0298 0 11,0002 0.061 0 0003 0
0 0168 0 0003 0 0046 0'0077 0.0004 0.0024 0.0028 0.0010-

0 004 0 0008 0.0103 0.1516 0.0527 0 0036 0.0030 0.0090
0 0225 0 0071, 0 0205',0.0461 0.0662 0.0221 0.0094 0.0110
0 0152' 0 0090 0.0062 0 0237 0.0129 0.0101 0,0800 0.0114
0 0067 0 0057-0-0080 0 0103 0.0171 '0.0128 0.0120 0.0078
0 0083 0 0001 0 0011 0 0024 0.0021 0.0052 0.0028 0 0035

As

litgramaporl by Ervin lett

Technical Ceeffickat Alteryix for thejagleloman Economy
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Data for Exercise 9, reproduced from m18], pp. 73-74 by
permission of Holden-Day, Inc.

The 1958 Yugoslavian Economy

input-01door Table for the Yugoslavian Economy 1958 (ot Minions of Dinars)

Destinaiiiin

Origin

Mani,.
factunng

Agri-
culture forestry

.
Con

strut:lion

Transport
and

CommuOi
cattuns

Trade
SerRa

and
Crafts

c

Others Subtotal

1 2 3 4 5 6 7 8 9

I. Manufactut 1.081.250 49.133 1,485 104,452 85.882 21,919' 86,083 5.166 1.435,370
2. Agriculture 123,354 268,853 5,377 50 2.316 j168 10 400,828
3. Forestiy . 50,030 1,019 15.462 4,222 195 1427 1.320 6 13.481
4-Gonstruction 4.922 199 299 10,437 73 498 16,428
S. Transport and "

Communications
-
47,216 3.654 1.393 15.685 19.843, 8,208 2,635 301. 93,935

6. Trade 33,143 7,680 t 79 10,845 1.158 9,"38 63,040
7 Semites and ,

Crafts 992 7.102 88 56.352 2.829 4.912 84,275
8 Others 26, 414 370 .1.849 662 40 29.831

9.5ub4ul (1-8) 1,379,403 337.640 24.183 191.970 113.764 40.901 101,306 6.021 2,197,188

10 13epreetation 13,362 20,729 1.971 7.933 34,500 7.24,9 4,391 1,349 151,444
1f Personal Income 156,018 388,407 45,332 55,435 41,358 il'54,695 56,380 8,446 806,071
12 Accumtilation

(saingsl 630,132 - 77,250 28,967 53,622 50.085 139,197 45,267 21;'676"1.046.196

II Subtotal (9-121'
...___.

2,238,915 824,086 100.453 307,960 241,707 242,042 -207,344 38,392 4,260,899

14, I/wax in 4' .
Sto.14 1,851 1,851

IS Imports 443.691 91.566 683 , 30 8.086 r 2.558 546,614

16 Tout (13-15) 2.6114.457 915,652 101 136 307,993 249 793 242.012 '20',344 40.950 4,749.364

InpurOutpur Table for he Yugoslavian Economs 1958 (Continued)

Niko=

Origin

Increase in
Stocks

Gross
Insestmen

Exports

10 12

Consumption aI

Persona:-
Con-

sumption

13

General
Con

sumptson

14

Total Con
sumption

-14)

15 16

1,249,08
428,0%1 514,824

18.998. 27,655

19,1361 291,562

I. Manufaciunng
2. Agriculture
3. Forestry
4. Construction
S. Transport and

Communication*
6, Trade
7. Services and
1 Crafts,
S. Others ,
B. Subtotal (1-8).,

119,406 281,797
10.549 5,953

1,113
272,000

276.257
70.250
7,544

426

1,010 , 4,946 $8,688
1,986 18.989 25,628

2,301 2,584
480 o' ' %- 242

438,903
419,447

17,830

132,724
8,625
1.168

19.136

74,599% 16.615
120,135 12,294_

102.374 '15.810
4.159 6,238

Subtotal
(10-14)

91,214
132.429

118,184
10,397

115.85
179,002

123.069
11,119

Total
Output
(9 +16)

17

2.684.457
915,652
161,136
307,990

249.793
<242,042

207,344
40,950

4 135,732 584,768 441.61$ 1,177,447 212,610 1.390.057 2.552.176 4.749.364
. 'Some: Sewn, Zara to &animal, (1962). "hiedusobni Odnesi 7rednih Ditipn'usts iuso.10.4. 19240941191-ot th4 Yer1111 E4641C4117 Mr). Beograd.

259

Interindustryltelatsows

i Abe :
I 4

21

c

I.

b.

8. ANSWERS TO SOME EXERCISES

11= (-1 -1 x
(J4

has solution

=

(I-AT1)= (552 ;0%61)

x =
[2300)

The "production.totals" in

expect from the definition

Precisely. The *same solution

results.

,

" 4/20
2. a A = 8/20

8/20

and d =' 3 ,.
s

2

the table

of x.

6/30 3/20
18/30 1/20
6/30 4/20

20
b. "Product on totals" predict x =

[20

30]

é. = - .4 .4

.8 -.2

x-.05
.8 2

give us x, as we should'

.2, .2 .15
.4 .6 .05
.4 .2 4-.2

={7313;:i

c as the solution x = 30 as expected.'
.

20

1 e arithmetic isnasty if a methodical Gaussian approach

is used, but easy If one tiptoes through .the equations

using a little fc4esighi.

11.

.260
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3. b. About 50 iterations are needed to get noticeable convergence.

Res'ults:

.THE 5 TERM APPROXIMATION IS
12.838399 * 1.458999]
11.091999 2.110399

THE 10 TERM APPROXIMATION IS

3.979849 2.447314
1.835486 2.756191

THE 15 TERM APPROXIMATION IS
4.518542 2.915179

' 2.186384 3.060952

THE 20 TERM APPROXIMATION IS
4.772777' 3.135986
2.351990 3.204784

THE,2? TERM APP OXIMRTION IS

4.892762 \3.240196
. 2.430147 '''333.272664

TIE 30 TERM APPROXIMATION IS
4.949389 3.289377,
2.467033 3.304700

THE 35 TERM APPROXIMATION IS
4.976114 '' 34312588

2:.484441 3.319820

THE 40 TERM APPROXIMATION IS
4.988/27 x.323542
2.492657 , 3.326955

.'THE 45 TERM APPROXIMATION IS
'4.994679 3.328712
'2.496534 3 330323

THE, 50 TERM APPROXIMATION IS ..

4.997489 3.331152
'2.498364 - 3:331912

261

'No

231

5. Reproduction of computerl results are Just below, giving the

matrix,sums and results after multiplication by d:

THE 5 TERM APPAIXIMATION IS
(1.473599 8.569599)

1039199 2.612799

THE 10 TERM APPROXIMATION IS
.1.621937 0.772231
1.544463 3.166400

THE 15 TERM APPROXIMATION IS

1.656303 0.819177
1.638354 3.294658

THE 20 TERM APPROXIMATION IS
1:664265 e830053
1.660107 3.324373'

THE 25 TERM APPROXIMATI.ON. IS

1.666110 . 0.832573
1.6461.6 3.331257

THE30 TERM APPROXIMATION IS
1.666537 0.833157
1.666314 3.33282 .

THE 35 TERM APPROXIMATION 15
1.666636 0.833292
1.666585. 3.333221

THE 40 TERM APPROXIMATION IS
1.666659 - 0.833323
1.666647 1.333307.

THE 45 TERM APPROXIMATION IS
1.666665 , 0.833331
1.666662 3.333327.

THE 50 TERM APPROXIMATION IS
(1.666666 0.833332) A
1.666665 3:333331

262

AND LEADS.TO OUTPUTS

x
117.014399j

=
21.843199

AND LEADS TO OUTPUTS

19.308298
28.110235

AND LEADS TO OUTPUTS

19.839746

29.562180

AND LEADS TO OUTPUTS

19.962872
29.898565

AND LEADS TO OUTPUTS

19.991398

29.876499

AND LEADS TO OUTPUTS
19.99800-,

29.994555

AND LEADS TO OUTPUTS

19.999538
29.998738

AND LEADS TO OUTPUTS
19.999892

2.999707

AND LEADS TO dUTPUTS

19.999974,

?9)999931

AND LEADS TO OUTPUTS

(19.999993x )

29..999983

-p

24
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6. Reproduct*n of computer printbuts of successive matrix

approximations and the x they yield from multiplication by d:

THE 5 TERM APPROXIMATION IS
[1.633799 0.690499
1.266199 2.699099 0.323299
0.979199 0.833999 1.432899

, .

THE 10 TERM APPROXIMATION IS
1.959441 1.084958 0.420515
1.952976 3.532773 0.555972
1.410627 1.356132 1.579797

THE 15 TERM APPROXIMATION IS
2.080723 1.232059 0.461666

. 2.209013 3.843307 0.642840
1.571250 1.550941 1.634293

THE 20 TERM

2.125927
2.304429
1.631108

APPROXIMATION IS
1.286879 0.477001'
3.959032 0.675213.
1.623539 1.654602

THE 25 TERM APPROXIMATION IS
2.142771 1.307308 0.482716
2.339987 4.002158 0.687277
1.653415 1.650594 1.662170

THE 30 TERM APPROXIMATION IS
2.149048 1.314921 0.484845
2.353219 4.018230 0.691773
1.661728 1.660677 ,1.664991

THE 35 TERM APPROXIMATION IS
2.151388 1.317759 0.485639
2.358177 4.0242)9 0.6934149
1.664826 1.664434 1.666042

THE 40 TERM
7.152259
2.360017
1.665980

APPROXtMATION IS
1.318816 0.485935
4.026451 0.694073
1.665834 1.666433

THE 45 TERM APPROXIMATION IS
.2.152584 1.319210 0.486045
2.360703 4.027283 0.694306
1.666411 1.666356 1.666579

THE 50 TERM APPROXIMATION IS
2.152705 1.319357 0.486086
2.360959 4.027593 0.694392
1.666571 1.666551 1,.666634

263

ANO LEAOS TO OUTPUTS

114.1276991
[17.607299

12.222199)

ANO LEAOS TO OUTPUTS
17.811995

25.381104
fp 17.102386

ANO LEAOS TO OUTPUTS

19.184608
28.278700
18.920162

ANO LEAOS TO OUTPUTS

19.696132

29.358532
10.597582

ANO LEAOS TO OUTPUTS
194886759

29:760947
19.850033

ANO LEAOS TO OUTPUTS

19.957799'
29.910913
19.944112

ANO LEADS TO OUTPUTS

19.984272
29.966800
19.979172

ANO LEADS TO OUTPUTS

19.994138

29.987627

19.992238

ANO LEADS TO OUTPUTS

19.997815
/9.995388

19.99710

AND LEADS TO OUTPUTS

19.999185
X 29.998281

19.998921

25

7. Rogers, in [3], page gives these results which I have not

confirmed. Only d and five x vectors are given.

Iterative Solution of Me lnputOutput Model Yugoslavia, l962

Industrial Sector Final Demand
Total Output alter Total Output

20th Round
1st Round 2nd Round 3rd Round 10:h Round

1 Manufacturing
2 Agriculture

3 Forestry

4. Construction
5. Tyansport and Communications
6 Trade
7. Services and Crafts

8. Others

2,318.747

835,560

31.063

679,901

289.990

420,339

65,559

32,113

1c91,c9e

1,226.465

76.903

814,776

409.701

492930
104,519

56,310

4.201.567

1.418,674

100,006

848,359

458,548
524,941

120,686

68,182

4,483,704

1.512.349

110,812
859,071

479,915

539,248

127,933

73,751

4.115.489 4,7i .412

1.596,030 1,5 ,394
119,786 119,822

866,321 866,148
497,296 497,365
551,074 551,122

133,941 133,965

78,385 78,403

Total 4,673,272 6,775,199 7,742,963 8,186,783 8,558,322 8,559,831

Programmed by Ervin Bell

(Reproduced by permission of Holden-Oay, inc.)
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STUDENT FOgii 1

Request for Help

R turh to:
E /UMAP
55 Chapel St.
New n, MA 02160

;r

I

Student: If you have troublt with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name
Unit No.

OR OR__

Page

Section Model Exam
Problen No.0 Upper

()Middle

0 Lower

Paragraph Text
Problem No.

Description of Difficulty: (Please be specific)

O

VO.

Instructor: Please indicate your resolution of the difficulty in this box.

A.
Corrected errors in materials. List corrections here:

0 Gave student ,better explanation, example, or procedure than in unit.
, Give brief outline of your addition here:

F

Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

a . ,

1
26';

Instructor's Signature .

Please use reverse if necessary.
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Name

STUDENT FORM 2

Unit Questionnaire

`Unit No. Date

Institution Course No.

,

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Check the choice for each question that cbmes closest to your personal opinion.

1. How, useful was the amount of detail in the unit?

Not enough,detail to understand the unit .....

Unit would'hive been clearet with more detail

Appropriateamount of detail
Unit was occasionally too detailed, but this was not distracting

Too much detail; I was often distracted

2. How helpful were the problem answers?

Sample solutions were too brief; I could not'do the intermedtate steps

Sufficient information was given to solve the problems

Sample solutions were too detailed;_Ididn't need them.

3. Except for fulfilling the prerequisites, how much did'you use other sources (for

example, instructor, friends, or other books) in order to understand the unit?

A Lot ,Somewhat A Little Not at all

4. How long was this unit in comparison to the amount of time you generally spend on

a lesson (lecture and homework,assignment) in a typical.math or 'sciende course?

Much Somewhat Abaut ' Sociewhat Much

Longer Longer theSame Shorter Shorter'

5. Were any of the following parts'of the unit confusing or distracting? (Check

as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)

Paragraph headings
Examples
Special Assistance Supplement (if present)

Other, please explain

6. Were any of the following parts, of the unit
particularl,helpful?(Check as many

as apply.)
Prerequisites
Statement of skills and concepts (objectives)

Examples
Problems
-Paragraph headings
Table of Contents
Special Assistance Supplement (if present)

Other, please explain
\

Please describe anything in the unit that you did not particularly like.

'Please describe anything that you found particularly helpful. (Please

this sheet if you need more space.)
)

266
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UNIT 210

MODULES ANDMONOGRAPHS IN UNDERGRADUATE
MATHEMATICS AND ITS APPLICATIONSPROJECT

area
vR2

VISCOUS FLUID FLOW

AND THE INTEGRAL CALCULUS

by Philip Tuchinsky

top of fluid t

collect°
flow
here

,e

APPLNSI'IONS OF CALCULUS TO ENGINEERING

edc/umap /65chapel s)t./newton,m4gs. 02160

V

VISCOUS FLUID FLOW AND THE INTEGRAL CALCULUS
ti

by

Philip Tuchinsky

TABLE OF CONTENTS

1. LAMINAR FLOW
1

2. POISEUILLE'S LAW
2

3. WHEN DOES NIS, LAW HOLD?

4. THE VELOCITY OF FLOW AND THE AMOUNT OF FLOW

5. THE TOTAL FLOW THROUGH A PIPE'OF RADIUS R.

6. THE RIEMANN INTEGRAL

4 3

6

6

8

7.* THE RIERANN-STIELTJES INTEGRAL

aka

10

8. DISCRETE SUMMATION
11
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VISCWS FLUID FLOW AND THE INTEGRAL CALCULUS

LAMINAR FLOW

4

fluid through--

same ad

-

-When a 'thick, sticky (viscous)

a pike, it does no; all flow at the

the fluid Closest to the wall of the pipe, suffer

much friction with the wall that 'it hardly moves tat all,
while fluid closer to-othe central:a'Xis,of the'pipe moves
more rapidly- The fluid's speed increases steadily as',
the distance from the wall increases. Because of

.
circular symmetry, the effectis that,of concentric

. ""
,tubes of fluid sliding over pne another (see Figure 1).

