Schoenfield, Alan H.; And Others

AUTHIOR
TITLE
INSTITUTION
SPONS AGENCY
pUB DATE
GRANT
NOTE
EDRS PRICE
DESCRIPTORS

IDENTIFIERS

UMAP Modules-Units 203-211, 215-216, 231-232.
Education Development Center, Inc., Newton, Mass:
. National Science Foundation, Washington, D.C.
80
: SED76-19615; SED76-19615-A02
382p.; Contains occasional light type.
MEO1 Plus Postage. PC Not Available fromedrs. Biology; Calculus; chemistry; *College Mathematics;

- Economics; Engineering;-Geography; Harvesting; Higher,
- Education; *Learning Modules; *Mathematical

Applications; Mathematical Models; Medicine; Physics;
\therefore - Problem Solving; Social Sciences; Supplementary
Reading Materials; Topology
*Integration (Mathematics); *Linear Algebra

ABSTRACT
One module is presented in units 203, 204, and 205, as a guide for students, and presents a general strategy for solving integrals effectively. With this material is a solutions manual tor exercises. This document set also includes a unit featuring applications o'f calculus to geography: 206-Mercator's World Map and the Calculus. Unit 207-Management of A Buffalo Herd, fegtures -a Leslie-tỳpe model covering applications of linear algebra to harvesting. Two units include applications of linear-algebra to economics: 208-Economic Equilibrium-Simple finear Models, and 209-General Equiłibrium-A Leontief Economic Model. Unit 210-Vicous Fluid Flow, and the Integral Calculus, contains applications of - calcuius to engineering. Module 2ll-The Human Cough, views calculus applications to physics, biologicialn and medical sciences. Social science applications of calcululs.are viewed in 2l5-zipf's Law and his Effortsito Use Infinite Series in Linguistics. Unit 216-Curves and. their Parametrization, and 231-The Alemander Horned Sphere, focus on introductory topology. Finally - Reactions', views calculus applications to chemistry. (MP). .

umap
 Units 203, 204, 205

MODU'LES AND MONOGRAPHS IN UNDERGRADOATE MATHEMATTCS AND ITB APPLICATIONS PROJECT

Alan H. Schoenfeld
U.S. DEPARTMENT OF EDUCATION NATIONAL INSTIFUTE OF EDUCATION -GOýCATIONAL RESOURCES INFORMATION CENTER IERICI
This document has been reproduced as
recerved from the person or organuation orginating it
Minor changes have been made to improve reproducion quality

- Ponts of vew or opanfons stated in this docis ment do not necessartiy represent official NIE postion or policy
"PERMISSION TO REPRODUCE THIS MATERIAL IN MICROFICHE ONLY HAS BEEN GRANTED BY
P. BABB

TO THE EDUCATIONAL RESOURCES information center (ERIC).'

A guide for students, presenting

- à general strategy for solving ${ }^{\circ}$
integrals effectively

June 1977
êdc/umap / 5 Schapelst./newtor, máss. 02160

Intermodular Description Sheet: Unit 203, 204, 205
Thele: INTEGRATION: GETTING IT'ALL'TOGETHER
Author/Cor respondent:
Alan H. Schoenfeld
Group in Science and Mathematics Education' c/o Physics Department
Universlty of California Berkeley, CA 94720

Review Stage/Date: IV, 6/30/77

Classification: Calculus, Indefinite Integration, Review
Use Experience: Second quarter calculus class at University of California, Berkeley. See paper by A. Schoenfeld,
"Presenting a Strategy for Indefinite Integration," Sesame, University of California, for details.

Length: 7 hours

Suggested Support Material: None

Prerequisite Skills: Be able to solve problems in indefinite integration knowing that a specific technique (i.e., substitution, partial fractions, integration by parts, trigonometric substitution) is applicable. Recall and use the essential formulas given in the table on the inside of theback cover.

Output Skills: Given an indefinite integral problem solvable by one of the above techniques, find a technique which is appropriate and solve it. Specifically,
Simplify integrals ty algebraic substitution
Classify integration problems into the appropriate technique Modify integration problems so that they can be classified and solved by one of these techniques!

Otheri Related Units: ${ }^{\text {K }}$ Hone'

MODULES ANO MONOGGAPHS IN UNDERGRADUATE

MATHEMATICS AND ITS Ápplications project (umap)
The goal of UMAP is to develop, through a community of users and developers, a system of instructional modules in undergraduate mathematics which may be used to supplement existing courses and from which complete courses may eventually be built.

The Project is guided by a National Steering Comittee of mathematicians, scientists, and educators. JMAP is gne of many projects of Education Development Center, Inc., a publicly supported, nonprofit corporation engaged in educational research and development in the U.S. and abroad.

PROJECT STAFF

Ross L. Finney
William U. Walton Solomon Garfunke! Joyce Taggart Thomas Good

Codirector
Codirector
Consortium Coordinator Editorial Assistant Editorial Assistant
nATIONAL STEERING COMHITEE

- W. T. Martín

Ste'ven J. Brams
Llayron Clarkson James D. Forman

Ernest J. Henley William F. Lucas
Walter E. Sears
Peter Signell
Gearge Springer
Robert H. Tamarin
Alfred B. Whtileox

- Mancy $\mathrm{J}:$ Kopèll $: \therefore$ Northeastếr Un Un (versity
* This material was.prepared with the support of National Sciencd Foundation Grant Nó. SED 76-19615.. Recommendations expressed are those of. the authors and do not necessarily reflect the views of the NSF, nor of the Nat ional. Steering Committee.


```
HOW TO USE THESE YATERIALS
```

Work the pre-test in Appendix I. These materials are witten for people who have mastered the basic techniques of integration. If you miss more than one of the pretest problems, or if you find them difficult, you should review your textbook's sections on basic antiderivatives and substitutions before you start Chapter 1. Before you work on Chapter 2, you should be familiar with the techniques of partial fractions, integration parts, and trigonometric substitutions

- This booklet is organized like the General Procedure, givén in the chart on page 3. The three chapters in the booklet and the sections thay are divided into correspond to the three steps in the generàl procedure and their subdivisions. You should work through this booklet following, the procedure, closely, until using it becomes automatic. If it does; you will be ableto solve problems in integration like an expert.

Each section begins with a description of some technique of integration, which is summarized in table foym. The table is followed by sample problems, which serve \}s review problems and examples. Ypu 'should try to solve each sample problem' yourself. Then compare your answex with the solution given. Just reading through the solutions will ngt be enough! You should focus on the process of solution, which is as important as the answer.

Each chapter vends with exercises designed to reinforce the procedures you have just learned. Work the exercises as if they were a test. Detáajled soiutions arè in a separate solutịns manual.

Note: , It's eqsy to "lose" terms in an intergal if we're not careful. I've chosen to write all the terms in an integral at each stage of the process, and I suggest you do the same. This-takes some extra $\{$ time, but it helps prevent cgstly mistakes.

There is óne general rule that you should keep in mind whenev $\{$ you are solving problems:

> ALMAYS CHECK FOR EASY ALTERNATIVES BEFORE BEGINNING ANY COMPGICATED OR TIME-CONSUMING OPERATIONS.

As the sample problems below illustrates, it is worth taking a few monents to look for a quick, or easy solution to a problem before jumping into a complicated procedyre. This is especially true in integration, where a timely observation can save tremendous amounts of work. The two types of SIMplifying operations we will discuss àre sumarized below.

Section 1

EASY ALGEBRAIC

MANIPULATIONS

Some algebraic manipulations are easy enough to use that it's worth considering them automaticalily before going on to anything else. For example, we almost always break the integral of. a sum into a sum of integrals and then integrate term by term. Before doing this, however, we should lodk for other alternatives. Sometjmes an algebraic or.trigonometric identity will simplify the term facing us, before we try to intiegrate it. Another operation which. is more complicated but also worth considering is simplifying rational functions by long division.
, We call a rational functión (the quotient of two polynomials) a "proper fraction" if the degree of the numerator is less than the degree of the denominator. Proper fractions are usually easier to manipulate than othérs. Also, we can only, apply the technique of partial fractions to proper fractions. Thus we.should consider division as a preliminary simplification. In sum, we have:
easy algebraíc manipulations
(1) Break integrals into sums
(2) Exploit Identities
(3) Reduce rational functions to Proper Fractions by division

11
2. $\int(\sin x+\cos x)^{2} d x$

- Each of the following sample problems can be SIMPLIFIED by an easy algebraic manipulation. Try to solve each problem before you read the solution, and then compare your method with mine.

$$
\text { 1. } \int \frac{1+\sin x}{\cos ^{2} x} d x \quad 2 \cdot \int(\sin x+\cos x)^{2} d x
$$

SOLUTIONS

1: $\int \frac{1+\sin x}{\cos ^{2} x} d x$
This integrand contains a sum, so we should consider breaking the problem into a sum of integrals. This gives us

$$
\int \frac{1}{\cos ^{2} x} d^{\prime} x+\int \frac{\sin x}{\cos ^{2} x} d x=\int \sec ^{2} x d x+\int \frac{\sin \cdot x}{\cos ^{2} x} d x=
$$

$$
\because
$$

The first integral can now be done directly. In the second, we notice that the denominator contains the tern cos x_{0} Since the numerator i's $\sin x$, which (except for a minus sign) is the'derivative of $\cos x$, this suggests that we make the substitutions

$$
y=\cos x, \quad d u=-\sin x d x
$$

Then the integrals become

- $\int \sec ^{2} x d x-\int \frac{-\sin x d x}{\cos ^{2} x}=\tan x-\int \frac{d u}{u^{2}}$
$=\tan x_{j} \iint_{u^{-2} d u}^{>} \tan x-\left(-u^{-1}\right)+c=\tan x+\frac{1}{u}+C$
$\mathrm{NIC}^{2} 2 \cdot \frac{0}{=} \tan x+\frac{1}{\cos x}+c=\frac{\tan x+\sec x+c}{}$

3.

$\int \frac{x^{3}}{x^{2}+1} d x$
The integrand in this problem is an "improper fraction", so we should perform a divisiọn. The division gives us a quotient of (x) and a remainder of $(-x)$, so we obtain
$\int \frac{x^{3}}{x^{2}+1} d x=\int\left(x-\frac{x}{x^{2}+1}\right) d x=\int x d x-\int \frac{x}{x^{2}+1} d x$.
In the second integrand, we' noticé that the numerator is one half the derivative of the denominator. If we make the substitutions $u=\left(x^{2}+1\right), d u=(2 x d x)$, the above becomes

$$
\begin{aligned}
\int x \mathrm{dx}-\frac{1}{2} \int \frac{\mathrm{du}}{\mathrm{u}} & =\frac{1}{2} x^{2}-\frac{1}{2} \ln |u|+C \\
& =\frac{1}{2} x^{2}-\frac{1}{2} \ln \left|x^{2}+1\right|+C .
\end{aligned}
$$

13

"OBVIOUS" SUBSTITUTIONS

Using substitutions is one of the-miost powerful $t 0015$ we have for simplifying and solving integrals; always look for substitutrons before. I try more complex procedures; There are two guidelines I use in looking for substitutions:
(1) Does the integrand contain a function of a function? If it does, try a substitution with $u, ~$ as the_"inside" function. Consider the integrals

$$
\int \frac{x^{2} \tan ^{-1}\left(x^{2}\right)}{1+x^{4}} d x \text { and } \int \frac{\sin x}{\cos ^{2} x} d x
$$

The term $\tan ^{-1}\left(x^{2}\right)$ appears in the first integral, with" x^{2} as an inside function. I would try the substitution $u=x^{2}$ in that problem. The denominator of the second integral is : $\cos ^{2} x^{\prime}=(\cos x)^{2}$, so. $\cos x$ is an' Inside function. I would try ' $u=\cos x$. .
(2) Does they integrand contain a complicated or "nasty" function, particularly in the denominator of a fraction? If so, try .a substitution with u as the "nasty" function. Consider

$$
\int\left(\tan ^{-1} x+x\right)\left(\frac{x^{2}+2}{x^{2}+1}\right) d x \quad \text { and }: \int \frac{x}{x^{2}-9} d x
$$

In the first problem I would try $\dot{u}=\left(\tan ^{-1} x+\dot{x}\right)$, and hope that it helps. [It does; see sample problem 2.] In the second problem the denominator isn't particularly "nasty", but it's worth trying the substitution $u=x^{2}-9$. Then $d u=_2 x d x$, and the integral is

$$
\begin{gathered}
\frac{1}{2} \int \frac{2 x d x}{x^{2}-9}=\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+c=\frac{1}{2} \ln \left|x^{2}-9\right|+c . \\
\quad 14
\end{gathered}
$$

Mote: If the problem I just discussed were $\int^{\infty} \frac{1}{x^{2}-9} d x_{n}$ the substitution $u=\dot{x}^{2}-9$ would not have helped. In general, a substitution $u^{=}=f(x)$ will only help if you can find the term $d u=f^{\prime}(x) d x$ somewhere in the integral. If you try a substitution and it looks like you're getting involved in a complicated procedure, stop to consider other alternatives. The procedures of chapter 1 are designed to help SIMPLIFY and solve an integral rapidly: You should explore all simple alternatives before trying anything complicated. If need be, you can always return to a complicated substitution later.