7

:_
Figure r. Laminar Flow in a Cylindrical Pipe.

We call ihis'iaminar flow: each lamina or layer of
fluid moves at its own speed. Different laminae move
at different speeds.

The exact way in witich.latinar flow happens was
found by a French scientist, named Poiseuille more than
a century ago. 'He was studying.blood pressure, which
had just been accurately measured for the first time.
He wanted to know how much blood' flows through a blood
vessel in a given time. From that information and
analysis of ,blood aMples one can Sailz.how much oxygen,
and nutrients are tieing de- livered to the cells ser-
viced by that blood,vesiel.' Knowlede.of blood flow

part of understanding the body as ephysical
11.

27 2

is a basic

system.

I.

-flowr

.5

0-1

Poiseuille. result about viscous fluid flew has
many other applications. We can use it to study!the
flow'of air in the windpipe, oi,l in a pipeline, water
in a pipe system, grain flowing by.pipe,into the hold'
of a ship, etc. The assumptions involved .in the result
make it more applicable to some of these problems than

.others (see Sedtion;".5),'but it provides a gbod first -

%pproximation to them all.

Another important use of.,Poiseuille'st'LaW'is to"measure the relative viscosity Of-.fluids. More-about
this rater, in Section-ID:.

We will use Poiseuille's Law to calculate total
flow *through a pipe using a. -finite sum and the "continuous
summation" proces calldd integration.' The two!Tesuts

;will deserve comparison.
4

2. POISEUILLE' S LAW

A
.Y

poiseuille discovered and others later deduced
from theory (see ction 12) that the velocity of the
particas of fl d at a distance r centimeters out fpom
the center axis of,the pipe is .

Pv(r) = TEE ,(R 2 - r2)

where Irefer to Figure 2)

(1) * -

(cm7Sec.;)

:

R = radius' of the pipe, id cm. (Thus 0 < r

L e'length of the pipe (em.)

P pressure change PI P2 down the length of
' the 0.pet'(dyneicie)

=

'k = coefficie4 of viscosity (poise)

< R)

a* .
Variables will ie.given with their cm-gram-second (cgs) Unitsto help us understand their physical meaning. 4ny system ofunits could be usedeoff course. .,.

2
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(Let Me remind you that pressure is force per unit cross
sectional area.) One

decrease_st*adily [as

as the fluid

in final vs.

The cgs unit

Poiseuille.

fluid in at higher
pressure PI

o-

can prove that the pressure will

a straight line (linear) function]

moves through the pipe. It. is the difference

initial pressure that enters the equation.

of viscosity, the poise, is named after

fluid speed
is v(r)

fluid'out at
lower pressure P2

t
L

Figure' 2.

4.1

3. WHEN DOESTHIS LAW,..44ALD?

T1lemajor assumptions that must be

,equation (1) vatid are theser

_ .

a) ,TWre must be no.turbidity in the fluid.

This, means that there is no swirling;

'particles of tluidMroVe-in_straight lines

down the pipe.

b) The speed of flow v is assumed to depend oil

r only. Thus vdoesnot change as fluid '

Ives down the length of the 14pec and it

not. change with time; the flow is

peither.speeding up norslowing down, it

1.) 7'

r
true to have

is steadycstute.

c) 'Thefluicris incompressable, i.e.,,male up

of particles that cannot'be crushed or Racked.

Rn closer t,getherl(by the forces presenW

273
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J

JEAN LEONARD MARIE POISEUILLE (1797-1869) was a

well-known physiologist and physicist. Hp

invented the mercury m'anomeer to° raelasure blood

pressure, improving the pioneering work of

Stephan Hales. The law consideted here appeared

.in a paper of 1840 and was found through labora-

tory experiments with distilled water, either and

Mercury. The mathemgical derivation was first

found in 1860 by F. 1+iimann and J. E. Wagenbach,

who named the result Poiseuille's Law. But the

'name is disputed: G. H. L. Hagen found the same.

aw independeuly in 1839; his workiwent un-,

noticed for decades. Reference: Dictionary

of Scientific Biography, 1975 edition, vol.II,

-T- p. 62.

d) Fluid is conserved,,i.e. neither creited nor
I

lost, in the pipe. Thus no fluid is leaking

out thrdugji the, pipe wall and no feeder

pipes are pouring fluid in or out.

The tube, is hofizontal and the (very slight,

downward pulling effects Of gravity are

igpored. For'a vertical tube this minor

variation on (f
,

) is true:

xer) P / (R2 - r

where g'4. 980 cm /sec/sec is the gravitational

corstarrt and p isfhe density of the fluid,

i.e., its mass per unAt'volume. 1 For .4 slanted

2j

pipe, thesqphorAon'tal and vertical velocities

- must be vector-added., For simplicity we will
. .

use- (1) . ,

f) The pipe is a right-circular cylinder with

4 constant dimensions Lrend R.

r
4r

. a
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.

'h)

There is 'so much friction at the wall that

fluid there does not move at all. (Notice

that r = R reads to v(R) = 0.)

One assumption that is not present: in

other classes you may study so-called

"-ideal fluids" in which particles slip

- frictionlessly by each other. We are

'assuming thateach layer exerts a drag

on the layer next-further-in. Ours is'

, not an ideal fluid.

These assumptions are satisfied to varaous degrees
by the applications mentioned earlier. Swirling,

turbid effects are bound to occur in any large diameter
pipe. This 'limits yhe usefulnessof'oUelaW41 -.-
studying water pipes, oil pip..0ines, grain chutes,
etc. Blood vessels flex: their dimensions change a
little, Blood surges because of the heart'spumping ,

action; thus the flow is not steady-state. Oxygen
and nutrients leave a blbod'vesselyby osmos4s through
the pipe's wall and wastes are added to the blood

flow, so that fluid lisonly approximately Conserved.

Despite these and other practical short-comings,
Poiseuille's Law'is a valid simplification ofvistous.

fluid flow. It is the right sort of. law: v(r) is

'zero at the pipe wall and increases steadily as r
decreases and we apprOach the pipe's center. It has

a solid, well:understood theoretical basis. Weran
really calculate with it, as we shall shortly see,,.

And in the laboratory, the assumed conditions 'Can be
k made almost true, giving a practical' way to measure

the-viscos.i.* coefficient k for any fluid.' This
coeffidlent is a ° fundamental property of the f141C.

1 '

,important in.design and engineering
t .

4

a ot.

/

5

4. THE VELOCITY OF FLOW AND THE AMOUNT OF FLOW

' We ant to use Poiseuillei.S. 'Law to calculate the

total f ow through a pipe of radius R. The flow'F
. is the total volume o fluid p'assing through the pipe

each second; in units of (cm)3 /sec.

'First, we need a preliminary result. Consider,
in Figure 3, any tnical small piece of cross-sectional
aree'of the piper consistiong of M square centimeters,
located r cm out from the center. Hi/ much' fluid will .

leave the pipeAhrough this J;At of area in one fecond?

The fluid po'vesfIr(r) cm in the one .second; ,thus a
stack of, fluid (r) cm longpf constant cross section
AA(cm) 2 '(shd ) will flow out of the pipe through AA-

' in the.one:stcond. This stack has, volume v(r)..(AA).A

a

Figure 3.

area AA

Thus fluid leaves AAat 4 steady rate'of
v(r)AA(cm)3/sec.

(2)

Summ
,

ar : If AA is, any area through which
of i lows. at alconetant veloc.ity v,

dren vAA is the total flow' through the
.area AA, per second. - 4

0

5. THE TOTAL FLOW THROUGH A PIPE OF RADIUS R

,In the pipe's cross-sectional circle of radio's R,
the velocity v(r) given by Poiseuille's Law is the same

4at all points located r cm from the center. If we

276
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4

Consider concentric rings of area (Figure 4), he

fluid's velocity-will be approximately constant
each ring. We can then use (2) to calCulate.the total

flow through each ring; the sum of these ring-by-ring

flows will be the total flow through the pipe, which
we set out to find.

To clearly identify these rings, partition the

interval

(0 < r < R)

into n pieces using partition points

Lo

(p2rhaps

0 = r < r1 < r2 < r
n-11 2

not equally spaced).'

< r = Rn

The first, second, '... regions

Sketched. ,For j = n,

inner and outer radiiring with

has area
-

IT(r)2

7 "1

,Co

the

r

r.

7

are then chosen as
.th

region is a

rand ., and-thusr

7

If we take n large and the r.'s close to each other,
J,

the velocity of fluid flowing through any one region

will be almost constant, although different from ring
to ring. What value will approximate the constant
velocity in the jth

: Pick any point in that ring;

say, pick a point that is tj its out from the cebter
4

with r. < . < . Them , is a typical speedil
3-it,

t

3

r

)

v
.1

for the ) ring and (2) says that

the flow through the jth
v(t.)[ir.2-.Iir. 2]

J J J-1

We callyti an evanption point for the j th subinterval

j-1' )
[r ri.

Thus the total flow through ,all n rings is

. ..(3) F = v(ti) [Irrj2 Irj_1].
j=1 '

We write "approximately" instead of equality because

we have replaced all the various values of v(r) in

the j!11 ring by the single value, v(tj). In fact,

we have a vast family of app-roximations of F in

Equation (3). For any choice of a partition r0, ri,

rn and any choice Of evaluation points ti, t2,

to (such that r.
)-1 < t

j
< r

j
forseach j) we get

an approximation Of As we take farger values of

n and more closely spaced r 's And t 's, the theoryjigf

'integration tells us that such sums approach a limiTfing

value more and moirlosely, and that(limit is an integral'.

6. THE RIEMANN INTEGRAL

We must 4o s hit more work on Equation (3) before

it is recognizable as a Riemann sum. Let the width pf
th. ,

the ) subinterval be

Ar. = r. rj_i

es* ,

278
8
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Then

n r it- nr.

t,
3- 3-

=

= n(r. + Dr.); - 2.3-1 - 3
rj_i

= (At.) 4'

As, nincreases, rj and rjf approach each other and
P Ar.becoTessmall.'nleule(Dr.)2 erm above

negligibly small' by comparison to the first term,
'and becomes more negligible as n grows larger. Thus,AV
from-(3),

. .

z

3v(t.)(2nr. hr.).
3= 1.

n -0- m, and all' subinterval widths 66.r. shrink to
ero', this Riemann 'sum becomes

R
v(r)(2nr)dr

0

R

f r--P (R2 2- r2)

0

2r14 dr
nR
8k.1,

t
You are asked to calculate the 4ntegial in kercise 1.-

Another conversion of (3) into a Riemann sum:Since

j"
2 nr. i=

3-1

we havefroil (3)

n

3 3-1. 3 r3 -1)
n(r. +r. )(r.'-

(4) , F v(t.3 ) n(r. +r. )(r. -r. ).-1 3-1j=1

rj-1 all approadh'each other and
As .n co, t r andj ,. .

,

we get

, A

o .

a

n(r + r) dr

,-

_ 1R v(r) (2nr)

279

dr as before.
9.

7. THE RIEMANN-STIELTJES INTEGRAL

The integral usually studied by calculus students
is the Riemann ifitegraA

j
b

f(x) dx.
a

An important generalization its the Riemann-Stieltjes
integral wherehe "dx" representing change in x can
be repltced by "d g(x)", the change in a function of x
between one partition point and the next. That is,
the RiemanWlkums and the limits they approach have
the forms

6

j1
f(t.)[x. x

j-1
] 4 f(x) dx

= 3 3

a

while the comparable Riemann -Stieltjes forms are

b s

I 'f(t.1Cg(x.) -:
'g(x. )1 4 f(x) dg(x)j=1 J' J 3-1

a

In each case a = xo,< x
1

< < x
n = b is a partition

of [a, b] and e.'is an evaluation point in the j th
subinterval: xj_l <tj <

We can now tecognize (3)

sum with this in,tegral as its

.4

F v(r) d(ler,2)
0

P' (R 2 -'r2)

*

as a Riemann-Stieltjes

limit

* This section can be omitted without affecting
readability of latersections./.

ig 280
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7

We cast convert this integral to a Riemann integral
by using this theorem:

If f continpoUs and g has a continuous

first derivative for a <....x*< bthen
.

b b
j t(x) g'(x) dx.

a ' a

We get (since g(r) =,,nr2 has derivative g'(r) = 2nr) ,

F = -- 2nr dr,

0 .* .

the same Riemann integral as in Section 6.

Why should we be interested.in to Riemann-

Stieltjes integral if it simply leads us back

Riemann integral we derived twice in Section 6? The

Stieltjds case,betomesteresting wheli g is not a

smooth function, when g'(x) dcies not exist. Then

Riewn-Stieltjes theory must be used directly;

we cannot escape to th'e easier Riemann case. There

are important applications, especially in theoretical

economi.cs; wftereg must' be taken-as a step function, _

A for example.

- 8. DJSCRETE SUMMATION

Is it valid-to len =5- c taking rings of-atbdtrarily

smaller and smaller Nidfh? That is, should we convert

(3) into an-integral ?. The fact that you art learning

calculus is'norSufftoient to.make the answer "yes"!

In fact, we often shoufil:nOt,take the limit. After

blOod'is made Lip of red blood cells and other

Particles. They hate e certain non-zero. thickness

*bir an4 no layer:Of blood can. lid thinner than that

thickness. The same is true of aLl fluids, in fact'.

of *

.281

ti

a

To develop this idea, we should let all the rings
*

have that fixed finite thickness Or. Thus r0 0 = 0.Ar,
ri r2 = r1 + tr = 2tr, etc.; the n+1 partition

points are r = jAr, j= 0, 1, 2, ..., n. Let's

simplify by taking the evaluation points to be

t, = jAr also. Then, from (4),

( 5) 4kL (R2- (jAr) 2) n[jAr +(j-1)Ar][Ar]
j=1

Pn
ri4kL (R2 - j2(Or)2)(2j

j=1

Plug in R = nAr and simplify to:

124W1 (n2 j2)(2j
* j=1 .

- 1)(Ar)2:

7

1)

Plr,(4g).4 [ 2Et; 3) + z 0.246 2r12

=

We can prove by mathematical induction that

(j 3) = 13 + 23 + +n3 -
j =1

() 2) = 1 2 + 2 2 + +n2
j=1

j= 1+ 2+ 3+ + n
j=1

n(n+1)(2n + 1)

n(n +l)
' 2

etn-
1 1 = 1 + 1 + + 1 = n.

j=1

,pcstimes

Plug these in and dp the algebra to reach
f

11 282

n2E 1].
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(6)

F . 141_
L 112(n+1)(n-1)

htil*:Pn(1 n+1 .11;11

T il 1

ln

As,n + co, -1
2
+ 0 and this does approach the integral's

value, as lif should. ,

I \.

When we Want to compute a sum, we often use the
integral to approximatein

a prOblem (like our curyent
fone) where n

'°,1

+ co does not make sense. If n is in fact
4 ,

..

very large, only.a small error is made. To do the ,
actual sum for large n would'be cumbersome; by letting
n --4 0, we gainiall theNcalcuIational

power of the integral
calculus and save the algebra that led to (6).

There are other problems in, which it is an integral
we want but we, are forced to use a sum. (Many integrals
can't be calc9.ated by

aniti-differentiation). By
taking n suffiCiently large, a high accuracyhapproxi-
'nation of the, integral can be gotten with the help of
a computer.

(a' 4.

Integration and discrete summation are associates.
Each can fie'{ as a replacement for the other, in
appropriate circumstances.

s9. INTEGRATION; LOCAL DATA YIELDS GLOBAL RESULTS

LaW,contains'lobal information: the
speed of fluid flow at a specific spot in the pipe
is v(r). Our result (21 that v,AA is the -total flow
through a bit of area AA where v is the (almost)
constant speed of flow is still local infordation.

When we sum that local data overall parts of
the pipe's cross-sectional circle, we gather the
local data into arglobal"

result, referring t7O the

231

13

pipe's total'flow, to the pipe as am entity in itself:*

Integration/(or discrete summation, which is used less),
.

cbnverts,loca .11y vary=ing information into the global.
We are reasoning from the'mor .detailedto the less
detailed when we integrate.

Do we lose information through that proceS>G.an
we reason back to the local.if, we know the global
result? You might immediately answer "no" or "sure,
just differentiate." Can you justify eithert.wwer
carefully? My question is \

Suppose we knoW that

R
v(r) d (Tri2) = 13.11

L
R4 for any R > 0.SR

Can we deduce Poiseuilles Law, that'

Pnv(r) = T" (R 2 - r 2 )?

I leave it'unanswered here.

10. CALCULATION pF VISCOSITY

'To calculge k for a specific liquid, set up a. tank je
and pipe in the laboratory as in Figure SA Get a steady

,

flow going, then collect (say) ten seconds flow in
,a beaker. Measure that Volume of 'fluid.

3

According 'to our integratipn, in tep seconds the
. .volume of fluid ,flowing out should be

I-
,

10F = 10 ITR413

8kL

In this. equation we know every constant except k,.which
we calculate. We know R and L by measurement. To
find P we take the-difference between the pressures,

a
PI and p2, at the beginning and end

1

of the flowpipe..
The outlet pressure P2 is simply atmospheric pressure.

:284
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area
nR2

.10

collect,

'flow

here

. Figure 5.

If the fluid has weight dtnsity (weightper unit volume)p
and the fluid depth is h as shown, the inlet pressure
P
1

is pgh, where g is the gravitational constant.

-'11. EXERCISES

R
.P yll`P1. Show that f --..-- (112 - r2) 2nr dr = ,, .6 41,

8KI.,

Notice k, L and R are simply constants.,

2. We have assumed that the fluid's velocity at the
pipe wadl is,zero. There's no need to do that:
T1 advanced derivation (see Section 12) that we
have omitted in tki#Ppaper in fact shows that the

o ft

veloLty fs

, 2
, 4 V (y = -r4)rr + b

.."(L

where b is a .constant we may choose. to'
Show that v(R) = 0 leads te the formula (1)
we have used.

b) . Suppose the velocity at the wg11 is one -half
of the velocity at the center (r = 0). Find
the function' v(r) for s.this case.

285
15

c) Use v(r) from' (b) to fiad the total flow,
through the pipe of radius R.

3. The velocity v(r) varies from place to place in°

the pipe's cross-section, but has some average
value V.

a) Explain how to find 7 from the total flow
F and the principle in (2)

,b) The .definition of the average value of

the function v(r). Is

R
f v(r) 2yr dr
0

v

1.2 nr dr
0

Calculate this and check against your work
in (a). The two answers should agree.

- c) The largest velocity is V and occurs at
r = 0. Check-that V 1 217 .

4. a) Use a computer program to calculate tie

sum (5) for, reasonable values of n, R, L,
'etc. Check the computer results against

Arle:algebyl'aic result (6). Repeat with

larger valUes of n.

b) How large must n be to have the discrete

sum within 1% 'of the integral result?

4.

12. REFERENCE

If you know multivariable calculus and a little
mathematical phy;ics, you can read a clear derivation

of Poiseuille's Law from basic ideas in elasticity and
fluid flow:.

Slater, J.C. and' Frank N. H. Introduction to

Theoretical Phyosics, McGraW-Hill, 1933. Or

Mbre'recent book; with similar titlts.

a

8(3
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VOW
.13. SOLUTIONS OR HINTS TC EXERCISES

1. First convert to -2274-ra
2 IR

r dr ZnP
0 Kr, 0

r2 dr.

-2: b) v(r) = 2PR2 Prz'
4kL

=f

("\f

X

c) (R 2PR2

1

27r dr = 3nPR"
727

a) If th

at air ivants

of radius R,

vipg at the same speed;

in t e cross - sectional circ14

that constant.speed would of
course be the average of the Poispuille's
Law speeds: From (2), using AA .=47R2,,
the full circular area,

Totl flow = Ve(nR2)

4
7 :21( 7E1:

c). At r = 0, v(0) = V .= R2 . 2V .

..

287;
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STUDENT FORM 1

Request for Help
/

Return to: .%

EDC/UMAP
55 Chapel St.

Newtoni, MA 02160,

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
you give will Help the author to revise the unit.

Your )ame
^ Unit No.

OR

Difficulty:

OR

Page

Section Model Exam
Problei No.Upper

()Middle

Q Lower

Paragraph . Text

Problem No.

Description of (Please be specific)

Instructor: Please indicate your resoIutipaofthe difficulty in thisqbme. ,

O Corrected errors in mater als. List corrections here:

\

Gave student better explanation, example, or procedure than in unit.
Give brief outline of your addition here:

ft

11^

V

d student in acquiring general learning and problem-solving
skills u

i

(not using examples from this nit.) .

)1 3
'Instructor's Signature

o,

(lease use reverse if necessary._
Y.

4



www.manaraa.com

.#

A

Name

Institution .

STUDENT FORM 2

. Unit Questionnaire

Unit No.

Course No.'s..

Date

Return to:
EDC/UMAP
55 Chapel St.'
Newton,\MA 02160

Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

f Not enangh detdil to understand the unit
1 Unit would have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed; but this was not distracting
Too much detail; I was often distracted

2. How helpful were the problem answers?
. . f

Sample solutions were too brief; I-could not do the intermediate steps
Sufficient information, was given to solve the problems
Sample solutions were too detailed; I didn't need-..them

3. Except for fulfilling the prerequisites, how Mich did you use other sources (for
example, instructor, friends, or other books) inarder to understand the unit?

(A Lot Somewhat 1 Little Not at all

4. How long wad:ths
alesson (lecture

unit. in ,comparison to the amount of time you'generally spend on

4

and homework assignmt in'a typical math or science course?
.., %

Much it Somewhat About , Somewhat Much
Longerifi . Longer the Same Shorter ,.. Shorter

. III

,

, ._... .

5. Were any ofithe following parts.of the unit confusing or diatracting? (Check
as many ablapply.)

,

Prefequll!tes
Stat'tient of skills and concepts (objectives)
Paragraph headings

o

Examples

SpeLial Adsistance Supplement (if present)
Other, please explain

6. Were any of the following parts of the unit particularly helpful? (Check as litany

.
.

as apply.) .
.

Prerequisite* ,
_____

Statement of kills and concepts, (objectives)
Examples
Problems' /

Paragra headings' °

,

74able of ontents 1

rSRecial Adsistance Supplement (if present)
Other, please explain

Please describe anything in the unit that you'did not particularly like.

Please dfecrihe anything that you found particularly helpful. (Please use the back of
this sheet if" you need, more space.)
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Ii

THE HUMAN COUGH

.1: WHEN YOU COUGH . .

Wh
ei.

a foreign object in your trachea (windpipe)

leads yOu'to cough, your diaphragm thrusts sharply ipward,:

As a result, the air in your.lungs is suddenl,compressed

to a higher pressure than the air outside your body. A

high-Speed stiam of air shoots upward through the

trachea equalizing these pressures arid, it is to be hoped,

clearing the passage.

BY Newton's law, the force exerted on the object to

be cleared is due to the sudden acceleration 'of the ai,r

,flowing through the trachea. The greater the velocity of

the airstream during the cough, the greater the force on

the foreigner and the more effective the cough. To

increase the speed of the airflow, your body also con-

tracts the.windpipe during a cough, making a nafrarer-,

channel for the air to flow through. For a given*amount,-

of air to escape in a fixed amount of time, it must move

faster through a narrower channel than a wi1er one,'just,

a\a river flows rapidly where it is narrow but placidly

where it is wide. In fact, x -rays show that the radius

of the tracheal tube reduces to about two-thirds its usual

radius duping a cough.

2. NOTATION FOR A CALCULUS MODEL OF COUGHING

We can relate the speed of the airflow during a

cough to the body's contraction of theetrachea amazingly

well by studying a simple mathematical model of the

situation. We think of the trachea as a pipe with a

circular cross section, andapply.the differential cal-

cu4, using the following notation:

1,
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Ro = the "rest radius's of the trachea (its usual -

radius when you are relaxed and not coughing)
in' centimeters; _

= the contracted r

t

dius of the trachea during a

cough (thus R < ,0),

V = the average velocity of the air in the trache

when it is contracted to R cr. This depends
on'R and we wish Xo calculate R such that V(R)
is maximal;

P = the xtra pressure in the lungs during a cough,
i.e.:the difference P

1
-P

2 between the pressure
P
1

in otir ,lungs and the atmospheric. pressure
`P

2 outside your mouth, measured in dyne /cm2.

F = the total volume Of air flowing through the
trachea per second, in cm

3
/sec.

We will make two physical assumptions, one about the
airflow, the other about the flexibility of the trachea's
wall.

3. LAMINAR FLOW

First, we assume th&.'t the airflow is laminar. This
means that layers'of air move at different speeds in the
trachea. The thip layer of air right next to the pipe
wall hardly moves at all because of friction-with the\,
wall. The layer, or lamina, just inside that one moves a

,little faster, and ,so on until the fastest airflow is
ford along the central axis of the trachea. It is as if
th4. airstream were made of thin concentric tubes of air
sliding fiver one another. See Figure 1.

Laminar flow is an appropriate model for the motion of
any fluid through a confining pipe. Tn 1840, French physi-
ologist Jean Poiseulle* established that the speed of the

*1797-1869. He was studying the flow of blood thrtiligh veins and
arteries.

.

.
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central axis

. -t

Figure 1. The air in the trachea is assumed to flow in
thin concentric cylindrical layers called Laminae. Inner
layers move'faster than outer ones, which are slowed by
friction with the tracheal wall.

fluid (of air in the trachea in our. case) at a point x

ctn out from the center axis of the pipe of radius R cm
is

A
T1) v(x) = kP(R2

-x
2
) 41r/sec for 0 < x < R.

.

Here k is a constant depencling on the length of the pipe

-and.the particular fluid involved. We defined P and R
earlier. The average speed V.is the average of these

v(x) values over all points in the' pipe.

Formula (1) is usuaTly called Pois'euilte's Law.of

.viscous fluid flow. By using integral calculus, it is

easy to deduce from (1) that the total flow per second

'through the trachea (when it' is contracted to a.radius

of R cm) is

(2) F = cPR 4
cm

3
/sec,

The'constant c again dependt on the length of the

pipe an4 the fluid involved. Formula (2) is derived

from (1) in several ways in A companibn paper to this

one, Viscous Fluid Flow and the Integral Caiculus, UMAP

Unit 210. Laminar flW is discussed in more detail

there, too.
Dti

4

9:1

295
.



www.manaraa.com

4. AVERAGE, VELOCITY AND TOTAL FLOW

We mentioned above that we'could compute the

average airspeed V in the trachea by using integral cal

culus to average the speeds v(x) However, we can relke
V to the total flow, per second F in a much simpler way.

Imagine air flowing through the trachea at a

steady velocity of V cm/set. In t seconds, each particle

ef air would travel Vt cm. Now, the cross-sectiOnal,area

of the contracted tracheal tube is nR 2 cm2'.' Therefore, a

cylinder of air Vt cm long by nR 2 cm 2 would leavethe
tube during those t seconds. :The flow of air through the

tube, measured in volumeper second, would be

(3) P = (Vt)(nR )
nR

2
V cm

3
/sec:

t

/

We can now write V in terms of P and the contracted

. radius R by using. (Z) and.(3):

. t-TR
c

4

(4) 'V =
F

PR--7 - T. 2
,

riR nR
, .

wfitYt ci = c/n. -...

5. PERFECT ELASTICITY

_The second assumption, about the'flexi8ilityzor

elasticity of the trachea's wall- tissue, is needed. next..

We assume that these tissue's are "perfectly elastic."

This means that the tissues contraZt so as to reduce

the radius. of the windpipe in proportion to the pressure-

change P between the two ends of tle pipe. That ig,

(5) , Ra - R = aP,

for some constant a > OA Thisis valid for fairly small

pressure, changes P, fact for

4
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ti

4

Rn
(6) 0 < P < 7i.

If larger values of P occur, the tracheal wall stiffens

and the contracted radius R would be larger than the

value predicted by (V). (This is fortunate--if the

trachea were to contract too much, we would suffocate.)

Exercise 1.- Use (5) to prove that the, inequality

0 < P <
R
0

--
2a

Is equivalent to the inequality

R <

Thus, by assuming perfect elasticity, we are also assuming that the

contracted radius R is at least 50 percent of the rest radius R0.

You may be familiar with Hooke's Law, which says that

the change x-x0 in a spring's length when a pull, or force,

of magnitude f is applied is proportional to f.

0

Natural Length

a. Unstretched: b. Stretched

Figure 2. A spring stretched beyond its natural (unstressed)
length by a force of magriitude f.

2 9 7
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That is,

f k(x-x0),

for some constant k. This Is really the principle behind

perfect elasticity. )le pressure change sucks in the
4

tracheal wall with pressure P and the wall behaves as

though it were made up of small Springs, which, stretch
(Figure 3).

tracheal wall

Figurg 3. The tracheal wall is sssumed to behave elastically
as though it were made up of small springs which stretch as-the
trachea contracts,

As (5) says, the amount of stretch, R0 -R, is proportional
to the magnitude of the force. Although this is a rather

simplified explanation, it leads to a good working model,

as you will see in the next section.

298
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'

r
6. WHAT RADIUS R MAKES V THE LARGEST?

We'can use '(5), the f5rmulqfot-.perfect elasticity,.
to ekpress P in terms of.11.:

..

110-R
t p a

Inserting this in (4) gives us V in terms ofR'llone:
.

i((1)., c = c
2
(R

0
-R)12 cm/sec.

. 4

Here c
2.

= c
1
/a and R

0
are constants. Equatipn (7) tells

us that airspeed V is produced when the trachea contracts
from R

0
to ,R cm.

. Our original goal was to discover what valUe of R

gives the largest value of V. Since V is a differentiable

function of R, for''R in the domain ['IR
0'

R
0
] , V apst assume

its maximum at one of the endpoints 11R0 or R0, or at'an

interior point where dV/dR O.

Exercise 2.

a. Show that V = c
2
(R

0
R)R2 satisfies dV/dR = 0 (has horizontal

. s.
,tangents) for R = 2R0/3 anaR = 0 but no other values.