OBVIOUS SUBSTITUTIONS

(1) "Inside" functions
(2) "Nasty" terms and denominators

SAMPLE PROBLEMS

Each of problems 1 through 3 can be. solved by a . substitution. Try to solve each problem before you read the solution, and then compare your method with mine.

$$
\text { 1. } \int \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x \quad \text { 2. } \int\left(\tan ^{-1} x+x\right)\left(\frac{x^{2}+2}{x^{2}+1}\right) d x
$$

$$
\text { 3. } \int \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}} d x
$$

4One of the following two integrals is much easier to solve than the other. ${ }^{\circ}$ Deicide which it is, and solve it.

$$
\text { (a) } \int x^{3}\left(1+x^{4}\right)^{5} d x \quad \text { (b) } \int\left(1+x^{4}\right)^{5} d x
$$

-

SOLUTIONS

1. $\int \frac{\mathrm{e}^{\tan ^{-1} \mathrm{x}}}{.1+\mathrm{x}^{2}} d \dot{x}$
'In this problems ye have the term $e^{\tan ^{-1} x}$, so $\tan ^{-1} x^{\text {. }}$ is an "inside" function. If we try'

$$
u=\tan ^{-1} x, \quad \text { then } d u=\frac{1}{1+x^{2}} d x
$$

Since du does appear in the integral, we can make the substitution. The integral becomes

$$
\int e^{\tan ^{-1} x}\left(\frac{1}{1+x^{2}} d x\right)=\int e^{u} d u=e^{u}+c
$$

$$
i
$$

$$
=e^{\tan ^{-1} x}+C
$$

- In this expression the tern $\left(\tan ^{-1} x+x\right)$ is rather "nasty". We might consider the substitution

$$
u=\tan ^{-1} x+x
$$

and see if it helps. We obtain

$$
\begin{gathered}
d u=\left(\frac{1}{1+x^{2}}+1\right) d x=\left(\frac{1}{1+x^{2}}+\frac{1+x^{2}}{1+x^{2}}\right) d x \\
=\left(\frac{x^{2}+2}{1+x^{2}}\right) d x
\end{gathered}
$$

and were in luck. The integral then becomes

4.

One of the following two integrals is much. easier to solve than the other. Decide which it is, and solve it.
(a) $\int x^{3}\left(1+x^{4}\right)^{5} d x$
(b) $\int\left\{\left(1+x^{4}\right)^{5} d x\right.$

17
is doesn't seen to help, so I look for substitutions. I might be tempted to try the substitution $u=e^{x}$ at first, since all the terms in the integral are expressed in terns of ' e^{x}. But $d u=e^{x} d x$, and I don't see that in the integral. For that reason I won't explore the substitution further now. If necessary, I can return to it.

Finally, I might try a substitution for the denominator, $\therefore \quad u^{\prime}==\left(e^{x}=e^{-x}\right)$.

This gives $\quad d u=\left(e^{x}+e^{-x}\right) d x$,
which does appear in the integral. From here on the problem is easy. We have
$\int \frac{1}{e^{x}-e^{-x}}\left[\left(e^{x}+e^{-x}\right) d x\right]=\int \frac{1}{u} d u=\ln |u|+C$

$$
=\ln \left|\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}\right|+c .
$$

$\int\left(\tan ^{-1} \cdot x+x\right)\left(\frac{x^{2}+2}{x^{2}+1} d x\right)=\int u d u=\frac{1}{2} u^{2}+C$
$=\frac{\frac{1}{2}\left(\tan ^{-1} x+x\right)_{2}^{2}+c .}{16}$

As always, 1 start working on a problem by looking for ${ }^{-}$ algebraic simplifications. In both parts (a) and (b) of this problem, I can multiply ($1+x^{4}$) by itself five tines, and then integrate term by term. That seems top complicated, however, so I look for other alternatives.

In both parts of the problem 1 see $(1+x)$, so that the? term ($1+x^{4}$) is an "inside" function. If I try

$$
u=1+x^{4} \text {, then } d u=4 x^{3} d x .
$$

 be easy to solve. It becomes

$$
\begin{aligned}
& \int x^{3}\left(1+x^{4}\right)^{5} d x=\frac{7}{4} \int\left(1+x^{4}\right)^{5}\left(4 x^{3} d x\right)=\frac{1}{4} \int u^{5} d u=\left(\frac{1}{4}\right)\left(\frac{1}{6} u^{6}\right)+C \\
& =\frac{1}{24}\left(1+x^{4}\right)^{6}+C .
\end{aligned}
$$

The sample problems you've worked through in this chapter may have seemed very easy, because you were on guard for simple solutions. On tests I've seen students spend ten off fifteen ' minutes trying to solve

$$
\int \frac{x d x}{x^{2}-9}
$$

by partial fractions or by using the substitution $x=3 \sin \theta$: The moral of this chapter is:

When you start working on a problem, always check son an easy algebraic manipulation or obvious substitution. . Orizy when' you're sure the problem cannot be SIMPLIFIED should you try anything else.

EXERCISES FOR CHAPTER 1

- Detailed solutions of these exercises are available in a separate solutions manual. The order of the solutions is scrambled, to keep you from accidentally seeing the answer to the next problem you are working on. The solution number of the exercise you are waking on is underneath the exercise number. For. example,

1.

sol. 5
means that solution 15 presents a discussion of exercise 1
In each of the following exercises, one problem can be done easily. Use the techniques of easy algebraic manipulations and obvious substitutions to determine which it is, and solve it.,
1
(a) $\int \frac{d x}{2+\sin x}$
(b) $\int \frac{\cos x d x}{2+\sin x}$
$\left|\sum_{\text {sol. } 2}\right|^{\text {(2) }} \int \frac{x+1}{x^{3}+x^{2}+1} d x$
(b) $\int \frac{x^{3}+x^{2}+1}{x+1} d x$
$\left\{\begin{array}{c}3 \\ 30 \\ \text { Sol }\end{array}\right\}$
(a) $\int \tan ^{4} x \sec x d x$
(b) $\int \sec ^{4} x \tan x d x$
$\left|\begin{array}{c}4_{\text {sol. }} \\ 1\end{array}\right|$
(a) $\int \frac{\tan ^{-1} x}{x^{2}+1} d x$.
(b) $\int \tan ^{-1} x d x$
\mid F. $\left._{\text {sol }}\right|^{\text {(a) }} \int \ln \left(e^{x}\right) d x$.
(b) $\int \ln (x) d x$
\mid S. $_{\text {SO 1. }} \mid$
(a) $\int \frac{1}{(\sqrt{x})(1+\sqrt{x})^{5}} d x$
(b) $\int \frac{1}{(1+\sqrt{x})^{5}} d x$

J
$+\left|\begin{array}{r}7: \\ \text { sol }, 6\end{array}\right|$
(a). $\int \frac{e^{x}}{e^{5 x}-1} d x$
(b) $\int \frac{e^{5 x}-1}{e^{x}} d x$
$\left|\begin{array}{c}.8 . \\ 501.7\end{array}\right|$
(a) $\int \frac{1}{\left.x^{2}\right\} 4 x+3} d x$
(b) $\int \frac{x-2}{x^{2}-4 x+3} d x$

18

CLASSIFY!.

As we noted in the introduction, experts generally follow a, three-step procedure when solving integrals. The first step, which we discussed in Chapter 1, consists in fooking for simplifications or easy solutions to a problem. The second step, if necessary, consists df choosing and applying the technique, most likely to solve a problem.

This choice of technique is $u^{\text {ally }}$ based on the FORM, of the integrand. Àsk, an expert why he chooses to solve $\int x \sin x d x$ using integration by parts, for example, and he'll say "because it's a product of dissimilar functions." The solution to a problen follows routinely once the right technique has.been chosen.

In this chapter we will classify integrals in"four basic categories, and discuss the techniques most often effective in dealing with them. Our classification is sumarized by the second box in the General Procedure:

Step 2:	CLASSIFY		
Rational Functions	Products frigonometric	Special Functions	Functions

Your goal in working through this section. should be to classify integrands by form and recall the techniques appropriate to them. If jou systematicaliy use the simplifications of Chaptor 1 and the classification scheme of this section, you should be ahle to solve most of the problems at the end of your text's chapter on integration.

Section 1

RAT. IONAL FUNCTIONS

A rational function is, the quotient of two polynomials. The procedure for integrating rational functions is straightforward, although it may sometimes be long and involved. A large part of that procedure is purely algebraic, and consists of, "breaking up" complicated rationai functions into sums of simpler ones. We winl begin by examining the simple or "basic" rational functions, and then discuss how-to break up the more complicated ones.
,
Part. 1 :

*BASIC, RATÍONAL•PUNCTIONS

Definition: A Basic Rational Function is a "proper fraction" of the form

$$
\frac{r}{a x+b} \because \frac{r}{(a x+b)^{n}}, \frac{r x+s}{a x^{2}+b x+c}
$$

- Basic rational functions of the first two types are easy to integrate. If the denominator is, $(a x+b)$ or $(a x+b)^{n}$, the substitution $u=(a x+b)$ will solve thich problem. See sample problems 1 and 2.

Things are more complicated if the denominator is quadratic. If the denominator factors easily, we use partial fractions to break up the integrand. . For example,

$$
\begin{aligned}
& -\int \frac{(x-5) d x}{x^{2}-4 x+3}=\int \frac{(x-5) d x}{(x-1)(x-3)}=\int\left(\frac{2}{x-1}-\frac{1}{x-3}\right) d x \\
& \therefore \quad, \quad=2 \ln |x-1|-\ln |x-3|+C
\end{aligned}
$$

. We will discuss the technique of partial fractions in part 2 of "this section.

Suppose the denominator does' not factor easily. Then complete the square and make a substitution for the u tecm in the denominator. Thére' are two possibilities.
(i) If the dendainator is of the form $\left(u^{2}+a^{2}\right)$, we will obtain something of the form

$$
\int \frac{b u+c}{u^{2}+a^{2}} a d u=b \int \frac{u}{u^{2}+a^{2}} d u \quad c \int \frac{1}{u^{2}+a^{2}} d u
$$

The first integral on the right will yield.a logarithm, and the second gives an arctangent.
(ii) If che denominator is of the form $\left(u^{2}-a^{2}\right)$, we obtain

$$
\int \frac{b u+c}{p^{2}-a^{2}} \cdot d u .
$$

7/erè arq two ways to continuie.from here. One is, to factor thé denominators and use partial fractions to break up the expression

$$
\infty \frac{b u+c}{(u+a)(u-a)}
$$

If the factors $(u+a)$ and ($u-a$) look reasonable, this is probably a`good way to finish the problem... We do have another alternative,
however:'

> We can write the integral as

$$
\mathrm{b} \int \frac{\mathrm{u}^{\prime}}{\mathrm{u}_{\cdot}^{2}-\mathrm{a}^{2}} \mathrm{du}+\mathrm{c} \int \frac{1}{u^{2}-a^{2}} d u^{\lambda}
$$

The first integral is \ddagger logarithm," and the second can be solved easily using the formula given below. See sample problems 3 through 5.

INTEGRATING BASIC RATIONALL FUNCTIONS

(1) If the denominator is $(a x+b)$ or ${ }^{\prime}(a x+b)^{n}$, substitute $u=,(a x+b)$. This reduces the problen to standard form.
(2) If the denominator is quadratic and factors easily, use partial fractions to finish the problem.
(3) If the denominator is quadratic and does not factor easily, complete the square: If the denominator is then

- i: $\left(u^{2}+a^{2}\right)$, integrate directly to obtain a logarithm and/or inverse tangent.
ii: ($u^{2}-a^{2}$), either use partial fractions or break up the integral and use the formula on.p.17.

1
Bote
Make sure you have checked for SIMPLIFICATIONS before you-- use the procedure for rational functions.
䒓

SAMPLE PROBLENS

Thie solutions to these problems illustrate the techniques described above. Try to solve thes before you read my solutions. If they cause you a great deal of difficulty, you should probably practice on some siminar problems from your textbook.

$$
\begin{aligned}
& \text { 1. } \int \frac{4}{5 x+.7} d x \\
& \sum_{2} \cdot \int \frac{5}{(4 x+3)^{6}} d x \\
& \text { 3. } \int \frac{3 x+7}{x^{2}+4 x+13} d x \\
& \text { 4. } \int \frac{x+2}{x^{2}+4 x+13} d x \\
& \text { 5. } \int \frac{x+5}{x^{2}+4 x+2} d x
\end{aligned}
$$

1. $\int \frac{4}{5 x+7} d x$

There is no algebraic simplification possible. Since the denominator is $(5 x+7)$, we make the substitutions

$$
u=5 x+7 ; \quad d u=5 d x
$$

+4
The integral then becomes
$\frac{4}{5} \int \frac{5 d x}{5 x+7}=\frac{4}{5} \int \frac{d u}{u}=\frac{4}{5} \ln |u|+C=\frac{4}{5} \ln |5 x+7|+C$.
2. $\left.\int \frac{5}{(4 x+3)^{6}} d x \quad \cdot \right\rvert\,$

Again, I seo no algebràic simplification. Since the denominator is $(4 x+3)^{6}$, the substitutions

$$
u=4 x+6 ; \quad d u=4 d x
$$

are called for. The integral then becomes

$$
\begin{aligned}
\frac{5}{4} \int \frac{4 d x}{(4 x+3)^{6}} & =\frac{5}{4}-\int \frac{d u}{u^{6}}=\frac{5}{4} \int_{u^{-6} d u}=\frac{5}{4}\left(\frac{u^{-5}}{-5}\right)+c \\
& =-\frac{1}{4}\left(\frac{1}{u^{5}}\right)+C=\frac{-1}{4(4 x+3)^{5}}+C .
\end{aligned}
$$

3. $\int \frac{3 x+7}{x^{2}+4 x+13} d x$

- As a preliminary algebraic manipulation I would consider : breaking the integral into a sum, but that doesn't look like it will help yet. Checking for obvious substitutions, r^{\prime} would consiaier substituting for the denominator, $u=x^{2}+4 x+13$.
This givgs $d u=(2 x+4) d x$, which does not appear, in the numerator. I can't factor the denominator, so I should complete the square. Since

$$
x^{2}+4 x+13 \bar{y}^{*}\left(x^{2}+4 x+4\right)+9=(x+2)^{2}+(3)^{2}
$$

.the denominator is of the form $\left(u^{2}+a^{2}\right)$, where $u=(x+2)$ and $a=3$. Making the substitutions $u=x+2$ and $d u=d x$, we obtain

- $\int \frac{(3 x+7) \cdot d x}{x^{2}+4 x+13}=\int \frac{[3(u-2)+7] d u}{u^{2}+3^{2}}=\int \frac{3 u d u}{u^{2}+3^{2}}+\int \frac{d u}{u^{2}+3^{2}}$

$$
\begin{aligned}
& =\frac{3}{2} \ln \left|u^{2}+3^{2}\right|+\frac{1}{3} \tan ^{-1}\left(\frac{u}{3}\right)+C \\
& =\frac{3}{2} \ln \left|x^{2}+4 x+13\right|+\frac{1}{3} \tan ^{-1}\left(\frac{x+2}{3}\right)+C
\end{aligned}
$$

4. $\int \frac{x_{0}+2}{x^{2}+4 x+13} d x$

As always, I begin work on this problem by looking for easy algebraic manipulatiotis. The integral can be broken into a sum of two integrals, but this does not look especially promising. I see no useful identities and this is already a "proper fraction", so I look for obvious substitutions next.

The "nasty" term is the denominator, so I should consider the substitution

$$
u=x^{2}+4 x+13
$$

This would give

$$
d u=(2 \dot{x}+4) d x
$$

which is double the numerator in this problem! The rest is' easy. The integral is

$$
\begin{aligned}
\partial \frac{1}{2} \int \frac{(2 x+4) d x}{x^{2}+4 x+13} & =\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2}, \ln |u|+c \\
& =\frac{1}{2} \ln \left|x^{2}+4 x+13\right| \div c
\end{aligned}
$$

Motice: This problem could have been done by completing the square in the denominator, like we did in problem 3. The advantage of the SIPPLIFY step is that it saved us the trouble.

Part 2:

DECOMROSIDG RATTONAL FUNCTIONS.

In part 1 , of this section we learned to integrate the basic rational functions. It is a fact that any rational function can be decomposed into a sum of basic rational functions. The techniqes we use are summarized in the following table.

DECOMPOSING RATIONAL FUNCTIONS

(1) If the function is an "improper fraction", divide to obtain the sum of a polynomial and a proper fraction.
(2) Factor the denominator as far as you can, into a-product of linear and quadratic terms.
(3) Use the technique of partial fractions to decompose the proper fraction into a sum of simpler terms.

We have already discussed step (1) in the SIMPLIFY chapter. If you are trying to integrate an improper rational function, your first step should always be to divide, and then to look for further simplifications.

- Step (2), factoring the denominator, can sometimes be difficult if.the denominator is complicated. The following rules from algebra often make this task easier.

Rule 1: If a polynomial with whole numbers for coefficients has a root which is a whole number, that root is a divisor of the constant term of the polynomial.
Rule 2: For any polynomial $P(x)$, the term $(x-a)$ is a factor of $P(x)$ if and only if $P(a)=0$.

To see how these rules work, let's factor the polynomial

$$
P(x)=x^{3}+x^{2}+x+6
$$

By Rule 1, any number which is a root of $P(x)$ must be a divisor of the constant term 6. Thus the only condidates for a whole number soot of $P(x)$ are

$$
+1,-1,+2,-2,+3,-3,+6, \text { and }-6 .
$$

Now we use Ruie 2 to see if any of these are roots of $P(x)$., Testing the carítidates one at a tine, we obtain

$$
\begin{aligned}
& P(+1)=1^{3}+1^{2}+1+6=9, \text { so }(+1) \text { is NOT a root of } P(x) . \\
& P(-1)=(-1)^{3}+(-1)^{2}+(-1)+6=5, \\
& P(+2)= 2^{3}+2^{2}+2+6=20 \text {, so }(-1) \text { is NOT a root of } P(x) . \\
& P(-2)=(-2)^{3}+(-2)^{2}+(-2)+6^{\prime}= \\
&-8^{\prime}+4-2+6=0 \text { root of } P(x) .
\end{aligned}
$$

Using Rule 2 , we now have that $\dot{x}-(-2)=(\dot{x}+2)$ is a factor of $P(x)=x^{3}+x^{2}+x+6$. We can divide to find the other factor:

Thus $P(x)=x^{3}+x^{2}+x+6=(x+2)\left(x^{2}-x+3\right)$. The quadratic tern camot be factored further, so we stop here.

Step (3) in the procedure calls for using the technique of partial fractions. Since your textbook describes it in detail, Ill juist sumarize it here. \qquad客。
The technique of partial fractions is used to decoupose a proper fraction into a sum of basic rational functions. Make, sure you have a proper ,fraction before you try to use the technique. $\%$,

Each term in the denominator of the fraction you are trying to break up will give one or more tefms when you use partial fractions.
if ($a x+b$) appears in the deninator, there will be a term of the form

$$
\frac{A}{a x \pm b} \text { in the decomposition. }
$$

If $(a \dot{x}+b)^{n}$ appears in the defnominator, there will be terms of the form

$$
\frac{A_{1}}{(a x+b)}, \frac{\dot{\lambda}_{2}}{(a x+b)^{2}}, \cdots, \frac{A_{n}}{(a x+b)^{n}} \text { in the decopposition. }
$$

If the term $\left(a x^{2}+b x+c\right)$ appears in the demominator, there will be a term of the form

$$
\frac{C x+D}{a \dot{x}^{2}+b x+c} \text { in the decomposition. }
$$

You'will rarely, if ever, encounter terms like $\left(a x^{2}+b x+c\right)^{n}$ in the denominator. We will not dgal with such functions here.

To use partial fractions, follow this procedure:
Step 1: Decide what terns will appear in' the decomposition, using the guidelines given above. Write an equation, with the coefficients still to be determined.
Step 2: Multiply both sides of the equation by the denominator of the fraction you are trying to break-up. Write both sides of the equation as polynomials, in x.
Step 3: Co pare the coefficients of x on both sides of the equations These enable you to solve for the terms A, B, C, etc. in the decomposition.
i.

- SAMPLE PROBLEMS

Decompose these two functions into sums of basic functions, using the techniqués we have just discussed. Make sure to try the problems before you read my solutions. Then compare your work with mine.

1. $f(x)=\frac{x^{3}+x^{2}-6 x+5}{x^{2}+x-6} \quad$ 2 $g(x)=\frac{x^{4}-x^{3}+3}{x^{3}-1}$.

SOLUTIONS

1. $f(x)=\frac{x^{3}+x^{2}-6 x+5}{x^{2}+x-6}$

The first thing we should do is reduce the "improper fraction" by division. That division has a quoţient of (x) and a remainder of (5), so

$$
\begin{aligned}
f(x) & =x+\frac{5}{x^{2}+x-6} \\
& =x+\frac{5}{(x+3)(x-2)}
\end{aligned}
$$

- Since the teras in the denominator are both linear, the partial - fractions decomposition will be of the form

$$
\frac{5}{(x+3)(x-2)}=\frac{A}{x+3}+\frac{B}{x-2}
$$

Multiplying both sides of this equation by $(x+3)(x-2)$, we get

$$
5=A(x-2)+B(x+3), \quad \text { or }
$$

$$
(0 ; x+5=(A+B) x+(-2 A+3 B)
$$

(Remember that if a term does not appear, its coefficient is 0.1
. Comparing coefficients, we obtain the equations

$$
\left.\left|\begin{array}{r}
A+B=0 \\
-2 A+3 B=5
\end{array}\right| \quad \text { so that } \quad \left\lvert\, \begin{array}{l}
A=-1 \\
B=1
\end{array}\right.\right\} \text {. }
$$

Thus

$$
\begin{aligned}
& \frac{5}{(x+3)(x-2)}=\frac{-1}{x+3}+\frac{1}{x-2} \\
& f(x)=x-\frac{1}{x+3}+\frac{1}{x-2}
\end{aligned}
$$

2. $g(x)={\frac{x^{4}-x^{3}+3}{x^{3}-1}}^{\text {2 }}$

This function is also an improper fraction, so we divide to obtain

$$
g(x)=x+\frac{3}{x^{3}-1} .
$$

Our next step is to factor the denominator. Since the constant
term in the denominator is 1 , the only candidates for roots are $x=+1$ and $x=-1$. Since

$$
(1)^{3}-1=0, \quad x=+1 \text { is a root of } x^{3}-1
$$

This tells us that $(x+1)$ is a factor of $\left(x^{3}-1\right)$. We can divide to find the other factor. This gives us