'41 2 2 .
b. Show that R = 2R0/3 leads to d V/dR < O. Inperpret this

result: what sort of horizontal tangent is R = 2R0/32

c. Carefully explain how you know that V has 'its absolute Maximum

whenat R = 2R0/3 when R is restricted to the domain [IR0,R0]. '.
O .

As Exercise 2c shows, our model leads us'to predict that

our body can maximize the cough's effectiveness` by Con-

tracting about 33 percent, from R0 to 2/3R0. This' agrees

with experimental evidence as to how the body actually,

behaved It is as though "Mother Nature" Tsed calculus

in designing the complex muscle- actions of coughing to

maximize the'airflow speed produced!

% .
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Exercise 3.. Sketch the.graph of f(R) = (R
0
-R)R2

a. for 0 JK?12 < R0

b. for all real B.

Results from Exercise 2 will help, because V is just a constant

multiple of the fuation f here.

7. ACKNOWLEDGEMENT
O
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1. 0 <P <

8. SOLUTIONS TO EXERCISES

R

2a

0 #
-'<.=> 0 < aP <

2

0
(multiplication by a)_

4

R
0<-.> 0 < R0 - R T< (substitution from (5)).

The left ha'f, 0 < R0 - R, is equivalent to R < R0 and the right

R Ro
half, R

0
R

2
< --

'
is equivalent to T. < R. Together they give

,

R
0
T < R < 11.0*

2. a. By the product rule.(there aretther,Ways)

dV
= 10-1)R2

dR
+,(R0 -R)2R) = c2R(2R0-3R).

b.
wif
dV d2v

= 0 and --T < 0 at a particular R indicates a local
dR

maximum.

300
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c. The abf;olute maximum needed here must-occur at atlendpoint

of the domain or at an interior point where dy/dR '7 0.

Thus the candidates are

R
Corresponding
Value of V

R
eridpo into -

0
i.

1 3
c R

8 2 0

endpoint R0

r

local maximum 2/3R0

We ignore the horizontal tangent at R = 0 because it is

outside the domain of our function.

4 3
c2 Ro 41--- the largest V

ke
3.. the polynomial f(R) = (120-R)R2 has a double root at R = Q, and

a §ingle root at s12 = R0.

a

f(R)
Max

inflection

min

R0/3 R0/2. 2R0/3

(Vertical axis not to scale)

301
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Dearborn Heights, MI 48127
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Exercises 4-7, the paper could be used at an intuitive level in pre-
calculus or finite math or liberal arts mathematics courses. The unit
.is appropriate for independent study or seminar presentation by more
advanced students.'

Prerequisite Skills:

1. Definition of infinite series, and its sum.
2. Partial sums.

3 Geometric series skation.
4. Algebra on inequalities (for Exercises 1,2,3,5).
5. For Exercise 4 only: comparison, ratio and integral tests of conver-

gence of series.

6. Algebra related to the logarithm function.
15.7. Log-log graph paper and its uses.

(You can use this paper as a context in which to teachryour students
that y_AxB will appear as a straight line on log-log paper, with A
and B predictable geometrically or mathematically from the graph,
and y=AElx will graphas a_straight line on log-ordinary (semilog)
paper.- lo my experience, many students are using these facts in
science lab work without understanding why they work. They are
delighted to have this enlightenment; their mjstaken feeling that
"none of this calculus is really useful for much" will be suBstan-
daily reduced.)

Output Skills:

1. Use partial fraction? to explain the summation of E1 /k(k+1),,

2. Calculate relative errors to measure quality of match-up between
two sets of data.

3. Carry out a word-count study on any lengthy text in any language.
4. Convert item-count study data into rank-frequency data.,
5 Use log-log paper to graphically test whether rank- frequency data

obeys Zipf's Law.,0
6. Give an example of pure, apparently,Impractical research that has

practical implications for a sophisticated system like human language.

UMAP Editor for this module: Solomon Garfunkel

Q 1580 EDC/Project UMAP
All rights reserved,
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ZIPF'S LAW ,AND HIS EFFORTS TO USE

INFINITE SERIES IN LINGUISTICS

a
1.- PARTIAL SUMS CAN HELP US ADD UP'A SERIES

The partial sums of the series

00

a.

j=1

are, of course,

n
a.

j=1

for n = 1, 2, 3, .... The sum of the series is 'defined

to be the limit ufsthese partial sums as n 00. Although

that's a sound definition, its almost useless hen we

want to calculate the sum of a series, because it is

impossible to simRlify the partial sums of most series

into a form where the limit can be obtained. A classic

exception to this rule is geometric series. The n-team

partial sum a + ar ar2 + + arn-1, simplifies to

1 - rn
- 1-r

(as you should be able to prove). In this simplified

,form, we can see what happens as n 00: for r such

that Irl_< 1, we have rn -*0 and the series converges

td S ) ,

1 - 0 a
a

1 - r 1- r '

while Irl > 1 rn 4 ±o and the series diverges. (What

happens whey, r = ±1?) \
This paper is about 'another exception, another

series wholse partial sums can be directly analyzed.
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This series is not as important as geometric series (which
has dozens of significant applications). .However, our

'series played an interesting role,in the linguistics-

.research of deOrge Kingsley Zipf i the 1920's and 1930's.

We will examine'.that application and the later research

about artificiall languages that has made Zip#'s work obso-
lete. A surprising interplay between the study of human'

languages and engineering research into communications

networks and computer languages will be discussed.

We will see that the serie'so we study is not completely
successful as a mathematical' model in.Zipf's work. Several
efforts to vary and improve the model will all lead to

difficulties--no single accepted model will emerge. That

sort, of partial success is common uhen applied mathemati-
cians work on actual complex problems; this deservel con-

trast against the experience of most students, who see °Ile

successful theorem proven after another as they study 'the

established branches of mathematics.

2. SUMMING THE SERIEI'ZIPF USED

The series we consider here is

1 1.0 1
+ 1

+
17/"' /77k=1 k(k+1)

The key is to use partial fractions. Please check that

1 1 1

k(k+1) V: v71.
,

Now 'the partial sum through n terms is

. 1 1 1 + 1

+
1

k=1 k(k+1) T77
+

(n-1)n n(n+1)

IT
1) fl 1)

(
1)

(1

1 )

IT 7) Tj 0-.17T 0.7

t____J

cancels cancels cancels cancels

= 1
1

n+1
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This partial sum is now so nicely simplified that we can

see what happens as n i co. Of icourge

1

n+1
.

and thus

k(k-44)
(1 - ,74) .

1.

oz'
:The 'original series adds up to Y. _

.

3. 'WORD COUNTS IN ,JOYCE'S ULYSSES

series gives a mathematical model ,of the occur-
,

nence of rare words in J4mes Joyce's novel Ulysses.

Among the 260,430 words in Ulysses there are N = 29,899

different' words- Many are "rare" words appearing only

once or twice. A few are common words that appear' a

thousand times orNmore. We'll study "the rarely appearing

words here. There.4zre 16,432 words (hat appear exactly

once each in Ulysses (about half of N); 4,776 words that

appear exactly twice 43

2(about i-1+1 ; 4.3,N),

2,194 wordt that appear exactly 3 times, each, -

( about A- N = N),
.

I.

and%so on

_ In fact, if nj is the number of words Okav appear

exactly j times in Ulysses (j = 1, 2, 3, ...), these n.

words make up a fradtiOn n./N (of the total 1 words) that
J

is rather closely given by

1

j(j+1)'

the jth telt of our series.

Thus we use the series to model 11 as

N(1st modelL, n -
J J )

4

V

3 0



www.manaraa.com

86

This says that the terms of the serieseries (which, you recall,

add up to 1) split up 1 in just bout the way that the

words appearipg oIrce, twice, thrice, etc. in Ulysses

split up the total ordifferent words appearing in that

novel.

4. HOW GOOD IS THIS SERIES MODEL?

The actual/ number of words appearing once, twice, ...,

ten times in Ulysses is listed in Table 1 along with the

number predicted by the series-model.

TABLE t

Model's prediction
n = actual ? of of number of words
words appearing that appear Relative

i exactly j times exactly j times error
1 16,432
2 4,776.
3 - 2,194
4 . 4,285
5 906
6 637
7 483
8 371
9 298

IF

10 2.22

Source: ;AO, Human Behavior andthe Principle of
. Least Effort.

-The last column provides a ;Imple measurement of the

extent to which predicted and actual values agree: The

relative error is defined to be .

RE 'predicted value - actual value .

actual value . .

--

As an example, for j = 7, the ME is

153?- 4831 51
483 = .10559 = 10.6%.

\
The predicted Acalues are obtained from our series model

as-in this example: for j = 3, the model VT,edicts that

N 29899n3 = = 72-- 2491.58,

which we round. to 2,492.

,

14,9:9c
4,9

9.0%
4.4%

.

2,492 13.6%
1,495 16.3%
.997 10.0%
712 11.7% -

534 10.6%
415 11.9% ,

332 11.5%
. 272 22:5%

tit
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The predicted values given by the terms of our series

do fol44 the trend of the actual data quite well, but you

*may feel that the specific numbers, (483 vs. 534 for j = 7,

for example) are not as close'as )tou might prefer.

Shouldn't the modej. match reality better than that? The

RE's in"the last column average 12.5%. For most research .

in the natural sciences such relative errors would be

considered large--repeated experiments done with labora-

tory equipment, for example, usually yield much more con-
_

sistent results. Errors above even 5% make us wionder

about the experimenter's measuring abilities or the design
of the experiment., But we shoul not expect such hard-

science accuracy- in a "law".or del that concerns so

complicated a social-science process as the choice Of

words by one human in treating one novel. fnstead, we ask:

Is this pattern obeyed by a wide range of language samples?

'S. THE EXTENSIVE RESEARCH INTO WORD-COUNTS-AND

RELATED LANGUAGE PATTERNS\
During the 1920's and 1930's, many word-count

experiments were performed by psychologists and linguists,

led by Professor George Kin ley Zipf.of Harvard and his
students. They found striki g patterns in the frequency

.° of occurrence of: rarely appearing words, the number of

*paggs between appea4nces of a word, the number of and

spacing between uses of individual letters, syllables,

' preixes, suffixes, meanings, etc. Some of the language

texts studied (not all for rare-word frequencies) were:. .

Ulysses by Joyce

--- Stretches of English language newspaper text

--- the plays of Plautus in Latin

the Iliad in Homeric Greek-

wonks in7Old English, and other, medieval

languages

.part of a Bible in Gothic German

--- traditional oral legends in. Dakota and Plains

Cree (American Indian languages) and Nootka

(an Eskimo language)

-7
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--- works in modern languageg from German to

Hebrew to Chinese

--- the speech of children at various ageg

--- some schizophrenic speech.

This exceptionally broad selection of language samples

all yielded fiery regular patterns that astonished the

researchers. A few studies failed to support the 1.

pattern* but the evence suggested that important .

cross-cultural properties of language were being found.

Linguists puisued this research in the search ear -

fundamental structural properties of language. Psychol-

ogists hoped to explain just whet peis goes on in a

human mind as it calls on its whole history of language -

experiences when crafting new sentences, paragraphs, or

books. One of Zipf's books (see Section 10) contains a

readable survey of these experiments. It also contains.

the extens.ive,consequences for human behavior that Zipf

put forward as implications.of the research. A too-brief

review of his logic: Zipf claimed that different amounts
4P

of mental effort are exerted bra speaker or writer in
,

choosing words. Common words, very ftequently encountered

in the writeres past experiences, "come to mind" with

little effort while words met less often -in the past
fr

requir more effort for their up. A human selects words

to exp7ress an idea using the "Rrinciple of least effort.U.

Zipf hoped- to derive the specific quantitative patterns

he had found from such a basic principle (in the same

way that Newton, starting from a few basic assumptions

tsu4ii as'the law of gravity, could derive the motion of

the planets and many other results). Zipf offered

situations analogous' to writing or language usage where

behArior obeYing a law .of least effort did lead to the
-

patterns found, but hedid not succeed in deriving the

surprising patterns from language structure itself.

*One of the exceptions is another novel by James Joyce, Finnegan's
Wake.
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6. ZIPF'S LAW (THE RANK-FREQUENCY LAW)

A central result of this research'is "Zipf's Law"

also called the "rank-ffequency law." We have. looked at

the number nj of rarely appearing words that appear with

frequency (number of occurrences) j for j = 1, 2, 3, ....

In a rank- frequency study, one looks instead at thetrank

of a word (1st, 2nd, 3rd,
etc.) when the words of a book

-are listedOn 'order of decreasing frequency. Thus the

most-repeated word has rank 1 apd frequency fl, the second-

most-repeated word has rank 2 and appears.f times, and

so on.- Zipf's Law, also found empirically, is that

'r.f = constant

i.e., that the rank and corresponding frequency are in-

versely related. Ai an example, Table 2 gives various

ranks, frequencies, and rf products for Ulysses.

TAB4 2

Actual Rank-FrequAcy Data from Ulysses

Rank Frequency
(f)

rk products

10
20
30

2,653
1,311

926

26,530
26,220
27,780

40 717' 28,680
50 556 27,800

L 100 265 26,500
200 133 , 26,600
300 84 25,200
400 62 2"4,800
500 50 25,000

1,000 26 26,000
2,000 12' 24,000' ti3,000 8 24;000
.4,000 6 24000
5,000 5 ir 25,000

10,000 2 20,000
20,000 1 . - 20,000
29,899 1 29,899

A

Source: Zipil Human Behavior and the Principle of Least

Effort.'
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The approximate constancy of this third column is

strikini and intuitively unexpected. And the constant

value obtained is roughly N = 29,899, the number of

distinct words being ranked, or perhaps it is a bit less

than N. This is di'scussed in comments following Exercise

1 in Section 8.*

7. A LOG-LOG GRAPH REVEALS OBEDIENCE TO ZIPF'S LAW

There is an easy way to graph the (r, f) pairs from

Ulysses for r = 1, 2, 3, ..., 29,899 so that the closeness

of fitto r.f = k becomes visible. On ordinary graph

paper, rf = k appears as a hyperbola; it is hard to look

at the graph and determine that we have f = k/r as opposed

to some other similar curve, like f = k/r2 or f = k/r3-2.

'hit these curves are easy to tell apart when gtaphed on

log-log-graph paper. Notice that rf = k implies logr+

logf =log k. Thus the points (r, f) fall on the curve

rf = k if and only if the points (x, y) = (log r, log f)

fall on the straight line with slope -1 x + y = log k. On

log-log graph paper (see Figure 1), the axes are labeled

with values of r and f but, because of the special spacing

of points along these axes, we are really plotting y = leg f

vs. x = logr. Wb will have a goo&fit to r.f = k if the

data fall along a straight line with slope -1, cutting '-

both axes at 450.

In Figure 1, the tendency of both curves A, and B to

follow the straight line C is very striking. (The "steps"

at the bottom-right of both curves occur because, for high

*Zipf's Law rf = k appears to fit many kinds of ranked data beyond
our word counts. For example, when U.S. cities are ranked by popula-,
tion (so that r = 1 for New York, etc.) then rf = k holds pretty
well, where f = fr is the population of the city with rank r. The
rule fails for cities wod-wide, or for cities in much less urban-
ized, industrialized societies, and the extent of fic to this law has
been proposed as a measure of a nation's urbanizatidn. Consult the
social science literature for more details and other examples.

t9
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ranks there are many 'ties, many occurrences of the rare

frequencies 1, 2,-3, .,..)