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right)
$$

Thus

$$
g(x)=x \div \frac{3}{(x-1)\left(x^{2}+x+1\right)}
$$

and our problem is to decompose

$$
\frac{3}{(x-1)\left(x^{2}+x+1\right)}
$$

into a sum of basic functions.. Using the criteria on pp.23-24, we, see that the decomposition will be of the form

$$
\begin{equation*}
\frac{3}{(x-1)\left(x^{2}+x+1\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1} \tag{}
\end{equation*}
$$

Multiplying through by $(x-1)\left(x^{2}+x+1\right)$, we obtain

$$
\begin{aligned}
3 & =A\left(x^{2}+x+1\right)^{A}+(B x+C)\left(x^{2}-1\right) \\
& =A x^{2}+A x+A+B x^{2}-B x+C x-C
\end{aligned}
$$

Thus
$(0) x^{2}+(0) x+3=(A+B) x^{2}+(A-B+C) x+(A-C)$.
This gives us the three equations

$$
\left.\left\{\begin{array}{ll}
A+B & =0 \\
A-B+C=0 \\
A-C=3
\end{array}\right\} \text {, so that } \left\lvert\, \begin{array}{l}
A=1 \\
B=-1 \\
C=-2
\end{array}\right.\right\}
$$

Plugging these three values back intor(*), we obtain N

$$
\frac{3}{(x-1)\left(x^{2}+x+1\right)}=\frac{1}{x-1}+\frac{(-1) x+(-2)}{x^{2}+x+1} \text {, so that }
$$

$$
g(x) \Rightarrow x+\frac{1}{x-1}-\frac{x+2}{x^{2}+x+1} .
$$

Section 2

PRODUCTS

If the integrand is a product, and especially if the integrand is a product of dissimilar functions, you should consider using, integration by parts to solve the problen. 'The formula is derived frow the formula for the differential of a product,

$$
d(u v)=\prime u d y+v d i s
$$

Integrating each term, we obtain

$$
u v=\int u d v+\int v \dot{v} d u
$$

Rearranging this gives

$$
\int u d v=u v-\int v_{j} d u .
$$

To apply this formula, we separate the integrand into two parts. We : call one u and the other $d v$. We differentiate u to obtain du, and integrate $d v$ to obtain v. If we can then integrate the term $\int v d u$, the problem is solved. The goaliof this procedure, then, is to choose u and $d v$ such that the term $\int_{v} d u$ is easier to solve than the original problem. As' the sample problems illustrate, this usually happens when u is simplified by differentiation. These comments are sumarized in the box below.

thtegrating products

Consider integration by parts. The formula is

$$
\int u d v=u v-\int v d u
$$

and your ghoice of u and $d v$ shoutd be governed by two things:
(1) You must be able to integrate the texm yoú call dv.
(2) You want $\int v$ du to be easier than the original integral. This often happens when u is simplified by differentiation.

Note: The functions $e^{x}, \sin x$, and $\cos x$ are affected about the same by either integration or differentiation. On the other hand, polynomials are usually "complicated" by integration and made simpler by differentiation. This suggests the following guideline:

Let $P(x)$ be anu polynomial. All of the integrals

$$
\int P(x) e^{x} d x, \quad \int P(x) \sin x d x, \quad \int P(x) \cos x d x
$$

should be done by parts; with $u=P(x)$ and do the remainder.
2. $\int x^{2} \tan ^{-1} x d x$

As in problem 1, there are two reasonable choices for u_{\sim} and jv:

$$
\left.\therefore \begin{aligned}
& u=x^{2} \\
& d v^{2}=\tan ^{-1} x-d x
\end{aligned} \right\rvert\, \quad \text { or } \quad\left|\begin{array}{l}
u=\tan ^{-1} x \\
d v=x^{2} d x
\end{array}\right|
$$

Let 's examine which choice will help more. In the first case we will have that $d u=2 x d x$, which is rather nice. But we will have to integrate $\mathrm{dv}=\tan ^{-1} \mathrm{x} d x$, and that is no simple matter. In the second case, we will have

$$
d u=\frac{1}{1+x^{2}} \cdot \frac{d x}{2} \text { and } v=\frac{1}{3} x^{3}
$$

'Here du is much simpler than u, because' weive'replaced an inverse tangent by a rational function! With-this choice we obtain

$$
\int\left(\tan ^{-1} x\right)\left(x^{2} d x\right)=\frac{\left(\tan ^{-1} x\right)\left(\frac{1}{3} x^{3}\right)}{u}-\frac{\int\left(\frac{1}{3} x^{3}\right)\left(\frac{d x}{v}\right)}{\frac{1+x^{2}}{d u}}
$$

The second integral can now bo done by: the procedure for
rationtifunctions: After using the procedure, we obtain

$$
\int x^{2} \tan ^{-1} x d x=\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{6} x^{2}+\frac{1}{6} \ln \left(1+x^{2}\right)+c
$$

3. $\int \sin ^{-1} x d x$

This integrand can be considered as a product, if we write the problem as, " $\int\left(\sin ^{-1} x\right)(1 d x)$. 'Since, as in problem 2 ; we obtain the greatest simplification by differentiating an inverse trigonometric function, we set
$\left\{\begin{array}{l}u=\sin ^{-1} x \\ d v=1 d x\end{array}|\underset{y}{\text { s. so that }} \quad| \begin{array}{l}d u=\frac{d x}{\sqrt{1-x^{2}}} \\ v=x .\end{array}\right.$
Then

$$
\begin{aligned}
& \int \underbrace{\left(\sin ^{-1} x\right)(1 \cdot d x)}_{u}=\underbrace{\left(\sin ^{-1} x\right)(x)-\int(x)}_{\dot{d v}} \underbrace{\left.\int f^{\prime} \frac{d x}{\sqrt{d}}\right)}_{v} \\
& =x \sin ^{-1} x+\sqrt{1-x^{2}}+c .
\end{aligned}
$$

4. $\int(\ln x)^{2} d x$.

Like problem 3, this, can be done by parts if we write it as $\left.\int\left[(\ln x)^{2}\right] \dot{[} d x\right]$. With $\quad\left\{\begin{array}{c}u=(\ln x)^{2} \\ d v=i d x\end{array}\right\} \quad$ and $\left\{\left.\begin{array}{c}d u=\frac{2}{x} \ln x d x \\ v=x\end{array} \right\rvert\,\right.$ we obtain

$$
\begin{aligned}
\int_{u}^{\dot{(1 n} x)^{2}} \underbrace{2} d v & =\underbrace{(1 d x)}_{u} \underbrace{(x)}_{v}-\int \underbrace{(x)}_{v} \underbrace{\left(\frac{2}{x} \ln x d x\right)}_{d u} \\
& =x\left(n^{-\prime \prime} x\right)^{2}-2 \int \ln x d x
\end{aligned}
$$

\qquad
He haven't solved the problem, but we'vé simplified it :o we now have to. integrate $\mathcal{f}(\operatorname{in} \cdot x d x)$ instead of $\int(\ln x)^{2} d x$. A second, integration by parts with $v=\ln x, d V=1 d x$ gives

$$
=x(\ln x)^{2}-2 x(\ln x)+2 x+C
$$

Note: Like -many problems in integration', this can'be done in more than one way. The substitution $H=\ln x$ (or $e^{h}=x$), transforms $\int\left(n_{i} x\right)^{2} d x$ to $\int W^{2} e^{W} d W$, which is, done by parts (twice)

Section 3

TRIGONOMETRIC

FUNCTIONS

Theré are many, special techniques for integrating combinations of the trigonometric functions, and trying to keep track of all of them can be difficult. Instead we can keep some general guidelines for approàching trigonometric integrals in mind. The basic idea is to exploif. the relationships among the trigonometric functions themselves, in order to simplify the integrand.

The first kind of manipulation we look for is a simple substitution of the kind $u=\sin x, u=\cos x$, etc. Vor this kind $^{\circ}$ of substitution to be successful, the integrand should consist of an expression involving one trigonometric function, multiplied by the derivative of that function. For exarple,

$$
\int \frac{\cos x d x}{1+\sin ^{2} x} \text { is of the form } \int f(\sin x)[d(\sin x)]
$$

where $f(\sin x)=\frac{1}{1+\sin ^{2} x}$ and $d(\sin x)=\cos x d x$.
In this problem we would nake the substitution $u=\sin x$. Sinikarly; if an integral can be expressed as i
$\int f\left(\sec _{x}^{\circ} x\right)(\sec x \tan x d x)$, we would $\operatorname{set}^{\circ} u=\sec x_{\text {in }}$
Our first lobject; then, is to manipulate an integral into the .. form $\int f(\sin x)(\cos ' x d x)$, etc, To do this, we try to exploit the "twin pairs". of trigonometric functions: $\sin x$ and $\cos _{n} x$, $\sec x$ and $\tan x$, and $\csc x$ and $\cot x$. The "twin pair" relationships are sumarized in the table on page 32: We discuss how to ;' use them in sample probleas \dot{i} and 2 .
\qquad

Twin Pairs of Trigonometric Functions

$\frac{d}{d x}(\sin x)^{\prime \prime}=\cos x$	$\frac{d}{d x}(\sec x)=\sec x \tan x$	$\frac{d}{d x}(\csc x)=-\csc x \cot x$
$\frac{d}{d x}(\cos x)=-\sin x$	$\frac{d}{d x}(\tan x)=\sec ^{2} x$	$\frac{d}{d x}(\cot x)=-\csc ^{2} x$
$\sin ^{2} x+\cos ^{2} x=1$	$\tan ^{2} x+1=\sec ^{2} x$	$1+\cot ^{2} x=\csc ^{2} x$

- If we are unable to exploit the "twin pairs", we turn to a. different approach. The next thing we try to do is to reduce the powers of the trigonometric functions appearing in the integrand. This is usually done with the help of the formalas

$$
\begin{array}{|c|c|}
\hline \sin ^{2} x=\frac{1}{2}(1-\cos 2 x) & \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
\hline
\end{array}
$$

or by a reduction formula obtained by using integration by parts. See sample problems 3 and 4.

Finally, there is a "last resort" technique based on the substitution $u=\tan \frac{x^{2}}{2}$. Adnittedly, this formula seems to come "out of the blue": However, if nothing else seems to work when you are trying to integrate a rational function of $\sin x$ and $\cos x$, țhe substitutions

$$
u=\tan \left(\frac{x}{2}\right), \sin x=\frac{2 u}{1+u^{2}}, \quad \cos x=\frac{1-u^{2}}{1+u^{2}}, d x=\frac{2 d u}{1+u^{2}}
$$

will transform the integrand to a rational function of u. It can then be finished by the techniques of section 1.* See problem 5. In sum,

SAMPLE PROBLEMS

1. $\int \cos ^{5} x d x$ 2. $\int \sec ^{3} x \tan ^{3} x d x$
2. $\int \sin ^{4} x d x$

SOLUTIONS

1. $\cos ^{5} x d x$

As a first approach to the problem, we should try to exploit the "twin pair" of $\sin x$ and $\cos x$. Thus we should t try to obtain either
(a) a function of $\cos x$, multiplied by $(-\sin x)$, or ${ }^{\cdot}$
(b) a function of $\sin x$, multiplied by $(\cos x)$.

Notice that we can achieve (b) Since $\cos ^{2} x$ can be expressed
, in terms of $\sin ^{2} x$, then any even power of $\cos x$ can be expressed in terms of powers of $\sin ^{2} x$. In this problem we can write $\cos ^{5} x=\left(\cos ^{4} x\right)(\cos x)$, which gives uss
e $\int \cos ^{5} x d x=\int\left(\cos ^{4} x\right)(\cos x d x)=\int\left(1-\sin ^{2} x\right)^{2}(\cos x \cdot d x)$

$$
=\int\left[1-2 \sin ^{2} x+\sin ^{4} x\right](\cos x d x)
$$

This is now in the form $\int f(\sin x)(\cos x d x)$, and the substitutions $u=\sin x, d u=\cos x d x$ give us'

$$
\begin{gathered}
\int\left[1-2 u^{2}+u^{4}\right] d u^{2}=u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}+C \\
=\sin x-\frac{2}{3} \sin ^{3} x+\frac{1}{5} \sin ^{5} x+C
\end{gathered}
$$

Note: This technique will work exactly in this manner for any odd powers of $\cos x$ and $\sin x$.
2. $\int_{\sec ^{3} x} \tan ^{3} x d x$

Since this integrand involves $\sec x$ and $\tan x$, we should see if we can express it as
(a) a function of $\sec x$, multiplied by $(\sec x \tan x)$, or
(b) a function of $\tan x$, multiplied by $\left(\sec ^{2} x\right)$.