Researchers up to this point had not explained Zipf's
.

Law, or the series model that we began with in this paper

or other patterns.

10000

41000

10

1

e

10 100 1000

'RANK

10000

Figure 1.ft- Data that precisely obeys Zlpf's Law would,
graph like C, having slope -1, to whicY1 curves A and B
should be compared Curve 'consists of all the (r4f)
data pairs for Ulysses, not just the few given in Table

connected together into a curve. Curve B is a
similar rank-frequency graph for a sample of 43,98
running words of Amdrican newspaper text,,studied y

.R.C. Eldridge. (The Ulysses data was created by Hanley
and Joos, but first graphed by Zipf. Soucte: Zipf,
Human'Behavior and the Principle of Least.Effort.)

9

3106
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8. EXERCISES: DERIVING A NUMBER-OF-WORDS LAW
4

We have studied two parts of Zipf's research, which

we summarize as follows:

(A) The rank-fre.quency law fr = k/r gives the approxi-

mate frequency (number of appearances) fr of the,

r
th

-most-commonly-appearing word in the language

sample, for r = 1, 2, 3, ..., N.

(B)Thenlonber-of-wordslawn.=N/j(j+1) tells how
many words (among the N different words of the

language sample) appear exactly j times, for j = 1,

2, 3, ....

Both are empirical laws--they work quite well for a wide

variety of languge samples. So far we have no deriva-

tion of these laws from obvious{ or widely accepted facts,

no clear explanation askto why they should be true.

\These two laws are related to each other and that

is worth our study--if one follows from the other, they

are more believable together than either is by itself.

Therefore, let's assume that (A) is true and'try to (

deduce a number-of-words law from it. Specifically, let's 9

try to calculate nl, the number of words that appear

exactly once (i.e., that have f = 1).

The rank-frequency law predicts frequencies fr between

1 and 2 for all words with ranks k/2 + 1 up to.k:

1 K f< 2 a01 < < 2

49 < r < K.

Thus, a total of k/2 words have theoretical frequeRcies

f in the interval [1, 2).

However, frequencies must be integers; fractional

frequencies do not make sense. Let's decide that we will

always round f downward to the next lower integer. Then

314
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ft (1, 2) becomes = 1, and n1, the number of words

with f = 1, is

nl 7- 177
k k

This looks promising--if we are going to.derive nj =
, N /j(j +l) from (A), we need that denominator 1.2 in n1.

But that k the numerator? Maybe the correct constant

k in the rant-frequency law i5 N? We'll have to test that
'idea later. First, extend our result for nl by doing
Exercise 1.

Exercise

Assume that f k/r for r 1, 2, 3, ....
a) Show that fe j+1) occurs exactly for ranks

r e (Fa , .
k

b) If we round f e (3, 3+1) downward to the Integer value f = j,
show that

kni

for any 3.
..111-

Thus we can deduce (B) from (A) if we agree to round f

downwArds and if k = N.

We sould test whether k = N'empirically by trying
it on many language amples. We can starthere with

Ulysses, which contains N =. 29,899 different words. The

r and f data in Table 2 can be used to get h comparable

value of k. Let's exclude the data for r = 10,000, 20,000,

and 29,899 because these (r, f) pairs are located in the
"steps" of the ,(r, f) graph where r changes while f does

not. arid those rf products are not very constant. When
we average the r.f products in Table 2 for 10 < r < 5,000,

et k = 25,874. Thus k # N. We have k about 13.5%

smaller than N' in thig one example.

V
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Wait. This is no time to quit on the problem--the

values N/j(j+,1) art also 10-15% too large for fhe actual

nj of Ulysses in Table 1 (except for j = 1, 2). We could

correct that by decreasing N/j(j+1) to k/j(j+1). . Thus

we propose / -

(2
nd

nj = j(p+1)

for all but the smallest j. We cannot apply this model

for all j because'

N = n. ;

3

however,
r k r 1

TTITT)
,

j(j+1)

But the 2
nd

model may work well for all but the mallest

few values of j, which are special cases requiring eir

own formula. Ulysses data comparable to that in Table 1

appears in Table 3. We must be cautious in,concluding

that the 2
nd

model will do this well fdr j > 10 or for

language samples other than Ulygses.. The second model

does not seem to appgar in the psychological literatEre,

probably because Zipf deduced yet another number -of -words

formula from tife rank - frequency law.

TABLE 3

Additional NuMber-of-Words Predictions

2
nd

model*

vs. Ulysses Data.

3
rd

model*
true predicted pfedicted

:1

n. n. RE n.
RE i e

. 1

__1_
16,432 v 12,937 21.3% 34,4'9 109.9%

2 4,776 '4,312 9.7% 6,900 44.4%
3 - 2,194 2,156. 1.7% 2,957 34.8%
4 1,285 1,294 '1.6%,. 1,643 27.9%
5 906 862 4.9% 1,045 15.3%

0 637, 616 3.3% 724 13.7%
7 483 462 . 4.3% 531 9.9%
8 1 359 3.2% 406 9.4%
9 , 298 287 3.7% 320 7.4%

10 ( 222 % 235 5.9% 259 16.7%
\ .

*All calculations are based on k = 25,874.
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Surely you wanted to object to the "rounding", of

fc [j, j+1) to f = After all, would you round 3.01,

3.3, 3.49, 3.51, 3.99 all to '3? It would also mean that
fc [0, 1), which is predicted by f = k/r for ranks k <x

N, is .rounded to f = 0, although each of the words

with these ranks appears in the language sample.at
least once. Zkpf proppsed instead to round fc[1/2, 3/2)
to f = 1, fc (3/2, 5/2) to f = 2, etc. , 1

Exercise 2.

Assume that f = k/r for r = 1, 2, 3; ....

a) Show that fe [j - 1/2, j + 1/2) occurs exactly for words'

with ranks

j +k 1/2
< r < .

j - 1/2i'

b) If we round fe [j - 1/2, j + 1/2) to f j,'show that

(3rd model) nj
(j - 1/2)(j + 1/2) for any j.

This third model is the one given by Zipf. It leads us 'o

to ask:
a

Exercise 3.

n.

j -1

should equal N, the total of di

study. Sum the series suggeste

1

P 2 j+ 1 2O
1

by simplifying the partial

summed early in this paper.

SUMS

s in the book'under

n Exercise 2, formula,

in much the way E 1 /j(j+1) was

SinceExercis%,..3tellsos.that.Eni N, we know we
cannot use the 3rd model for all j, based on k and N from

Ulysses. sAs with the 2nd model, for low j the predicted
values are far too large. Table 3 shows a very, pior fit

44
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between this model and the Ulysses data; for much larger

values of j the fit may be much 'better.

So it goes! In three tries, we have not achieved

a trouble-free model.

Exercise 4.

Without finding the sum, give more lian_one,proof that
co

1

is a convenient series. Mention the convergence tests you use.-

Exercise5.

Suppose we decide to round upward: Assume rf = k and decide

toreplacefe0-1,flbyf.j.,miatruleforri.fol lows? Is it

a better model than the ones we have discussed? Prepar4the

equivalent of Table 1 for this 4
th

model. How did you decide whether

or not it is better than the first 3?

The series result

T 1

, 1(00.1) 1

can be used to find the sums of other series./ Two

examples appear as Exercises 6 and 7.*

Ex/se 6.

irst show that
co

kk ,1001, 7 1 .2
J.

2.3
,+

"47

+

13 (2n - '4n=1 (2n +

Use this result to show
c0

+ 4.* 1 +

n1
. 1

. 1

1.3 3.5 5.7 2n - 1)(2d + 1) 2
=

I..

*Thanks go to
e

Glessner of Central Washington University
for suggettIng Exercises 6 and 7.
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Exercise 7. t
we 'start with the result in Exercise 6:

1 .1 1 1

-17 35 -57 't.
and use the same "sum up two terms at a rime" method (as displayed
in Exercise 6) on it, show that we get

1 1 1

0
(4n + 1)(4n + 5) 1.5 + 5.9 + 9.13 +

9. MANDELBROT'S EXPLANATION OF THE LANGUAGE PAi.tigNS

, Zipf'sLaw and other striking patterns found through

word-count sorts of experiments op natural (i.e., human)

languages-were finally explained by scientists working

on very different Problems, problems related to artifi-

ci'al languages. Zipf and his colleagues had examined-

. the structure of language and the process of writing or,

speaking; now-Norbert Weiner and Claude Shannon led the

study of communications channels. Human speech and

writings, electronic signals sent over telephone lines,

messhges sent in Morse code, radar signals sent out and

received after bouncing back, coded data moving / from IBM

cards into a computer's electronic memory, all are examples

of information being coded and sent by a transmitter

(speaker, writer, telegraph key, user, etc.) then received,

decoded, And interpreted by a receiver (listener, reader,

etc:). The researcher asked: How colkild, ilzformation be

most efficiently coded and sent so that it would be

received at'lowest cost-and with high accuracy? How much

repetition. ("redundancy") should be included as- a check

on the"accuracy of the message received? Their main goals

here the efficient design of high speed, high volume, highs

J
pa curacy man-made data channels for use i

'ternational telephone and microwave syste

applications, but the linguiSts and psychol
0

at once th-
.
is re earch w relevant to

human language communications, t
1

computers,

s and-military

gists noticed

he study of

319
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This research led to an anticlimatic completion'Of

'the project begun by Zipf and` his team. In 1953-54,

Benoit Mandelbrot showed that the number-frequency, rank -

frequency
,

and oiler patterns .found by Zipf will always

arise in any language satisfying these two assumptions:

1. The language is made up of words- -small units

of information separated by spaces.

.2. The transmitter encodes and the receivdr,

decodes word by word- -that is, the speaker

(or writer) formulates,..a4d speakope word

at a time and the listener.(reader) listens'

and interprets one word at a time.

The main point is the presence of a space between units
of' information. By.random processes this spacing, and

the word by word handling of messages, accounts for the
-411- patterns\ There is no need, in'explaining'the patterns,

to claim that James Joyce, while writing Ulysses, was

choosing words using unknown "universal laws" of language

structure at, some deep almost-unconscious level of thought.

Iqstead, we simply claim that JdFce was choosing his words
one at a time to convey his meanina. The space-between-

words structure of English then suffices ,to produce the
patterns. Mandelbrot showed this by.using a lot of

advanced mathematical statistics.

Zipf's ideas persisted for a while. The applicability

of Shannon's work to human languages was challenged and.

some of Mandelbrot's assumptions were questioned, by

H.S. Simon and others. Simon, in 1955, published a/ter-

4.t.4-re'eNplanations o Zipf's Law and other patterns,.'

using the idea tha the more prior usage.a word has had,

the more1likely i is to recur.
.°

Mandlebrot has won the day, however. My most .

recent reference, in Mathematics and Psychology, edited

40)Y George A. Miller., John Wiley and Sons, New York, 1964,

includes 'Otis quote from Barbel Inhelder and jean Piaget
on page 249: . 4

0
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... during the 1930's G.K. Zipf stirred up -

considerable intbrest in various statistical

regularities that he uncovered in his, analysis

of word frequencies. 'Twenty years later the

mathematician Benoit Mandelbrot was able to

demonstrate that.Zipf's laws were attributable

to random processes and implied Ao'deep lin-
.

guistic or psychological consequence's.

10. SOURCES

I first met this application in the essay "The

Sites of paings" by'H.A. Simon in Statistics: A Guide

to the Unknown ed. Judith Tanur, Holden-Day, 1972',

pp .195-202. -This paperback contains many short essays

that ow the'applicability and practical uses of star

tis ics, especially the difficulties of statistical

experiment design. Most are only modestly mathematical.

The work of Zipf and his colleaguels well summar-

ized in G.K. Zipf, Human Behavior and the Principle of

Least Effort, Addison-Wesley, Cambridge, Mass., 1949,,

Chapters 2, 3, and 4.

The original Ulysses data, complete, appears in

M.L. Hanley et al,-Word Index to James Joyce's

*loses, Madison, Wisconsin, 1937.
,o

The mathematics used by Zipf to relate his_rank-

frequency law to the number - frequency -law for rare words,

presented in Exercise 2, was.presented in G.K. Zipf,.-

"Homogeneity and heterogeneity in language", Psychological

Record, 241918), pp.347-367. A more general argument

Martin Joos appears in a:book'review of Zipf's The Psycho-

Biology of Language, )-loughton Mifflin, Boston, 1935 in

Languages12 (1936) Joos, while contributing

to Zipf's rigor, is not uncritical.

A good summary of Mandelbrot's results and their'

meaning maybe found on pp 60-69 of R.D. Luce, edc,

I 'T.
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Developments in Mathematical Psychology: Information,

Learning and Tracking, Free Press ol Glencoe, Illinois,
1960. Part I (by Luce) is "The Theory of Selective

Information and Some of Its Biological Implications" and

covers Shannon's work and some brief mention of Zipf. I

did not obtain the papers of Mandelb7oi-i Miller and Simon
referenced there but relied on Luce's 'rendition° their...)

work, which I hope I have not misrepresented. The

bibliography on 'pp 110-119 of Luce (above) will direct
you to the original literature.
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'11. ANSWERS TO EXERCISES

1 _r+f = k and j < T < j+1 4, j
k

< j+r < r < .

Thus a total of

.k k k

T j(j +1)

ranks r have associated fe[j, j+1).

A
2.

, ,,i + _--- < r< k1 kSimilarly 7 z
7 .1 1. " 2 1

. 1

and

k

j

k
nj , r: 1.1

=

.2- LJ
,

1.)

3. Using partial fractions s 0 %..

, 1 1 1

1. .

(j '- I) (j + 1-) ,

j 7 7
y J2 y

4
the partial sum is

1 1 1 1

"n CUT - 377) W-2') *L-

or.

[(in-
1

1)/2 (2n + 1)/2 172 (2n +1)/2

Thus the series ,sums to 2. But E n. = 2k >> N

makes Zipf's model also only* partially useful.
A

4. Comparison-and integral tests are easy enough.

5. The rule is f = j+1 for theoretical fe(j, j+1],

i.e., for ranks

< 3-k

(using the solution method.of Exercise 1). Then
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k k
-j+1 JT j(j+1)

for j = 1, 2, 3,.... Thus nl is excluded, which

makes no sense, and the split-up'of k totals

.
r

2

.1 1
,

J(J+1) 2 ' 4 J
a .

(

also not nicely interpretable. Shifting the terms
.

+ .does not h ps fit the Ulyss"datanj nj+1
. ,

elp rr .

better, as an eyeballing of Table 1 will, show.
. . .

6. All thit's missing is

1

1

.

k(k+1)

1 1 4.1 )
7W (7W77I 2h +'1n=1

ce`
1 4n

l
2

n=
L.

1
2n ((2n - 1) (2n +1)1..n1 (2n - 1) (2n + 1)

=

Nta.

7. First we 'show

1 1 1 : 1 -

7 1.3 375 377

111 411 111 1 Ill+ 1 1
3(1 5) 7(3 11(9 1-1)

n=0
4n + 3 (4n + 1) (4n + 5))

1 8n + 6 2
1).1 (4n + (4n +5)4rTrS (4n + 1)(4n+ 5)

n=0

The result then follows at once.