In this case we can achieve (b), since factoring out the fern $(\sec x \tan x)$ leaves us with $\left(\sec ^{2} x \tan ^{2} x\right)$, and the even power of $\tan x$ can be expressed in terms of secant. We have $\int \sec ^{3} x \tan ^{3} x d x=\int\left(\sec ^{2} x\right)\left(\tan ^{2} x\right)\left(\sec ^{x} x \tan x d x\right)$
$=\int\left(\sec ^{2} x\right)\left(\sec ^{2} x-1\right)(\sec x \tan x d x)$,
and the substitution $u=\sec x$ gives us'
$\int u^{2}\left(u^{2}-1\right) d u=\int\left(u^{4}-u^{2}\right) d u=\frac{1}{5} u^{5}-\frac{1}{3} u^{3}+C$

$$
=-\frac{1}{5} \sec ^{5} x-\frac{1}{3} \sec ^{3} x+C
$$

3. $\int \sin ^{4} x d x$

Technique (1) doesn't help us in this problem: if we try to \& separate out ($\sin x d x$), were left with the te sm ($\sin ^{3} x d x$), which can't be expressed as a polynomial in its t win, $\cos x$. Instead we turn to technique (2) and use the double-angle formula
$\int \sin ^{4} x d x=\int\left(\sin ^{2} x\right)^{2} d x=\int\left[\frac{1}{2}(1-\cos 2 x)\right]^{2} d x$

$$
=\frac{1}{4} \int\left(1-2 \hat{} \cos 2 x+\cos ^{2} 2 x\right)^{\prime} d x
$$

The first two terms in this expression can be integrated easily, and we can again call on a double-angle formula to express

$$
-\cos ^{2} 2 x=\frac{1}{2}(1+\cos 4 x) . \quad \text { This gives us }
$$

$\frac{1}{4} \int d x-\frac{1}{2} \int \cos 2 x d x+\frac{1}{8} \int d x+\frac{1}{8} \int \cos 4 x d x=$
$\frac{x}{4}-\frac{\sin 2 x}{4}+\frac{x}{8}+\frac{\sin 4 x}{32}+C$
$\frac{\sin 4 x-8 v \sin 2 x+12 x}{32}+C$

$$
\longdiv { 3 9 }
$$

This is a difficult problem. Well go through it slowly and in detail, so that the reasoning for it and problems like it becomes apparent. We begin by noticing that technique (1) doesn't work for us here and that the double-angle formulas don't apply; so we decide to use integration by parts. There are three reasonable choices:
(a) $\iint_{u}^{\left(\sec ^{3} x\right)} \frac{(1, d x)}{d y}$,
(b) $\int \frac{\left(\sec ^{2} x\right)}{u} \frac{(\sec x d x)}{d v}$, and
(c) $\int \underbrace{(\sec x)}_{u}(\underbrace{\left.\sec ^{2} x d x\right)}_{d v}$

In choice (a), setting ${ }^{\circ} d v=d x$ would lead. to $v=x$, and the term ($v \mathrm{~d} \|$) would involve both x and a combination of trig functions. Integrating that looks difficult, so we go on to try something else: In choice (b); setting $d y=(\sec \cdot x \mathrm{dx})$ leads to,$v=\ln |\sec x+\tan x|$, which is nasty. Thus we examine choice (c). Since

$$
\because\left|\begin{array}{l}
u=\sec ^{2} x \\
d v=\sec ^{2} x d x
\end{array}\right| \text { gives } \left\lvert\, \begin{aligned}
& d u=\sec x \tan x d x \\
& v=\tan x
\end{aligned}\right.
$$

and this is the best of the three alternatives, we proceed :

$$
\begin{aligned}
\int \frac{(\sec x)}{\left(\sec ^{2} x d x\right)} & =\underbrace{\left(\sec ^{x} x\right)}_{d y}(\tan x) \\
u & \left.\int \frac{(\tan x)}{(\sec x \tan x d x}\right) \\
& =\sec x \tan x-\int(\sec x)\left(\tan ^{2} x d x\right)
\end{aligned}
$$

- We can use the identity $\left(\tan ^{2} x=\sec ^{2} x-1\right)$ to obtain$\int \sec ^{3} x d x=\sec x \cdot \tan x-\int(\sec x)\left(\sec ^{2} x-1\right)^{\circ} d x$ or
(*) $\int \sec ^{3} x d x=\sec x \tan x-\int \sec ^{3} x-d x+\int \sec x \cdot d x$.
For a moment it looks as if we've gone around in circles, ? because we now have the term

$$
u=\int \sec ^{3} x d x
$$

on both sides of equation (*). . Notice, however, that U. appears with a negative sign on the right-hand side of ("). He can then consider (*) as an algebraic equation,

$$
U=(\sec x \tan x)-U+\left(\int \sec x d x\right)
$$

Solving this equation for U, we obtain
$2 U=\sec x \tan x+\int \sec x d x$
$=\sec x \tan x+\ln |\sec x+\tan x|+C$.
Dividing both sides of this equation by 2 ; and replacing U by $\int \sec ^{3} x d x$, we finally obtain

$$
\int \sec ^{3} x d x=\frac{1}{2}[\sec x \tan x+\ln |\sec x+\tan x|]+C^{\prime},
$$

where $\mathrm{C}^{\prime}=\mathrm{C} / 2$.
Mote:- This is a long and imolved procedure. With minor modifications, it will provide reduction formulas for powers of all the trigonometric functions. Because of its complexity, however, you should only consider using it after checking that technique' (1) and the double-angle formulas don't help:
5. $\int \frac{d x}{2+\sin x}$

In this problem, neither the "twin pairs" or reduction formulas seem to help, so we make use of the "last resort" substitution given in technique (3). The substitutions

$$
u=\tan \left(\frac{x}{2}\right) ; \quad \sin x=\frac{2 u}{1+u^{2}} ; \quad \cos x=\frac{1-u^{2}}{1+u^{2}} ; d x=\frac{2 d u}{1+u^{2}}
$$

transform the integral to

$$
\int \frac{\frac{2 d u}{1+u^{2}}}{2+\frac{2 u}{1+u^{2}}}=\int \frac{2 d u}{2 u^{2}+2 u+2}=\int \frac{d u}{u^{2}+u+1} .
$$

is This is a rational function, and is done by -completing the square in the denominator:

$$
\int \frac{d u}{u^{2}+u+1}=-\int \frac{d u}{(u+1 / 2)^{2}+(3 / 4)}=\frac{1}{\sqrt{3 / 4}} \tan ^{-1}\left[\frac{a+1 / 2}{\sqrt{3 / 4}}\right]+c
$$

$$
\quad \cdots \quad e^{*} \frac{1}{\sqrt{3 / 4}} \tan ^{-1}\left[\frac{\tan \left(\frac{x}{2}\right)+(1 / 2)}{\sqrt{3 / 4}}\right]+C .0
$$

Section 4

SPECIAL FUNCTIONS

In this section we will discuss, three kinds of substitutions which occur often enough that they are worth singling out for special mention. The first type of substitution deals with terns of the form

$$
\left(a^{2}+u^{2}\right)^{n / 2}, \quad\left(a^{2}-u^{2}\right)^{n / 2}, \quad \text { and }\left(u^{2}-a^{2}\right)^{n / 2}
$$

We deal with fumctions like these by making a trigonometric substitutions for one of the terns
(*) $\left(a^{2}+u^{2}\right)^{1 / 2},\left(a^{2}-u^{2}\right)^{1 / 2}$, or $\left(u^{2}-a^{2}\right)^{1 / 2}$.
The substitutions can be memorized, but I find it easier to draw a triangle and derive them. All of the substitutions come from the Pythagorean theorem, which says"that $X^{2}+Y^{2}=Z^{2}$ in the triangle to the right. If we place the sides a and on the triangle carefully, we
 can make the third side of the triangle be any of the terms in (") See the triangles below.

Once the triangle has been drawn and labeled, we can "read" whatever substitution we need from it. Follow this procedure.

To obtain an expression for u, use the trigonometric function that involves u and a. Onceyou have u as a trigonometric function of 0 , differentiate to find $d u$.

To obtain an expression for (something) ${ }^{1 / 2}$, use the trigonometric function that inuolves the sides (something) ${ }^{1 / 2}$ and a in the triangle.

Make the substitutions. Thise result will be a trigonometric integral, which you can solve in texms of 0 . To express the answer, in terms of x; "read", the functions from the triongle.

Sample problems 1 and 2 will illustrate how to use this procedire. See page 41 for the second'apd third kinds of substitutions we discuss in this section.

SAMPLE PROBLEMS

1. $\int \frac{d x}{\left(x^{2}+9\right)^{3 / 2}}$

$$
\text { 2. } \int \frac{x^{2} d x}{\sqrt{4-9 x^{2}}}
$$

4
 SOLUTIONS

1. $\int \frac{d x}{\left(x^{2}+9\right)^{3 / 2}}$

Before we try a trigonometric substitution, we should check for any SIMPLIFICATIONS. Unfortunately there are none, so we draw a triangle. In this case the tern we wish to substitute for is

$$
\left(x^{2}+9\right)^{1 / 2}
$$

so we draw the triangle ,

To obtain the substitution for x, we use the function that involves the' sides (3) and (x). In this case
$\tan \theta=\frac{\dot{x}}{3}$, so $x=3 \tan \theta$ and $d x=3 \sec ^{2} \theta d \theta$.
To obtain the substitution for $\left(x^{2}+9\right)^{1 / 2}$, we use the function that involves $\left(x^{2}+9\right)^{1 / 2}$ and (3). This gives us

$$
\sec 0=\frac{\left(x^{2}+9\right)^{1 / 2}}{3}, \quad \text { or } . \quad\left(x^{2}+9\right)^{1 / 2}=3 \sec \theta
$$

We are now ready to substitute these into the problem. We get

$$
\begin{aligned}
\int \frac{d x}{\left(x^{2}+9\right)^{3 / 2}} & =\int \frac{d x}{\left[\left(x^{2}+9\right)^{1 / 2}\right]^{3}}=\int \frac{3 \sec ^{2} \theta d \theta}{(3 \sec \theta)^{3}} \\
& =\int \frac{3 \sec ^{2} \theta d \theta}{27 \sec ^{3} \theta}=\frac{1}{9} \int \cos \theta d \theta \\
& =\frac{1}{9} \sin \dot{\theta}+C
\end{aligned}
$$

We. now return to the triangle to obtain the value of $\sin ^{*} \theta$. This gives us the final answer

$$
\frac{1}{9}\left(\frac{x}{\left(x^{2}+9\right)^{1 / 2}}\right)+C .
$$

2. $\int \frac{x^{2} d x}{\sqrt{4-9 x^{2}}}$

In this problem the term $\sqrt{4-9 x^{2}}$
is of the form $\sqrt{a^{2}-u^{2}}$, and suggests
a triangle with hypotenuse 2 and leg. $3 x$, like the one drawn to the fight.