S
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1. THE DEFIVITION OF "CURVE"

Webster's Dictionary defines a curve as "the path

of a moving point." If the moving point were the point

of a pencil, it could trace out the curve on paper.

.

,For example, the point of the pencil on a compass

might trace out a circle.

/-

Webster gives another more technical definition of

a curve: "A line that may'Ue,precisely defined by, an' '

equation in such a way that its points are functions of

a single independent variable or parameter." We can

think of the variable or parameter *time and call !,/t.,

Then the coordinates of the moving point, x(t) and y(t),

are the functions of time.

a a%
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a

,/

yr

yIf we imagine the pencil as making of on the

curve every second, these chits will show ow the curve

has`beentraced. In particular, thelr'spacing will indi-

cate the speed of the moving point. Here the point is

speeding up as it moves to tie right.
p

2. PARAMETRIZATIONS OF THE UNIT CIRCLE

Below is a circle which is traced counter-clockwise

at a uniform speed,of 150, or 3 rr7 radians, every second.

When it.i& finished in 24 seconds, it will have 24 evenly

spaced dots. The Coordinates.of the moving point are

given by the equations
.

x(t) = cos,( t);

y(t) = sin, TT ti.

329
CP
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There are many other ways to trace the same circle.

In the figure below we see only twelve evenly spaced
dots, so the equations might be

x(t) = cos (:iri tj;

y(t) = sin t). 46

However, they might also be

x(t) = cos t);"

y(t) = -sin (g- t)

which would trace the circle with the same constant
speed in the opposite direction.

330
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We might also trace the circle by having the x

coordinate move at a uniform speed from 1 to - 1, for

example,

,x(;.) = 1 - t. 0 < t < 6

-y(t) = = - t2

These equations work only to trace out a semi-

( circle.

Here the dots- are not evenly spaced. They are

closest together at the top and bottom, indicating that

the curve is traced most slowly there. The tracing point

actually moves infinitely fast at thd left and right

sides.

st

QUESTION A: Can you find similar equations to trace out

the bottom semicircle, for 6 < t < 12?

\'

331
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.44

All these different fu 'nctions define diff&rent

parametrizations of the circle. jie say that they define

different parametrized curves. The set of points which

a curve passes through is called its image. All the

different parametrizations of the circle have the same

image.

In addition to defining the speed,"a parame.trization

also defines the order in which the points in .the image

are traced. Thus, a point traodng a clockwise circle

moves in the opposite direction from a point tracing a

counter clockwise circle, so it passes through the points

in the image in the opposite order. Thus there aretwo

orientations to the circle, clockwise and counter clock-

wise.

3. OTHER PARAMETRIZED CURVES

The situation becomes more complicated if the Curve

i8 not one-to-one, i.e., if it passes through some points

more than, once. Here is'acurve which crosses itself,

yassinghrough the point B twice. One orientation would

be to pass through the points on the image in the order ,

CDBE.

lb

4

Another pethod of tracing the sage image, shown
- .0

Partly,completed here, would pass through the points in

the order ABDCBE, making two corners at B. Two more
.

5
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orientations would start at. E and end at A. QUESTION 13:.

What are they?

Although a curve can pass through certain,points

on its image more than once, it should not cover whole

sections more than once. Thus, ABCDBDCBE would not give

a Valid orientation for the curve.

There is/not g wrong with a corner in a curve.

A mathematial e is not necessarily a smoothly

curving line, but may have corners, and can even consist

entirely of straight lines. Far example, a square is a
curve. Gan you find a set of equations which describe

this curve?

The trick is to find separate formulas for the

different side's of the square, just as separate formulas

could be used for thetwo,semicircles making up a circle.

$

6
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The functions below define two sides of the.square.

(t, 0 < t < 1
x(t)

1, 1 < t < 2

ti

0, 0 < t < 1

. y(t) =
t -.1, 1 < t <

y
10,

(0,0) (1 , 0)
x

QUESTION C: Can you continue these functions for

2 < t < 4 to define the other two sides?

..t

4. CONTINUOUS CURVES

A natural subcollection of the class of parametrized

turves are ones for which the tracing point moves dentin-

uously, without jumping. This condition'is equivdlent to

requiring that the curve can
.
be drawn withou41i lifting ,thee

pencil from the paper!"

4 81,,,is

"0

'334s
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*

It is also equivalent to requiring that the two

coordinates x(t) and y(t) be continuou*sfunctions of
the time parameter t.0

.-.

If one of the coordin'ate functions is discontinuous,
for example,

0 < t < 1
x(t) =--,

t+1, 1 < t < 2

1
y(t) = 7 t 2

1

i

..:

the resulting image, shown below, may have a gap in it.
If both x(t) and y(t) are continuous, the result will IA

a continuous parametrized curve, called simply a curvee ..,

for short.

IP.

2

1

a
...re'

i i ,

/

-

..

8
--.......
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I'

'4:

S. CURVES WITH UNUSUAL PROPERTIES

There are many strange exam es which satisfy this
definition of curve.

L7

- Example 1

For example, if lnx denotes the natural logarithm
of le, then the equations

x = t cos(2n ln t)

y = t sin(2n ln t)

which make sense on the interval 0 < t < 1, can be eb
tended to a continuous function on O.< t < 1 by defining
x(0) '. y(0) = O. This gives a curve, called the log-

arithmic spiral, which has infinitely many (similar)
turns near t = O. Nevertheless we will prove that it
has finite length.

,

41

Consider the first turn of the spiral, from t . 1 illp

to t . e-1 . Suppose it has length L.

336
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ti

The next turn of the spiral, from t = -1
to t = e

-2

looks exactly similar, but e
-1.

is large, so its length is
-1

Le . Similarly the length of the next turn is Le -2
.

-Thus the length of the whole spiral is L + Le-1 + Le

+ Le
-3

..., a geometric series which converges to

L/(1 - e - ,1), a finite length.

Problem

Verify that the turn of the spiral from t = e -1
to

t = e -2
is similar to the tun from t = 1 to t = e -1 with

constant of proportionality 1.

( t
There is also a spiral which winds toward the origin

in uch a way that it, has infinite length. It is the

hyperbolic spiral

= t cosh)

y = t sin(1).

which can again be defined for 0 < t < 1 by letting x(0)

= y(0) . O. The length of the spiral must be at least

as long as the length of the inscribed polygon ABCDE...

which we will show is infinite. If 0 is the origin, then

AB and BC, are both longer than OB, while CD and DE are

both longer than OD...and so forth. So the length of the

spiral is greater than twice the sum otthe lengths of

337
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t

the line segments from thorigin to the "y crossings,"

the poirits where the curve crosses the y-axis, the first

three of which are-B, D, F.

,

,

p

How long is OB? Consider the intersections of the
t

spiral with the y-axis (x=0). Since t # 0, we have

cos

(IT1
-fj = 0

so+that,

n n 3n Sn 7n
to- I' -2' -27' T'

i.e.,
, 2 2-'2 't = 2, -s, 3-,_ 7, . .

tare SITSince t < 1, the acceptable values for 1.!are -r, 1,

The length of OB is thd y value when

n 3n r 2) t21 2 2

Y 2
It = 3j: y t-sj = -3 , so .0B, = 3.

i

333
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nBelow
2is

the graph of y = t tin (1.1,,with the poiRt.

I

B' = [3, :T
)

giving the y coordinate of the oint B,

i.e., the length of OB. Similarly D'= (5,, i gives the

y coordinate for the point D. The length of the spiral,,

which is greater 'than the length of the polygon, is this

greater than the series

2 + 2 R) + 2
[.;_i

+ = 4 - + +1 1

7

which diverges. §o,the length is infinite.

Example 3

The infinitely wiggly graph of y = ts4n (i) alio has

infinite 16112th by a similar argument.

t.

Other Examples

There are functions wItose 2'raphs have infinitely

many wiggles, and infinite length, between any.twolioints.
,

.

-
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The snowflhe ecuzme also has infinite length be-

tween any two of its points.

er

Among the strangest examples of curves, are the

"space filling curves," which pass through every point

in an area such as a square.

R

6.. EXERCISES

1. How many different parameterized curves have the image shown

beloy?

340
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C.' ',.

2. How many different oriented curves have this image?

3. 'Find two different parametrized curves, defined for 0 < t < 1,

which have this piece of a parabola as an image?

oe

0

3. Find the equations for the parametrized curve which traces this

equilateral triangle at uniform speed in a'counter-clockwi,se

direction, starting at the vertex (0,0), 'in the time interval

0 < t < 3.6 r\

4

a

ti
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7; MDDEL EXAM

State whether eaph o? the curves described below is an

oriented curve, a parametrized curve, or the image of a

curve.

a) The contrail left by a jet plane.

b) The script letter m, drawn from left to fight.

c) A marathon course.

d) The straight path of an automobile, accelerating

uniformly'from 0 to 60 miles per hour in ten seconds.

e) A figure eight.
OP

f) The path of the tip of a ,second hand on a wall clock.

2. If ABCD is the curve defined by tracing the first three S'idbs

of the hexagon below, with constant speed in the time interval

0 < t.< 3, find the formulas for x(t) and y(t).

O

---- Y

-3 4
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1. Describe all possible orientations of the figure 8, starting

/at the top point P.

O

1'-

4. What is meant by the image of a parametrized curve?

5. Give a parametrized curve whose image

{ (x,y) ID < x < 1, 0 < y < 1, x2 = y31.

A

S

343
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8. ANSWERS TO 'QUESTIONS IN TEXT

A.x(0,...71,-t- 3 ,

y(t) X7,7= -
3 T

(t -3)2.- -1 Xtit -t2 72

B. The order EBDCBA and the order EBCDBA.

C A set of the equations for all four sides of the square

It

, 0<t<1
1 , 1 < t < 2

x(0.= 3 -t, 2 < t < 3

0 3 < t < 4

y(t) =
1 , 2 < < 3

4-c, 3 <t4. =it

f
10 0 < t <

o

t-1, i < t < 2

9. ANSWERS IQ EXERCISES

i. infinitely many.

2. Sixteen.

3. (Possible answers)

x(t) = 1 - t, y(t) = (1-02;

x(t) = t, y(t) " t2;

I

x(t) Y(t) = t4;411/t5

x(t) = iF, At) =t
4.` (2t, 0 < t < 1

x(t) =
3-c, 1 < t < 3 y(t)

*344

are:

0 , 6 < t < I
/(c-1), 1 < c < 2

3(3-0, 2 < t < 3.

177



www.manaraa.com

10. ANSWERS TO MODEL EXAM

1.

2.

a) image

d) parametriFed

A(c) -

b) oriented curve c)

curve e) image

1 + 2t, 0 < t < 1

2 + t , 1 < t < 2

b 7 t , 2< t< 3
I

.

.

oriented

f) parametrized

Y(t) =

curve

curve

0 9 < c < 1

:11 (t-1) 1 < t'< 3

3., PABCDEBFP, PABEDCBFP41/ , PFBEDCBAP, and PFBCDEBAP.

5. Possible answeri

x{t) = t, Y(t) = t2/3

x(t) = y(t) = t2

-tt

0 < t < 1

0 < t < 1

34 5
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1. INTRODUCTION

ar)In this unit we will describe the image of a homeo-
morphism from the standard sphere into three dimensional
space, whose exterior is not homeomOrphic to.the ex-
terior of'a standard sphere. It.is called the Alexander
horned sphere because it was discovered by J.W. Alexander
in 1924, and looks as if it has grown horns. We
will start by discussing the situation for simple closed
curves in the plane. Then we will describe tize-horned
°sphere, and suggest the idea behind the proof that it
has a non-standard exterior.

,2. THE_JORDAN CURVE AND SHOENFLIESS THOEREMS

A simple closed curve is a closed curve which does
riot cross itself. If it is parametrized by a continuous
function f frothe interval (0,1] to the plane R 2

, then
f(a) = f(b), for a < b, if and only if a = 0 and b = 1.
(See Figure 1.)

Figure 1

If S
1

stands for the unit circle,((x,y)LR
2
Ix

2
+y =1):

we may also think of our curve as a homeomorphism g of
S1 into the plane. This means that g is a homeomorphism

.of S
1
onto its image g(S 1 ), although g(S1) is not'neces-

sarily the whole plane,

°

350

/
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Suppose we have such asimple 'Closed curve g. The
Jordan curve theorem skates that g(S 1

) separates the
plane into the union Of two non-empty connected open sets

1A and B. That is; R 2'- g(S ) = A U B, A and Bare both
non-empty.and open, and in particular, gs(S

1
) is the com-

plete frontier of both A and B. The previous set, A, is
called the interior of the curve, and the unbounded one,
B, is called the exterior. (See Figures2.)

Figure 2

The Shoenfliess Theorem states in ad,dition that
the homeomorphism g, which is defined only on the unit
circle S 1

, can be extended to the whole plane, so that
it takes the interior of S

1
.to A and the exterior to B.

Thus A and B are homeomorphic to the standard "round"
regions.

We will not prdVe either of these theorems here.

3. THE HORNED SPHERE .

Let R 3
denote the three dimensional space.of

triples of real numbers (x,y,z), let
S
2

= f(x,y,z,)eR 3
Ix

2
+ y

2
+ z

2
= 1] be the surface of

standard round sphere in R
3

, and let g be a homeomo ism
of S2 into R3. Then the gederalization of the Jorda
Curve Theorem, sometimes called the Jordan Separation
Theorem, states that R 3 - g(S2

) = A U B, the union of
two non-empty4connected open sets, and g(S 2

) is the

351
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,.
t

complete frontier of each. Again, A represents the in
`terior of the distorted sphere g.(S 2 ) and '13 represents

the exterior. (See Figure 3.)

. °

any

-

Ficiure 3

The analogous generalization is actually true in
number of dimensions.

However, the generalization.of the Shoenfliess

Theorem is not true in the-case of g(S2) and the Alexander
Horned Sphere is ecounterexample. In this section, we
'will const"ruct a bomeomorphism g s2 into R3, such

that the exterior B of g(S2) is not homeomorphic-teOe
exterior of the standard sphere'S,. In particular, then,
it will not be`possible to extend g to a homeomorphism

Of the exterior of S2 onto B.

.Toconstruct thehorned'sphere, we start with a
'round sphere as the first approximation and push out

. .

,a pair of horns to make the second approximation. We

can'do this by taking two pairs of cencentric discs on
,the sphere,.Dgc:Co;sand Dic:Ci.' Then we k e p S

2c
- (CGUCI.)

fixed, push Cg-- Dg-afid C1 - D1 to'tbe tubular sides

of the horns, leavink-'circulir caps made fronicT0--and.Di,

as shown' in Figure 4.)' r,

From, the flat .ends of-these horns we push out two

new branches in the same way to gef the third'approxima-
. tion. -St leeks like a pale of crab's olmws parti",ally

Interlocked but notclosed or touching, To do this, wp

3

Figure 4

need only move points which liebside the'leur discs
C
00'

CO3, C
10 '

and C11. (Figure 5.)

L.

,Figure 5

We repat'again and again, gfowing, new branches

on the tops of each of the aid branches.. Since each.

new pair of clat4s. is a reduced version of the previous

pair, the total amount any point moves is dominated by a,

geometric progression. ,Therefore, the approximations

rf

s'
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4

converge uniformly to a continuous limit function g from"'
S2 to R3. By the wdy the construction isarranged, g is
also one-to-one, so it can be proysd that g is a homeo-
morphism. (Figure 6.)-

1

o

."