We first determine x and $d x$ by using the trigononetrics function involving ($3 x$) and (2). This gives us
$\sin \theta=\frac{3 x}{2}, \quad$ so $\quad x=\frac{2}{3} \sin \theta \quad$ and $\quad d x=\frac{2}{3} \cos \theta d \theta$.
To substitute for $\sqrt{4-9 x^{2}}$, we use, the trigonometric function involving that term and the constant: Here

$$
\cos \theta=\frac{\sqrt{4-9 x^{2}}}{2}, \quad \text { so } \quad \sqrt{4-9 x^{2}}=2 \cos \theta
$$

At this point were ready to substitute in the integral. We obtain

$$
\begin{aligned}
\int \frac{x^{2} d x}{\sqrt{4-9 x^{2}}} & =\int \frac{\left(\frac{2}{3} \sin \theta\right)^{2}\left(\frac{2}{3} \cos \theta d \theta\right)}{2 \cos \theta} \\
& =\frac{4}{27} \int \sin ^{2} \theta=\frac{4}{27} \int\left(\frac{1}{2}\right)(1-\cos 20) d \theta \\
& =\frac{2}{27} \int d \theta-\frac{2}{27} \int \cos 2 \theta d \theta \\
& =\frac{2}{27} \theta-\frac{1}{27} \sin 2 \theta+C \\
& =\frac{2}{27}(\theta-\sin \theta \cos \theta)+C .
\end{aligned}
$$

To complete the problem, we need only read off the values of the functions of θ from the triangle. $\sin \theta$ and $\cos \theta$ are ,$\frac{3 x}{2}$ and $\frac{\sqrt{4-9 x^{2}}}{2}$, respectively. To find θ, we can use the function
$\sin \theta: \quad \operatorname{since} \sin \theta=\frac{3 x}{2^{\top}}, \quad \theta=\sin ^{-1}\left(\frac{3 x}{2}\right)$.
Thus

- $\int \frac{x^{2} d x}{\sqrt{4-9 x^{2}}}=\frac{2}{27}\left[\sin ^{-1}\left(\frac{3 x}{2}\right)-\left(\frac{3 x}{2}\right)\left(\frac{\sqrt{4-9 x^{2}}}{2}\right)\right]+C$,

The second and third types of substitution we discuss in this section are really special cases of a suggestion we discussed in Chapter 1, where we noted that it is often worth considering, substitutions for the "nasty" terms in integrands. Expressions involving e^{x} and $\sqrt[n]{a x+b}$ occur often enough' to justify listing these substitutions.

We frequently encounter integrals like

$$
\int \frac{1}{e^{x}+1} d x, \int \frac{1}{e^{x}-e^{-x}} d x, \text { and } \int \frac{e^{3 x}+1}{e^{2 x}+1} d x
$$

which are rational functions of e^{x}. At first glance it looks like the substitution $u_{n}=e^{x}$ will not be of assistance, because the term da $=e^{x} d x$ is missing. You should make the substitution anyway!

$$
\text { If } u=e^{x} \text {, then } d u=e^{x} d x=u d x \text {, so } d x=\frac{1}{u} d u
$$

If you are trying to integrate a rational function of e^{x}, make the substitutions

$$
e^{x}=u \quad \text { and } \quad \frac{6}{d x}=\frac{1}{u} d u .
$$

The result will be a rational function of u.

A similar comment holds for integrals which include terms of the form

$$
\sqrt[n]{a x+b}
$$

If we set $u=\sqrt[n]{a x+b}$, then $u^{n}=a x+b$, and $x=\frac{1}{a}\left(u^{n}-b\right)$. Differentiating, we obtain $\quad d x=\frac{n}{\frac{a}{2}} u^{n-1} d u$.
If you are trying to solve an integral which is a rational function of x and ${ }^{n} a x+b$, make the substitutions

$$
\sqrt[n]{a x+b_{1}}=i, \quad x=\frac{1}{a}\left(u^{n}-b\right), \quad \text { and } \quad a x=\frac{n}{a} u^{n-1} d x
$$

The result of these substitutions will be a rational function of u.
See sample problems 3 and 4 for these substitutions. The table on page 42 sumarizes this section.

INTEGRATING SPECIAL FUNCTIONS

(1) If the integrand includes terms 0_{0}^{*} the form

$$
\left(a^{2}-u^{2}\right)^{n / 2},\left(u^{2}-a^{2}\right)^{n / 2}, \text { or }\left(a^{2}+u^{2}\right)^{n / 2}
$$

(a) Draw a right titiangle.
(b) Place a and u so that the third side of the triangle is the term you want.
(c) "Read" the substitutions from the triangle.
(2) If the integrand is a rational function of e^{x}, make the substitutions

$$
e^{x} f u \quad \text { and } d x=\frac{1}{u} d u
$$

(3) If the integrand is a rational function of x and $\sqrt[n]{a x+b}$, make the substitutions

$$
\sqrt[n]{a x+b}=u, \quad x=\frac{1}{a}\left(u^{n}-b\right), \quad \text { and } d x=\frac{n}{a} u^{n-1} d u .
$$

SAMPLE PROBLEMS

3. $\int \frac{1}{e^{x}-e^{-x}} d x$
4. $\int \frac{1}{x} \sqrt[3]{2 x+1} d x$

*

3. $\int \frac{1}{e^{x}-e^{-x}} d x$

The integrand in this problem is a rational function of e^{x}. Therefore we should make the substitutions is

$$
e^{x}=u, d x=\frac{1}{u} d u
$$

- even though ($e^{x} d x$) does" not appear in the monerater: Since

$$
\mathrm{e}^{-\mathrm{x}}=\frac{1}{\mathrm{e}^{\mathrm{x}}}=\frac{1}{u_{0}}, \text { the integral becomes }
$$

Solutionsi_Continued
$\int\left(\frac{1}{u_{s}-\frac{1}{u}}\right)\left(\frac{1}{u} d u\right)=\int \frac{d u}{\left(u-\frac{1}{u}\right)(u)}=\int \frac{d u}{u^{2}-1}$.
Using partial fractions or the formula on page 17, this is
$\int \frac{1}{2}\left(\frac{1}{u-1}-\frac{1}{u+1}\right) d u=\frac{1}{2}[\ln |u-1|-\ln |u+1|]+c$

$$
=\frac{1}{2} \circ \ln \left|\frac{u^{\prime}-1}{u+1}\right|+C=\frac{1}{2} \ln \left|\frac{e^{x}-1}{e^{x}+1}\right|+C .
$$

4. $\int \frac{1}{x} \sqrt[3]{2 x+1} d x$

The integrand in this problem is a rational function of x and $\sqrt[3]{2 x+1}$, so we should make the substitutions - $u \nless \sqrt[3]{2 x+1} ; u^{3}=2 x+1 ; x=\frac{1}{2}\left(u^{3}-1\right) ; d x=\frac{3}{2} u^{2} d u$.

The integral then becomes

$$
\begin{aligned}
\int\left(\frac{1}{x}\right)(\sqrt[3]{2 x+1}) \lambda(d x) & =\int\left(\frac{1}{\frac{1}{2}\left(u^{3}-1\right)}\right)(u)\left(\frac{3}{2} u^{2} d u\right) \\
& =3 \int \frac{-u^{3}}{u^{3}-1} d u .
\end{aligned}
$$

Using the technique for rational functions, this becomes

$$
\int\left(\beta+\frac{3}{u^{3}-1}\right) d \underline{ } \cdot=\int\left(3+\frac{1}{u-1}-\frac{u+2}{u^{2}+u^{k}+1}\right) d u .
$$

$$
=3 u+\ln |u-1|=\frac{1}{2} \ln \left|u^{2}+u+1\right|-(\sqrt{3}) \tan ^{-1}\left(\frac{2 u+1}{\sqrt{3}}\right)-+c
$$

$$
\text { where } u=\sqrt[3]{2 x+1}
$$

$$
\dot{f}
$$

$\left|\begin{array}{c}\text { 1. } \\ \text { so 1. }\end{array}\right| \cdot \int \frac{7}{x \sqrt{x^{2}+4}} d x$
$\left|\begin{array}{c}\text { 2. } \\ \text { sol. }\end{array}\right| \sqrt{2 \cdot \tan ^{4} x d x}$
$\left(501.4 \left\lvert\, \int \frac{4}{e^{x}-1} d x\right.\right.$
$|\underset{\text { sol. }}{4}| \int \frac{6 x^{2}}{\sqrt{3 x+1}} d x$
$\int \underset{\text { sol. }}{513} \int^{1} \int \frac{9 x}{x^{2}+4} d x$

$\left|\begin{array}{r}\mathbf{S}_{0}^{9} .9\end{array}\right| \int \frac{\cos (\ln x)}{x!} d x$
$\left|\begin{array}{l}10\end{array}\right| \int \frac{9}{2+\cos x} d x$

$\left\|\begin{array}{ll} 1 & 1 \\ \operatorname{sen}_{0} & 16 \end{array}\right\| \int^{\csc ^{3} x} \cot ^{3} x d x$	$\left[\begin{array}{ll} 1 & 4 \\ \operatorname{so1} .15 \end{array}\right] \int \csc ^{2} x \operatorname{cet}^{3} x d x$
\because	
$\left\|\prod_{\text {sol. } 7}\right\| \int \frac{x^{3}+x^{2}}{x^{2}+x-2} d x$	$\left\{\prod_{\text {sol. } 3}^{5}\right\} \int\left(\sin ^{2} x-\cos ^{2} x\right) d x$
	"
$\left\{\begin{array}{l} 1 \\ \text { sol. } 5 \end{array}\right\} \cdot \int \frac{\tan ^{-1} x}{x^{2}+1} d x$	$\left\|\int_{\text {sol. } 12}\right\| \int \frac{x^{4}}{x^{3}-1} d x$

* * PART 2

Solve each of the exercises from part 1. Detailed solutions are in the solutions'mazal. This table lists the number of the solution to each exercise below the number of the exercise.

Exercise	(2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Solution "	22	26	20	17	29	24	30	27	25	18	32	23	21	31	19	28

PROBLEM

SIMILARITIES

Som integrals can be classified easily, but look so complicate that the standard procedures for solving them promise to be $)^{\text {very messy. Other integrals may not fit into the classification }}$ scheme of Chapter 2, andךwe may not know an appropriate way to solve them. One way to approach such problems is to look for similarities between them and problems we know how to do. If the form of a difficult problem resembles that of a "standard" problem, there are two possibilities. We might be able to reduce the difficult problem to that "standard" form. Or, the techniques -we would use on the easier problem night help us solve the more difficult one. The sample problems will illustrate this kind of approach. Summarized in table form, we have
+

PRORLE SIMILARITIES

(1) Look for easy problems similar to the one you are working on.
(2) hit to reduce the difficult problem to the form of the easy similar problem.
(3) Try the techniques you would use on the similar problem.

SAMPLE PROBLEMS

Use the suggestions given on page 47 to try to solve these problems. Then compare your solution with mire.

1. $\int \frac{x}{1+x^{4}} d x$
2. $\int \frac{x^{2}}{x^{6}-9 x^{3}+8} d x$

1
H^{-}

SOWTIONS

1. $\int \frac{x}{1+x^{4}} d x$

The integrand in this problem is a rational function, so we could solve the problem by the procedures of chapter 2. The denominator is difficult to factor, however, so we look for another approach.

The problem would be easy of the denominator were $\left(1+x^{2}\right)$ instead of $\left(1+x^{4}\right)$; can that be arranged? Yes, because of the x term in the numerator. Making the substitutions,

$$
u=x^{2}, \quad d u=2 x d x,
$$

we get
$\int \frac{x}{1+x^{4}} d x=\frac{1}{2} \int \frac{2 x \cdot d \dot{x}}{1+x^{4}}=\frac{1}{2} \int \frac{d u}{1+u^{2}}=\frac{1}{2} \tan ^{-1} u+C$

2. $\int \frac{x^{2}}{x^{6}-9 x^{3}+8} d x$

This problem; like problem 1, can be solved direct $l y$, by the pracedừe for rational functions. The denominator factors without difficulty to give us

$$
\int \frac{x^{2} d x}{\left(x^{3}-1\right)\left(x^{3}-8\right)}
$$

... Me could continue factoring the denominator, use partial fractions, and then integrate term by. term. that promises to be a very involved procedure, however. We. should stop and look for other alternatives.

Note that the integrand resembles a simple rational function with a quadratic denominator: instead of $(x-1)(x-8)$, we have $\left(x^{3}-1\right)\left(x^{3}-8\right)$. Can we/simptify the denominator? Yes, since the tern ($\dot{x}^{2} d x$) appears in the numerator. With the substitutions

$$
u=x^{3} ; \quad d u=3 x^{2} d x
$$

we obtain .

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{3} \int \frac{d u}{(u-1)(u-8)} & =\frac{1}{3} \int\left(\frac{\left(-\frac{1}{3}\right)}{u-1}+\frac{\left(\frac{1}{7}\right)}{u-8}\right) d u \\
& =\frac{1}{21} \int\left(\frac{1}{u-8}-\frac{1}{u-1}\right) d u \\
& =\frac{1}{21}(\ln |u-8|-\ln |u-1|)+\quad c=\frac{1}{21} \ln \left|\frac{u-8}{u-1}\right|+C \\
& =\frac{1}{21} \ln \left|\frac{x_{x}^{3}-8}{x^{3}-1}\right|+c .
\end{aligned} \\
&
\end{aligned}
$$

Note: Substitutions like this might have occurred to you after working through chapter 1. If so, terrific! Our guiding 'principle is: at every stage of a problem; look for easy altematives. As, you gain experience, your catalogue of SIMPLIFYING techniques will grow.
3. $\int_{0}^{0} \frac{1}{(x+1) \sqrt{x^{2}+2 x}} d x^{\prime}$.
a
As a preliminary simplification, we might consider a substitution for the "nasty" term in the denominator: $u=x^{2}+2 x$. This leads to $d u=(2 x+2) d x$, and at first glance this looks promising. Unfortunately, the term $(x+1)$ is in the denominator, instead of the numerator, where we would like it! So, we abandon this substitution temporarily, in the hope we can-find something easier.

Looking for similarities, we can ask; are there any "standard forms". that include square roots in the denominator? Yes, terms like $\int_{i} \frac{d u}{\sqrt{u^{2} \pm a^{2}}}, \int \frac{-d u}{u \sqrt{u^{2} \pm a^{2}}}$, etc. This suggests completing the square; in the hope that we get something - easier to handle. We have $\left[x^{2}+2 x\right]=\left[(x+1)^{2}-1\right]$, which suggests the substitution $u_{0}=(x+1) \cdot$, Then
$\int \frac{d x}{(x+1) \sqrt{x^{2}+2 x}}=\int \frac{d u}{u \sqrt{u^{2}-1}}=\sec ^{-1} u+C$

$$
=\sec ^{-1}(x+1)+e
$$

Section 2

SPECIAL

MANIPULATIONS

In this section we discuss four techniques designed, to express complicated integrands in more convenient formsor integration. They are

"."
'These, techniques of ten involve complex manipulations. It may not be clêear that they are helping to solve"a problés. until we have done some complicated calculations". For that reason, these techniques differ from the simplifications of Chapter 1 . when we first examine an integral, we look for fast and easy ways to solve it. If that fail's, we try too..clässify it and use' standard techniques, Only if that fails, or if the standard techniques look very complicated, . do we look for alternatives such as these. With practice you will discover which approaches to integrals you can examine rapidly, and which are time-consuming. This knowredge should govern the order in which fou apply them.

B. SPECIAL USE OF TRIGONOMETRIC IDENTITIES

The basic trigonometric, identities, like the terms discussed in (A), can be written as the difference of two squares. For example,

$$
\begin{aligned}
& (1+\cos x)(1-\cos x)=1-\cos ^{2} x=\sin ^{2} x \\
& (1+\sin x)(1-\sin x)=1-\sin ^{2} x=\cos ^{2} x
\end{aligned}
$$

$(\sec x+\tan x)(\sec x-\tan x)=\sec ^{2} x-\tan ^{2} x=i$;
$(\csc x+\cot x)(\csc x-\cot x)=\csc ^{2} x-\cot ^{2} x=1$.
The terms paired above, like $(1+\cos x)$ and' $(i-\cos x)$, áre e^{\prime} called conjugates.

$$
=
$$

If the integrand contains any of the terms ($1 \pm \cos x$); $(1 \pm \sin x),(\sec x \pm \tan x)$, on $(\csc x \pm \cot x)$, either int the denominator of a fraction or inside a square toot, consiuer muitiplying and dividinc the integrand by its comjugate.

See sample problems 3 and . 4.

C. "COMMON DENOMINATOR" SUBSTITUTIONS

Wen an integrand involves a single term like $\sqrt[n]{x}=x^{1 / n}$, we make the substitution $u=x^{1 / n}$, or equivalently, $u^{n}=x$. The result of this substitution is an integrand which has integer (whole number) powers of u instead of fractional powers of x.

Some integrands involve more than one fractional power of
x, like

$$
\int \frac{x^{1 / 3}+4}{x^{1 / 2}+x^{2 / 3}} d x
$$

To solve an integral like this, we would like to find a substitution $u=x^{1 / N}$ such that all of the fractional powers of x. are replaced by integer powers of u.. We choose N as follows,

Let B be the smallest common denominator of ali the fractional powers of x which appear in the integrand. Make the substitution . $u=x^{1 / N}$, so that $x=u^{B}$: and. $d x=\dot{N}^{R-1} d u$.
The integrand which results from this substitution will be a rational function of u.

In the problem above, the smallest common denominator of $\frac{1}{3} p+\frac{1}{2}$, and $\frac{2}{3}$ is 6. Thus we should make the substitutions

$$
u=x^{1 / 6} ; \quad x=u^{6} ; \quad d x=6 u^{5} d u
$$

-The integral then becomes

$$
\int\left(\frac{u^{2}+4}{u^{3}+u^{4}}\right)\left(6 u^{5} d u\right)
$$

which can be solved by the procedure for rational functions. See sample problem 5.

D. "DESPERATION" SUBSTITUTIONS

Our guideline in Chapter 1 was that we should only consider substitutions that are quick and easy to use, and we postponed looking at any substitutions that looked complicated or unpromising. If neither the SIMPLIFY nor CLASSIFY steps help us solve a problem, we should now consider more complicated substitutions in the hope. that they will prove helpful. At this stage we have little to lose. For example, to solve

$$
\int(\sqrt{1+\sqrt{x}}) d x
$$

- we might try ${ }^{2} \quad u=1+\sqrt{x}$ or even $u=\sqrt{1+\sqrt{x}}$. See problem -6:

To solve
C.

$$
\int\left(\sqrt{\frac{x+1}{x^{*}}}\right) d x
$$

We might try $u=\frac{x+1}{x}$ or even $u=\sqrt{\frac{x+1}{x}}$.
REWEMBER: Our goal' is to manipulate the integrand until it takes, a familiar or convenient form. As, soon as we succeed, we rectum' to the SIMPLIFY and CLASSIFY techniques of chapters 1 and 2.

SAMPLE PROBLEMS

Try each problem before you read the solution. Then compare jour reasoning with mine.

1. $\int \frac{d x}{\sqrt{x+1} \cdot \sqrt{x-1}} \quad$ 4. $\int \sqrt{1-\cos x} d x$
2. $\int \frac{x d x}{1-\sqrt{1-x}}$
3. $\int \frac{d x}{x^{1 / 3}-x^{1 / 2}}$
4. $\int \frac{d x}{1+\cos x}$
5. $\int_{i=1}^{\sqrt{1+\sqrt{x}}} d x$

SOLUTIONS

1. $\int \frac{d x}{\sqrt{x+1}+\sqrt{x-1}}$

To solve this problem, we multiply both numerator and denominator by the conjugate term $(\sqrt{x+1}-\sqrt{x-1})$. This gives. us
$\int \frac{(\sqrt{x+1}-\sqrt{x-1}) d x}{(\sqrt{x+1}+\sqrt{x-1})(\sqrt{x+1}-\sqrt{x-1})}=\int \frac{(\sqrt{x+1}-\sqrt{x-1}) d x}{(x+1)-(x-1)}<$
$\int \frac{(\sqrt{x+1}-\sqrt{x-1})}{2}{ }^{\prime} d x=\frac{1}{2} \int(x+1)^{1 / 2} d x-\frac{1}{2} \int(x-1)^{1 / 2} d x$

$$
=\frac{1}{3}(x+1)^{3 / 2}-\frac{1}{3}(x-1)^{3 / 2}+C
$$

2. $\int \frac{\frac{x+x}{1-\sqrt{x-x}}}{1-2}$

Here too we multiply numerator and denominator by the conjugate term, $(1+\sqrt{1-x})$. This gives us.

$$
\begin{aligned}
& \int \frac{x(1+\sqrt{1-x}) \cdot d x}{(1-\sqrt{1-x})(1+\sqrt{1-x})}=\int \frac{x(1+\sqrt{1-x}) d x}{1-(1-x)}= \\
& \int \frac{x(1+\sqrt{1-x}) d x}{x}=\int\left(1+(1-x)^{1 / 2}\right) d x
\end{aligned}
$$

$$
=x-\frac{2}{3}(1-x)^{3 / 2}+c
$$

3. $\int \frac{d x}{1+\cos x}$

Since the integrand is a rational function of cos" x^{\prime}, we could use the substitution $u=\tan \frac{x}{2}$ to transform it $\quad \alpha$ function of u. Since working with conjugates in this case is fairly easy, we can try that first and see what happens, We get
$\int \frac{d x}{1+\cos x}=\int \frac{(1-\cos x) d x}{(1+\cos x)(1-\cos x)}=\int \frac{(1-\cos x) d x}{\sin ^{2} x}=1$ $\int \frac{d x}{\sin ^{2} x}-\int \frac{\cos x d x}{\sin ^{2} x}=\int \csc ^{2} x d x-\int \frac{d u}{u^{2}} ;$ (where $u=\sin x$)
$\therefore 1$

$$
=-\cot x+\frac{1}{u}+C=-\cot x+\frac{1}{\sin x+} C
$$

$-\cot x+\csc x+c$.
4. $\int \sqrt{1-\cos x} d x \cdot$

In this problem the "nasty" term is inside the "square root. If we multiply ($1-\cos x$) by its conjugate ($1+\cos x$), we obtain 。 . $\sin ^{2} x$, and the square root of that is just $\sin x$. . For that ${ }^{\circ}$

- reason we can try the technique, in the hope that the result is simpler to work with. If it isn't, we would look for something else.
$\int \sqrt{1-\cos x^{-1}} d x=\int \sqrt{\sqrt{\frac{(1-\cos x)(1+\cos x)-(1+\cos x)}{n}}} d x$ $\int \sqrt{\frac{\sin ^{2} x}{1+\cos x}}=\iint \frac{\sqrt{\sin ^{2} x}}{\sqrt{1+\cos x}} d x=\int \frac{\sin x \cdot d x}{\sqrt{1+\cos x}}$

This nay look as complicated" as 'the integral we started-with, but is much easier and can be done by the techniques of Chapter 1. We have the term $\cos x$ in the denominator,
and (almost) its derivetive in the numerator. Making the substitution $u=\cos x$, the integral becomes.

$$
\int \frac{-d u}{\sqrt{1+u}}=\int-(1+u)^{-1 / 2}=-2(1+u)^{1 / 2}+c
$$

$$
=-2 \sqrt{1+\cos x}+c
$$

5.

$$
\int \frac{d x}{x^{1 / 3}-x^{1 / 2}}
$$

- This problem involves fractional exponents. The least common denominator of $\frac{1}{2}$ and $\frac{1}{3}$ is, $6 ; 50$ we bake the substitution

$$
u=x^{1 / 6} \text {, so } x=u^{6} \text { and } d x=6 u^{5}
$$

The integral becomes

$$
\begin{aligned}
& \int \frac{6 u^{5} d u}{u^{2}-u^{3}}=6 \sqrt{\frac{u^{3}}{1-u}} \cdot=-6 \int \frac{u^{3} d u}{u-1}= \\
& -6 \int\left(u^{2}+u+1+\frac{1}{u-1}\right) d u= \\
& -\left(2 u^{3}+3 u^{2}+u+\ln |u-1|\right)+C= \\
& -\left(2 x^{1 / 2}+3 x^{1 / 3}+6 x^{1 / 6}+6 \ln \left|x^{1 / 6}-1\right|\right)+C .
\end{aligned}
$$