Figure 6

We can rotind'the corners of our surface to mike
anew function g which is smooth (Figure 7), except at
the points which belong to an infinite number of the
discs Ci. These exceptional points are'called utii
points. If we take any infinite binary expansion, say
.011'00110, we can get a. corresponding contracting

-sequence of discs C0
C01= C011 C0110

a wild point P in common. ThUs there is at east one
wild'point forde'very real number between 0 and 1, so
that the collection of wild points is uncountable.

Let C = ((x,y,z) cR 3 Ix
2
+y tz

2
(<1) be the interior

of the unit sphere S2. Then we could pull Calong as'we
pda,out S2, so tile' functiong can be extended to C,

t giving a homeomorphism of thei closed ball s211C into R
3

.

Therefore the interior A ofg(*S2) js homeombrphic to
'the round ball C.'

la*
(

354

Figure 7d

,

But what about the exterior B of g(S 2
)? We will

show in the next section why B is not homeomorphic to
the exterior D of the unit sphere S

2
.

SIMPLY CONNECTED SETS

Th demonstration tha B is not homeomorphic to
D uses_:.,he following topol gical property. A set X
'is called simply connected if every closet curve in
X (calle,da loop in X for (short) can be shrunk continu:
ouslyin X until its ima 1Jg1le

is a single point.

tFor, example, the exterior D of S2 in R
3

is simply
connectod,'because ever loop L can be pulled off the
sphere and collapsed to a single point P. A number of
intermediate positions are shown in Figure 8:

,/Suppose the loop L is parametrize() by a continibus
function f(s) from JO 1) to'X, and that the shrinking

lihmotion takes place f r t in the time interval (0,1)
Then ,for each fixed we get an intermediate curve

4 .355
J.
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.

Figure 8

(

&!rve ft(s), which is alsb closed and continuous, and
these intermediate curve depend continuously on t. The
intermediate curve must agree 'with, f(s), when t =
and stay fixed at.P when ,t = 1.. Thus, a parametrization
of the,sbrinhng motion is a continuous function
5f(s,t) = ft(s) of two variables, se(0,1), wfiich marks

\distance along each curve, and te10,1), which marks the.

4ifferent intermediate curves in the motion.

o

.

It must fratisfyb

a. F(s,0) = t(s) foil alf s,
b. f(0,t) =F(1,0 for all t, and
c. = P for all S.

Such a function F is called a homotopy. It is said
to shrink the leop f id to the point P.

. t

If T denots the stolid- donut, or torus, shown in
Figure 9,.then its exterior = R

3
-T is not simply con-

,
c-

ifected. The loop L, which w4ans around the. hole, cannota.

`be shrunk to a point without;crossing T.
.

Suppose there were a homeomorphism h from the ex-.

terior D of S2 to the.exteq.or Y of T. Than, knowing
4c Iris simply connected, we could prove Y to be simply

. connected d2)iopIows. Let f parametrize a closed. loopODA)

7

Q

Figure 9

in Then h-lof is a closed loop in D. Since D is
simply connected, there is a homotopy F which shrinks
the loop h -1 of in D to a point P. Then hof will shrink
the loop f in Y'to a point 4(.P), 'Since this works for

) any loop4:in Y, Y is simply connected.

We lay simply connectedness is a topological property,
because it is preserved by homeoMbrphisms.

5. THE EXTERht OF.THE HORNED SPHERE
t

.We can prove similarly thatthe exterior of B of
the Alexander Horned Sphere ks not homeomorphic to D,
if we can show that it is not simply connected.

At first, this might seem difficult, because the
claws never 'touched, sothe 4terior of each approxi-
mation is simply connected. However; 'a property which
is true of each of a seclitence of approx.imations is not
necessarily true of the limit. In fact,we can define
the horned sphere differently, so that the exterior
of each approximation is not simply connected.

Imagine you are carving theablid horned sphere
g(S

2
UC) out of a piece of wood. The first approximation

0(l will be a torus with' two bulges, one for theforiginal
sphere, and one' econtain the claws, as shown( in
Figdre 10.

357. 8
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Figure 10

The exterior K
1

is not simply lconnected, since the
loop L cannot be shrunk.

The next step will be to carve out two claws from
the upper bulge (see Figi?re 11), leaving their tips con-
nected by two smaller bulges. The result K2 has a non-
simply-connected exterior, Since the loop L still cannot
be shrunk.

Figure 14

358 9.

If we continue, we get a 'sequence of closed sets

K 1=K 2=K3 g(S
2

U C), each of whose exteriors
is non,-simply connected. (See Figure 12.)

O

Figure 12

.

Now suppose the loop L coUld be shrunk to a point
in the exterior B of g(S2), using a homotopy F(s,t)..
Since the image of F does not meet g(S2 U C)', it must
remain a finite distance c away

solid approximation .Kn within c
image of the homotopy will also
diets the fact that L cannot be

the exterior of K.

But now.re find a

of g(S2
U C), and the

miss K. This contra-

shrunk,to a poibron

6. PROBLEM

Draw a sphere g(S2) such that its Interior A is not homeo-
morphic to the interior C of a round sphere.

359 10
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Solution: Push the horns into the inside of the sphere.
-.A hole has. been cut away from

the surface to make them visible.



www.manaraa.com

STUDENT FORM 1

Request for Help

Return to:

EDC/UMAP

55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your instructor for assistance. The information
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1. How useful was the amount of detail in the unit?
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Too' much detail, I was often distracted

2. Howrhelpful were the roblem answers?

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information -was given v) solve' the problems
Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, orother books) in order to understand the unit?

A Lot Somewhat A Little Not at all

4. How long was this unit in compariicin to the amount of time you generally spend on
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Paragraph headings
Examples
Special Assistance Supplement (if present)
Other, please explain

)
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Problems
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Table of Contents
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Please describe anything in the unit that you did not particularly like.
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0

3F2



www.manaraa.com

I-

00

4

UMAP
MODULES AND
MONOGRAPHS IN
UNDERGRADUATE
MATHEMATICS
AND ITS,
APPLICATIONS
p > > >

TA "CA TA
(20 0:1 0:1

-4"

fv. T t<>

,t "*.r

trf trl t

co N co N co N

A F
>, CD >, CD >, CD

.-.. 'r

ilirr err trr
o > 0 :3" 0 >

.....

q ./. q ',. q

1.1
.4

1.1
4

1.1
e e e

o os -s
0 s-

x

i-

x = x
.-.. -c.. .c.,t .) .r.)
e c E

M R
tA

O
td

R.

,-i Co 1.. Co '-i Co

Birkhauser Boston Inc.
380 Green Street
Cimbridge, MA 02139

MODULE "2

.Kin
tics of

Sirtle
Reactant'
Reactions
by Brindell Horelick and .

Sinan Koont

1 . 0

I 1

+ ...1 I 4..4 - 4 - . 4 -.4 - 4 4- 4

I 4 I

-1-t '- t
3 1 -I i

i 4 1
I

.2 Iti I

1 -.....-

-F.200 300 :000 1500
,300 sec.--7 I,iii---345 sec.YK--- 400 sec .--->

Applications of Calculus to Chemistry

363



www.manaraa.com

KINiTacs OF SINGLE REACTANT REACTIONS

by

Brindell Horelick
Department of Mathematics

University of Maryland Baltimore County,
Baltimore, MD 21228

and

Sinan-Koont
1

Department of Economics
University of Massachusetts

Amherst, MA 01003

TABLE OF CONTENTS

1. S1NGLE4REACTANT IRREVERSIBLE REACTIONS 1

1.1 Oefiniti-en and Some Examples
1

1.2 Graph of the Results 2
1.3 Questions . 4
1.4 'Chemical Kinetics 4

2. REACTION ORDER 5

2.1 °Oefinitions 5
2.2 Zero-order Reactions 5
2.3 First-order Reactions 6
2.4 Second-order Reactions 6
2.5 Statement of the Problem 6

3. DETERMINING THE REACTION ORDER s 7

3.1. Solving for,a(t, 7
3.2 The Difficulty 8
3.3 Solving the Difficulty 9
3.4 An Example 10

4. HALF-LIFE 11

4.1 Definition 11

4.2 Formulas for Half-Life 11

4.3 Zero-order Reactions 12
4.4 First -order Reactions 13
4.5 Second-order Reactions 13

5. MODEL EXAM 15



www.manaraa.com

/ntermodutar Description Sheet: UMAP Unit 832

Ti)ie: KINETICS OF SINGLE REACTANT REACTIONS

Author: Brindell Horelick 0 and Sinan Koont
Departmefft, of Mathematics Departffient of Economics
Univeesity'vf Marylind University of Massachusetts'
Baltimor County Amherst,'Massachusetts 01003

Baltimore,Jlaryland 21228

Review Stage/Date: It 7/2/79

.

.Classification: APPL OALC/CHEM-KINETICS
0 4

,
. ... .

References: '

* ,.
Bares, J., Cerny, C., Fried, V., and..J. Pick (1962). Collection of

emblems in Physical Chemistry. Addisop Wesley, Reaking, MA.
Capellos, C., 8nd B. Bielski (1972). ,Kinet4c Systems. Wiley-

interscience,'NY. . ..
i

Frost, A.A., and R.G. Pear%on (1961). Kinetilv and Mechanism. (2nd
ed.) John Wiley and Sons, Inc.NY. A t

Laidler, K.J. (1965). Chemical Kinetics.) Mcicaw7Aill, Inc., NY.
Stevens, B. (1970). Chemical Kinetics. Chat. an and Hall,:London.
Weston, R.E. Jr.,.and H.A. (1972). C i al Kinetics:

Prentice-Hall,;Englewood Cliffs, NY.

Prerequisite Skills: °
. .1. Be familiar with the Cuftsian coordinate sistem.

2. Understand that aqr) describes the rate of Change alt).'
3. Be able to integrate ... 0

ft a'(t) "-...

Jo. 1-6-cidt

for 11.... 0,i...12,3.
.

4. 'Be able to solve an exponential equation.
.

This unit is intended for Calculus students with an aclive&
.

interest in and some background knowledge of chemistry. This b4k- '
ground may berepresented by concurrent regitration in a colle0

4
.

t, 0
tlevel chemistry course. ' '

.. -

Output Skills:
1. Be able to describe single reactant Irceversible'teactions, in-

cluding definitions of rate constant, reaction order, band half - life.
2: Be able to find explicit.formulas for a(t) and for. the half-life

for a reaction of order n.

'AI

3. Be able to determine the reaction order and rate constant of a
reaction, given data on a(t), provided the reaction is of order
0, 1, or 2.

1

This material was prepared with the partial support of National
Science Foundation Gi-Nnt No. 5E076-19615 A02. Recommendations ex-
presled are Chose of the author and do not necessarily reflect the
views of the NSF or the copyright hoider.

4) 1979 EDC/Project UMAP '

All rights reserved.

4

3 6 541



www.manaraa.com

t

1. SINGLE :REACTANT IRREVERSIBLE REACTIONS

1.1 Definition and Some Examples 4

Suppose we have a'chemicalr4action of a V arly

simple sort,.one which involves only one substhnce (1

call it A) as a reattant,.:and 'wtich is irreversible,

therefore eing to compaetion.' ri may be-represented by

o.; writing:
A- -I, Si i 13 Bn

where B1, B2, e.. Bn re,the pxoduct's. Suppose, at ,time

t = 0 we have a certain'concenpAtii4n a, of ,A (measured,

for.example, in moles perliter).vIt is possible to

observe and record ttie concentration a(tp,of A at variotiss

later times t.

(a)

(b)

(c)

TABLE I

Experimental Data from Three
.

Reactant Ir;eversible Reactions.

t

(seconds) °
.

51 -206
.

454 751 1132 1575 2215'

a(t) ,

(mm Hg) l.''''. 0

..
14-)0 13.3f 11.49 9.73 7.79 6.08 4.17

t

(minutes)
0 1 4 10 , 30 40

a(t)

(mm Hg) 55'

.

50 38
.

21

.

3

.

1.5

1

(seconds)

'

0
...

120 180 240 330 530' 600

a(t)1a, 1. .6705
.--.

5825

.

512 41'95 .310 .2965

.(

;a.
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Table I gives three sets of such observations. Part
(a) is for an experiment conducted at 280

o
C'involving the

decomposition of trichloromethyl chloroformate into phos-
gene:

CI-C-0-C 1
3

-4- 2C1-C-Cl. ,

Part C6) is for the decomposition at 500°C of ethylamine

into ethylene and ammonia: '

C
/
H NH

2
C

2
H
4

NH
3'

Part (c) is for alkaline hydrolysis of ethylNititrobenzoate

at an Hitial concentration of 0.05 moles perliter.

The reactants in parts (a) and (b) are gaseous. At`
constant temperature and volume, a(t)4ispioportional to

' its partial pressure, and it is this figiie, in millimeters
of mercury (mm Hg),that appeIrs'in Table I. In part (c),

a(t) fsgiven as'a fract4On of aQ.

/- ' In the conversion of trichloromethyl chloroformate to
,-(

phosgene, bstil the reactant and the w0dug4,are gaseous,

and the total pressure actfiallv ilitileases as the reaction
4 proceeds-tsecause each trichloromethyl chlotroforM'ate molecule

gives rkse to two phosgene molecules.' The partial pressure
- ot the trichloromethyl chloroformate isCleducedfrom the

o total pressUre taking the ieactionequationand the
originl pressure into Account. In many reactions, however,

theamount of the reactant y determined by techniques
based on its absorption of 'lifht.

11.2 Graphiof the Result's
A 4

We have plotted these results in Fdgaures 1, 2, ind
.3. In'that all of the curves decrease as. increases,

'these curves look very similar. But there is at least

one significant difference (,aside from the differences oa

scales). In each figure we haye selected various concen-

trations of A and determined graphically approximately how
lone it takes for a(t) to decrease'from the selected,con-

centFation to half of it. ?For example, Figure 1 shows us

2'
114,

s.

3.67
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Figure. 1. Decomposition of Tr ichloromethylChloroformate (from able I (a) ) .

/.

a (t -
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I

I ;

1 I

L...,-

--t
... ...XL

,

0.2 I

0 ' 3I10 go sy1014001560. :600 t(sec)

k---e)-345 sec----0
;400 sec

-Figure 3. Alkaline Hydrolysis of Ethyl gilrobenioatd (from Table 1(c)).

hat it takes apnr6ximatAy 1170 seconds for a(t) to

. decrease from 44 to 7 mmilg,.or1220.teconds'for it"to

decrease fiom

1)

to 5.mm Ng. In elcIr of.thilfirst two

figures the measured time intervals are approximately

equal, but in Figufe 3 they are not, . -
',

. *!

1.3 Questions rl
.

.

1.-
. .'

'' Can we explain this difference in teimsof.the
,

,
...

reactions? Or, turning the oupstion aroutd, can we draw

any conclusions bas'"d b h' on these observations, ao t te.4._
.

4 ,

.

nature of ihe reactions? 1

.'''

1.4 themical Kinetics.
.

:

,
' Q.uestions

4
such as these are part of a branch of

chemistry known as cA'emical ktnetics. Chemical kinetics,

. is concerned withwIt h the rates.anc' Tiechapisms ofchemical
k / " ' r

:

t
69
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o

reactions.. The name reflects the fact that "kinetics"

is concerned with the changing aspects of systems, as

distinguished from "statics" which concerns systems at
equilibrium. We should also point out here that the

rate at which a cheMical process takes place and the

mechanism of the process (i.e., what exactly happens

during thq transformation of A into B1' + B2 Bn)

are two diffeient things. The study 'of ireaction meth -

antsms lies at a higher theoretical level than the study

of reaction rates. In general, experimentally determined

reaction rates can he used to rule out a proposed mechanism
if they are' inconsistent gut experimental data,

that are consistent with a proposed mechanism can only.

serve as suPpn-ting-evideoce_for.it; they cannot be used

di'rectlytrprove its correctness.
.-

2. REACTION ORDER

2. Definitions
o

To make the question in Sectibn 1.3 more specific,

we shall summarize some background information about the,

reaction rates in reactions of this type. If substance

A (in gas or'liquid form) is uniformly distributed; and

if the temperaturetand volume are kept constant, then,it

usually turns out that the rate a'(t') at which A decom-

poses is peoportional eb a, non-negative Lncdger.power

(0,1,2,) of the concentration a(t). In other words

DV a'(t) = -k(a(t))n

where k i-s a post(ive constant and n is a non-negative
. .

integer. We'call k the rate constant and 'n, the order ei

the reaction. Equation (1) with n established is called

the rate3CC flopt'he reaction:

We shall cotsieer reaction orders 0, 1 and 2 in

detail.. Higher, reaction-orders for reactions of tli---type

we are discussing are considerably more rare,

. .
. 5

. 1
A

'or

3 7 0
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2.2 Zero-order Reactions
)

Setting n = 0 in Equation
J

gives

(2)- a'(t) = -kt;' f A

where we have introduced the ,subscript to 'denote the

reaction order. The rate is independent vf,ithe'concen-

tration of A: It is determined by other f.46toN such as

temperature, the intensity of light in light-induced

reactions, the surface area available in surface-catalyzed

reactions, or the amount of catalyst in homogeneous

catalysis. (A catalyst is a chemical substance that cop--

.trols the e of a reaction without undergoing any net

change in it if over the course of the reaction.)

2.3 First-order Reactions

In this cote, we have

A

''(3) a"(t) = -kia(t).

Most simple decomposition reactions pivolving,a single_

011.

reactant are of first-order. This is not surprising if

we'imagine the reaction process to consist of molecules

01 A decomposing randomly. If; for example, each moleo4le

has 1 chance in 10 of decomposipg in 'the next second, 'then
1

about nth of those present will in fact decompose in that

second. In other words, the 'change in a(t) in that second
1

is about Tba'(t).) We describe this by writing

1
A

a a '(0=---a(t) '

2.4 Second-order Reactions
4

The rate law for second - order reactions is:

a'(t), = -k
II
a2(t).

In Teneral, elementary. reactions which require' the collision

-epf two molecules are good candidates for this category.

2.5. -- Statement of the Problem

Equation (1), has been confirmed for many reactions

'Sy numerous experiments, and also explained theoretically.

3

6 °
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We shall not get into the theoretical explanation except

to say (as has already been indicated in Sections 2.2, 2.3

and 2.4) that different reaction orders are the result of

different underlying reaction mechanisms. So if we have

a reaction and want to know mo re about its mechanism a

very useful first steis to determine its reaction order

experimentally.

Can we use data such as that given in Table I to

determine whether'a reaction has one of the orders we have

discussed, and, if so, which one?

CP

3. DETERMINING THA,REACTION ORDER4*

3.1 Solving for.a(t)

To begin with, we can use Equations (2), (3), and

(4) to obtain explicit formulas for a(t) in the three

casds.

(a) Zero-order reactions: If a'(t) = -1;
o

then '

a(t) = -kot + C where C is a constant of integration:

Using the'fact that a(0) = ao we see that C = ao and

(S) a(t) = ao kot.

(b) First-order reactions: Starting with Equation

(3), divide both sides by a(t) (whichAis never zero):

r.

a' (t) k

ft
at dt Aft k dt:
a(t 0 I

t

.1 .0 '

In a(t) 1 = -k,t

In a(t),= -,kLt + In ao

, _p-k t
d7-e(6.1 A1

.

40 I

:: '44"7.1

*k

;* es

.

r.

a
7
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(c) Second-order reactions: In Equation (4) we

diVide each sidb by a2 (t), 'and conclutle that

, &

a' t) k

. a2 (t,) II

t'- dt = -It k d,
II

It n ft)
0 a2 (t) 0

1
t it .

-71) 10 -kIIt 10

k t + 1
a t) III ac, a

o

aokiit + 1

(7) a(t)
a

at) k t + ,1

Exercise 1

Find () expl,icitly fora thiA-order: reaction.

Exercise 2
s ,.,

Assume to reactions are of first and second order respectively:

a'-(t) -k I a (t) itt

b' (t) - kI I b2 (t)

As,same they begin with the same amount of rektaat (ao b0), and

40 their initial rates are the same [e(0) = b' (.0)]. Prove that
a(<t)"< b(t) for all t > 0:

(flint: Note-that a(t) = 1 hen t = 0 and show that it is strictly
.4

decreasing for t > 0.) e

o

3.2 The Difficulty 111,

° The rate constant 1,(k0 , , k of course' not

mown, so...we cannot get away with anything so naive as..;
'plugging our data into -Equations (5) , (6) , and -(.7).

to see which one checks out. It is true that the graphs
a*
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of these equations have three distinitive "shapes:',

whatever the constants are (for example, Equation (S)

is a straight line). Sp wQ,.cpuld confider graphing

our experimental data and trying to deterMine which

"shape" curve 'fits it'best. In this unit however, we

present a method of determining,the reaction order that

does not depend on graphing, and whic also gives us the

- rate constant at 1110 extra cost.

3.3 Solving the.Difficulty

The method_starts with solving Equations (S), (6J,

and (7) for k0, kL, and lc :

o' 0.2 II

Ta0 a(t)
(8) - k0 , ,

a
1

(9) kI = -t- .1n°' -a(fy

(10)
kII 4 (AT

*

t >

t >

t > 0.

Now'if, fbr example, the reaction oriler is zero,

then all the data points should satisfy Equation CS)

for some constant k0. Thus whenever we Substitute any

data point (t, a(t)) to, the right side'of Equation "p8)

we should get more or leis the same value (namely k0).

Naturally there, will be small variations due to experi-

mental.error. 'Similar comments apply to Equation (9) if

the reaction order is one, and Equation (10) the
. .

reaction order i9etwo.

So all we need to do is compute three rows of .

figures -- the right sides of Equations (%), .(9), and

(10) -- for!bur'data points, and see if-any row remains

mdre or less constant. If so, that row gives us the

zeaction,,qrder, and its constant value is the-rate

constant 0.0, kr or. kid.,

374
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3.4 An-Example

As an example, let's go back to part (a) of Table
In Table II, we hake repeated the data and also tabulated
the right sides .of Equations (8), (9), and (10). The
figures in. the row corresponding tb Equation (9) are
nearly constant (r..- 5.8 x 10 "see -') while those in the
other rows are not. So this reaction is apparently a

first order reaction with ki.z. 5.8 x 10 "set -'.

* TABLE 11

CalcUlation of Rate Constant andReactIon
Order for Data of Table 1(a).

t . sec

--

0 51 2,06 454 751 1132

1
1575

r
2215

1

a(t) mmHg 15. k 14.58 13.32 10) 49 9.73 7.79 6.0664.17

ao - a(t) mm Hq
8,82 8.30 7.80

-
7.06 6.40 5.68 4.90e t sec

k

1
In -z-1-5:-a x 10'

sec 5.96 5.86 5.9; 5.79 5.81 5.75 5.79

47(17 .)' 1135 4.03' 4 15 4.52 4.83 5.46 4 22 .7.82mm Hig sec.
A '

9

Exercise 3

Determine the reaction order and

given in part (b) of Table I.

rate constant from the data

Exercise 4

' Determine the reaction order rate constant

given in part (c) of Table I.

P

from the data

'

%,.

S

.10
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4. HALF-LIFE

4.1 Definition

The half-life t of a certain amount of a reactant

is the length of time -required for exactly half of it to
be used up. In other words, if the amount of reactant

is ao at time t = 0, and if,a(t) is the amount at alater

time t, then t
1/2

is the solution of the equation

A.. a(t) =, a0._

In Section°1:2 we determined graphically the half-

lives 8f various athountg of three reactants, and "discovered

that for two of the reactants t1/2 did not seem toldtpend

uppn the initial amount,,, but for the third tedct,artAir

did. Let us. see if this phenomenon can shed a little

more light.on the concept of reaction order,

, t

4.2 ,Formulas for Fralf-Life

To start with, let us compute for each of the

three reaction orders we are considering. All we need

- to do is -set: -aSt)--=-7T-ilrTeach of Equations (5), (6),

'and (7) and solve for t:

(11) t, = TF

e

T,a, (Zero-order)
. '

°
2

(12)°
1 .

t1/2 TFii-s7oraer)

. (13)
1

4
(Second-order) ..

II

Exercise 5

,

Find t; as.a.function of.a-0 for a third-order reaction:

Exercise V

3We define tv as the time required for.w. of a reactant tq'be

used up. That
3,

= Find t
3/4

as a function of ao for

reactions of iero; first,, and second-order.

r r 11

376.
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. Exercise
t3

Find thp-ratio /4 for reactions of zero, first, and

secorild:order4
t

Exercise 8 t

Table III gives ti and t3/4

reactant in the reaction

for three initial amounts of the

CH3CHO CR4 CO

acetaldehyde methane carbon monoxide

Determine if possible whether the reaction has one of the three

or1ers discussed il this unit and, if so, which one.

TAB* III

Half-life and 3/4-Life Data for the
Reaction CH3CHO + CH4 + CO (Exercise 8)

i&

ao(mm Hg): 421),. 225 184

t (seconds)
i .1

I

38,5 572 665

t" (seconds) 1135 1710. 192034
.

.

Exercise.9

,.

Suppose, for every x between%b and41, we write tx f'or the,

time required for fraction x of a reactant to be used up. (In

Exercise 6 t
3/,

an example of t
x
with x = 34.) Show that in

a first-order reaction "Ms independent of the initial amount no

v

matter what x is.

4.3 Zero-order Reactions
°

For a zero-order reaction, half-life is proportional

to initial{ amount. The greater the amount, the longer

12

377
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the half-life. To help your'self understand and remember

this, think of a very large.number of marbles, from which

we remove, say, 10 each second (k
o

= 10). The more there

are originally, the longer, it will take to remove half of

them. 4

4.4 First-order Reactions

For a first-order reaction half-life is independent

of initial amount!! To heip"Understand and remember this,

think again of a very Large,number.of marbles. This time

remove ona half of the pile in the first second, then one

haXf of,the remaining pile in the next second, etc.
1

(k1 = 7). No matter how many we start with, it will take

one second to remove half o,f them. ,Also, at any later

stage it will take one second to remove half of what

remains.

. '4'.5 'Second-order Rea=ctions

IPor a second-order reaction, half-life is proportional

to the reciprocalN of t e initial amount. Another way of

(11
saying this is *chat a

o

t, is-a constant. The more'of A

there is, the leis time it takes for'one half of it to

decompose! Although this May seem paradoxical we invite

you to consider the fact that second-order reactions

depend upon collisions of pairs of molecules. Equation

(13) says that the more molecules there are, the more

likely they will collide, and the faster the reaction VIC

proceed.

Exercise 10

The following data were obtained by F. Daniels and E.H. Johnston

(J. Am. Chem. Soc., 43, 53 (1921)) for the deeompositioen of nitrogen

pentoxIde (N
2 5

) in .solutiOn in carbOn tetr,achloride (CC1
4
) at 45° C:

2N 05 4 2A20, + 02. \h.

13.

.3'78

.40
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t

(seconds)
0 181(_ 319 , 526 867 1198 1877 2-345,....3144.

concentration
of N20,
(mole/ir

2.33
.

2.08 1.91 1.67 1.36 1.11 .72 .55 .34

Determine the reaction Oder and the rate constant, as well es the

half -life t . How long would it take for 87.5% of the reactant to

be used up?
4

The Project wouldelike Wthank Scott C. Mohr of
Boston University, Andrew Jprgensen of Indiana State
University at Evansville, Bernice Kastner of Montgomery
College, Rockville, Mryland, Barbara Juister of Elvin
Community College, Elgin, Iltinois,for their reviews,
and all others whusassisted intth production of this
unit.

This unit was field-tested and/or student reviewed
in preliminary form at Indiana State University,at
Evansville, Southern Oregon State College, Ashland,
-Colorado School of Mines, Golden, and Northern Illinois
University, DeKalb, and has been revised on the basis

,

of data received from these sites.
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5. MODEL EXAM .

1. For some reactions the reaction order is found

to be fractional. Find a(t) explicitly (in terms

of a
o
) for a reaction with reaction order,n = 1/2.

';'
.

22 Define tx *as that time for which a(tx):= (1 x)a . .
. o

Find,tx for a second order reaction. Is this tx

independent of a
g

3. Determine the reaction order and rate constant from

the forlowifig data for a hypothetial-reaction.

t (seconds) . 0 2# 4 6 8 -10

a(t) (moles/1) .10.0 3.98 2.$1 1.82 1.44 1.19

4

.

6

41.

si

0

r

J

., .

.

B

1 33o

T5-

<. .



www.manaraa.com

ANSWERS TO EXERCISES

1

1. a (t) = a
13 [2a2 kur t + 1

2. The information given to us is:

1. a'(t) = -kia(t)

2. b'(t) = - kIlb2(t)

3. a(0) = b(0)

4. a'(0) = b'(0)
)(

i

at
To see that 1-Tm- is a decreasing function of t, we show

that the derivative of the quotient is negative.

d (a(t) 1 b(t)a'(1) - a(t) b'(t)
dt CT51)

b2(t)

b(t)(-k a(t)) -7a(t)(-1(1ib2(0)

b2(t)

ki

(14)

Now, a'(0) = b'(0) means that-

.
1(1.3(0) = 1(1'0(0)

and a(0), b(0) means further,that

kib(0) = lcub2(0)

,i(I = 1(1'410).

When we substitute this value of k in Equation (14) we obtain
.

d 13(0 r kIlb(0) 1

CIF TF) a t tkII

^ :

. ( b(0)1.
klIa(t)(1 ;TOT

Since b(t) < b(0) for t > 0,

U(0)
-

,

b(0)1vTM) c 0.

381
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3. Reaction order = 1

k = 9.4 X' 10 min-1.

4. Reaction order = 2 -

aok t 4.1 x 103sec-1 or, since ao'= 0.05

k = 8.2 );10-2 % mole-1sec -1 .

35. t,

2a02k3
3a0

6. Zero order: te, =
4

,First- order: = In 4.

3
Second-order: t3 =

1/4 aol,c/I

7. Zero-order:

First-order: 2

Second-order:

8 __Second - order.

10. First order, k z 6.1x 104 sec., ti -.: 1120 slc,

ANSWERS TO- MODEL' EXAM

k2 t2

a(t) =a0 -
0
kt + 4

1- ic/
t =
x a

0
k

11
1

.x

- x

1-4

3t z 3360; sec'

3.1

f

k = 7.5 x 101 rmole 2
1

sec
-1 %

-
Order = 2.

1

t
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