0. $\int \sqrt{1+\sqrt{x}} d x$

This problem can be done by sequential substitutions $u=\sqrt{x}$; $\dot{v}=1+u ; w=\sqrt{v}$: As an example of a "desperation"' substitution, however, we might try

$$
u=\sqrt{1+\sqrt{x}} ; \text { Then } u^{2}=1+\sqrt{x} ; \quad x=\left(u^{2}-1\right)^{2} ; \text { and }
$$

$d x=4 u\left(u^{2}-1\right) d u$. Then
$\int \sqrt{1+\sqrt{x}} d x=\int(u)\left[4 u\left(u^{2}-1\right)\right]^{2} d u=\int\left(4 u^{4^{2}}-4 u^{2}\right) d u=$

$$
\frac{4}{5} u^{5}-\frac{4}{3} u^{3}+c=\frac{4}{5}(1+\sqrt{x})^{5 / 2}-\frac{4}{3}(1+\sqrt{x})^{3 / 2}+c
$$

Section 3

NEEDS ANALYSIS

The technique of needs analysis has been implicit in much of our work so far, and we now state it formally as an integration technique. It consists af asking what might enable us to solve a problem, and then either adding it (and compensäting for it) or. changing something in the problem to it. Needs analysis explains the reasoning behind our exploiting "twin pairs" of trigonometric functions, for example. If an integrand is a complicated expression involving $\sin x$, we search for a way to introduce the term ($\cos x d^{2} x$). Conversely, if ($\cos x d x$) appeared in the integrand, we might seek to express the rest of the integrand in terms of $\sin x$. For an integrand involving e^{x}, we might seek to introduce ($e^{x} d x$). [This is done automatically by the substitutions $u=e^{x}$; $d u=e^{x} d x ; \cdot d x=\frac{1}{u} d u$. An alternaterstrategy is given in sample problem 1.1 If'the integrand involves x^{n}, we can'look for a way to introduc $\left[n x^{n-1} d x\right]$: As usual, we summarize in table form.

63

SMPLE PROBLENS

hay to soire-eaci of these rrablens usine a neecis anaijsis. Then compare your ecluticn with mine.

1. $\int \frac{d x}{e^{x}-e^{-x}}$
2. $\int \frac{d x}{x\left(a x^{n}+b\right)}$
3. $\int \frac{\sec ^{2} x d x}{\sqrt{5-\sec ^{2} x}}$.
4. $\int \frac{d x}{j \cdot(\sin x+6)(\cos , x)}$

SOLUTIONS

1. $\int \frac{d x}{e^{x}-e^{-x}}$

He solved this'problem before on page 42, where the procedure for special functions called for the substitutions

$$
e^{x}=u \quad \text { and } . d \dot{x}=\frac{1}{\mathfrak{a}} d u
$$

Needs analysis provides another route to a solution. Since the integrand is a rationall function of e^{x}, I would like to nake the substitution $v=e^{\dot{x}}$.. This would work most easily if the term" "u $=e^{x}$ dx were ${ }^{2}$ esent in the integrand, I can obtain it, if I multiply numerafor and denominator of the integrand by e^{x}. This gives

$$
\int \frac{e^{x} d x}{\left(e^{x}\right)\left(e^{x}-e^{-x}\right)}=\frac{e^{x} d x}{e^{2 x}-1},
$$

and now the substitution $u=e^{x}$ gives

$$
\int \frac{d u}{u^{2}-1}=\sqrt{2} \int\left(\frac{1}{u-1}-\frac{1}{u+1}\right) d u=\frac{1}{2}(\ln |u-1|-\ln |u+1|)+C
$$

$$
=\frac{1}{2} \ln \left|\frac{u+1}{u+1}\right|+c=\frac{1}{2} \ln \left|\frac{e^{x}-1}{e^{x}+1}\right|+c .
$$

2. $\int \frac{\sec ^{2} x d x}{\sqrt{5-\sec ^{2} x}}$

Since this integral involves a function cif sec x, our first reaciion is: we need the term (ssc x tan x dxi. He can multipl: "numerator and denominator-by $\tan x$:o obtain

$$
\int \frac{(\sec x)\left(\sec x^{2} \tan x d x\right)}{(\tan x) \sqrt{5-\sec ^{2} x}}
$$

but this looks very nasty. Instead, we can ask: he have the temp $\left(\sec ^{2} i d x\right)$ in the numerator. Can the rest of the interral be expressed-in-terms-of-tan-x? lies-s-since. $\sec ^{2} x=\tan ^{2} x+1$. Using tinis in the denominater, we obtain

$$
\begin{aligned}
& \int \frac{\sec ^{2} x d x}{\sqrt{4}-\tan ^{2} x}
\end{aligned}=\int \frac{d u}{\sqrt{4-u^{2}}}, \quad[u=\tan x] .
$$

3.

$$
\int \frac{d x^{-}}{x\left(a x^{n}+b\right)}
$$

One way to handle this problem might be a "desperation" substitution, $u=\left(a x^{n}+b\right)$. Another way is to focus on the term causing diffuculty, the x^{n} in the denominator. To make a sưbstitution like $u=x^{n}$, we would need $n x^{n-1}$ in the nemerator: 'We san get it, if we multiply numerator and denominator by $n x x^{n-1}$-The integral becomes
$\int \frac{n x^{n-1} d x}{\left(n x^{n-1}\right)(x)\left(a x^{n}+b\right)}=\frac{1}{n} \int \frac{n x^{n-1} d x}{\left(x^{n}\right)\left(a x^{n}+b\right)}=\frac{1}{n} \int \frac{d u}{(u)(a u+b)}$,
where $u=x^{n}$. We can now solve the problem by partial fractions, obtaining
$\frac{1}{n} \int\left(\frac{(1 / b)}{u}-\frac{(a / b)}{a u+b}\right) d u=\frac{1}{n b} \int\left(\frac{1}{u}-\frac{a}{a u+b}\right) d u$
$=\frac{1}{n b}(\ln |u|-\ln |a u+b|)+C=\frac{1}{n b} \ln \left|\frac{u}{a u+b}\right|+C$

$$
\therefore \quad=\frac{1}{n b} \ln \left|\frac{x^{n}}{a x^{n}+b}\right|+C .
$$

4.

$$
\int \frac{d x}{(\sin x+6)(\cos x)}
$$

Since this integral involves $\sin x$ and $\cos x$, we. need either
(a) ($\sin x d x$) in the numerator with all the rest expressed in terns of $\cos x$, or
(b) ($\cos x d x$) in the numerator, with all the rest expressed in terms of $\sin x$.

If we try (a), we obtain

$$
\int \frac{\sin x d x}{\left(\sin ^{2} x+6 \sin x\right)(\cos x)}
$$

That doosn't help, because we can't express the 'denominator easily in terms of cos x. So we try (b):
$\int \frac{d x \cdot}{(\sin x+6)(\cos x)}=\int \frac{\cos x d x}{(\sin x+6)\left(\cos ^{2} x\right)}=\int \frac{\cos x d x}{(\sin x+6)\left(1-\sin ^{2} x\right)}$.
Here the numerator is (cos $x d x$) and the denominator is a function $\varphi f \sin _{\Downarrow} x$. How the substitution $u=\sin x$ gives us $\int \frac{d u}{(u+6)\left(1-u^{2}\right)}=\int \frac{d u}{(u+6)(1+u)(1-u)}$ $\int\left(\frac{-1 q / 65}{u+6}+\frac{1 / 10}{1+u}+\frac{1 / 14}{1-u}\right) d u$
$\left.=\frac{-1}{35} \ln |u+6 \cdot|+\frac{1}{10} \ln |1+u|-\frac{1}{14} \ln | | 1-u \right\rvert\,+C$
$\cdot=\frac{-1}{35} \ln |\sin x+6|+\frac{1}{10} \ln |1+\sin x|-\frac{1}{14} \ln |1-\sin x|+c$.

- EXERCISES FOR CRAPPER 3
 4

PART 1: Examine each of these integrals and DECIDE how you would solve it. Then compare your chosen approach with mine, which is given in the solutions manual.
$\binom{-1 \cdot}{$ sol. 5} $\int \frac{x}{x^{4}-3 x^{2}+2} d x$
$\left\{\right.$ O. $_{\text {sol. }}^{7} \left\lvert\, \int \frac{x^{5}}{\sqrt{1+x^{3}}} d x\right.$
$\left\{\begin{array}{c}\text { 2.1. }\end{array}\right\} \quad \int \frac{\tan x}{\sec \cdot x+2} d x$
1
301.3 $\int \frac{x^{2 / 3}}{x+1} d x$
$\left|\begin{array}{l}4 \\ \text { sol. } 9\end{array}\right|^{\sqrt{6}} \int \sqrt{\frac{x}{y^{x}+1}} \cdot d x$
$\left|\int_{\text {sol. }}^{5}\right|^{5} \frac{x}{\sqrt{1+x}+\sqrt{1-x}} d x$
(501. 8 . $\int \frac{1}{(x+4) \sqrt{x^{2}+8 x}} d x$
$\left\{\right.$ Sol. $\left._{\text {B. }}\right\} \int \frac{1}{\sqrt{1+\sqrt{x}}} d x$
$\left|\left.\right|_{\text {sol. } 2} ^{\text {O }}\right| \cdot \int x^{1 / 2}\left(1+x^{1 / 3}\right) d x$
$\left\{\operatorname{10}_{\operatorname{so1} .}^{0} 0_{6}\right\} \int \frac{1}{\sec x+\tan x} d x$

PART 2: . Solve each of the exercises, given above. Detailed solutions are in the solutions manual. The solution numbers are given below.

Exercise	1	2	3	4	5	6	7	8	9	10
Solution	15	20	13	19	14	17	18	11	-12	16

67

Appendix I.
PreTest

You should be able to do all of these problems without difficulty. If you have a lot of trouble; practice these types of problems before you try to work through the booklet. Answers are on the opposite page.

Answers to Pre-Test
(8) $\frac{1}{5} x^{5}+\frac{2}{3} x^{3}+x+C$;

NOT $\frac{1}{3}\left(x^{2}+1\right)^{3}+C$.
(9) $\frac{1}{2} e^{x^{2}}+C$
(2) $6 x\left(x^{2} \oplus 1\right)^{2}$
(10) $1 \ln \left|x^{2}+6\right|+\dot{c}^{6}$
(ii) $\frac{1}{8}\left(x^{2}+x\right)^{8}+C$
(4) $14 x e^{7 x^{2}+1}$
(12) $\frac{-q}{2} \cot 2 x+c$

69

This table contains the formulas which are USEFUL for integration. For short-term use (on tests, for example) memorizing them will save you time and trcuble. For long-term or of casional use, you can look them up or: delmethem when you need them.

This table contains the formulas which are ESSENTIAL for integration. You should know the so well that you never have to refer to the table when solving problems.

ESSENTIAL FORMELAS

Integration

(1) $\int_{4^{n}} d u=\frac{u^{n+1}}{n^{+1}}+c \cdot$
(4) $\cdot f_{\sin u d u \bar{\xi}-\cos u+C}$
(5) $\int \cos u d u=\sin u+C$
(6) $\int \sec ^{2}{ }^{2} u^{\frac{1}{4}} d u=\tan u+C$
(2) $\int \frac{d u}{u}=\ln u+c$
(3) $\int e^{u} d u=e^{u}+C$
(7) $\int \csc ^{2} u d u=-\cot u+C$.
(8) $\int \sec u \tan u d u=\sec u+c$
(9) $\int \csc u \cot u d u=-\csc u+C$

- USEFUL FORMULAS

Trigonometry
(d) $\tan ^{2} x+1=\sec ^{2} x$
(f) $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
(e) $1+\cot ^{2} x=\csc ^{2} x$
(8) $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$

Tntegration
$\left(10^{\prime}\right) \iint \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+C$
(11) $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C$
(12) $\int \frac{d u}{\sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-10}\left(\frac{u}{a}\right)+C$
(13) $\int \tan u d u=-\ln |\cos u|-C$
(14) $\int \cot u d u=\ln |\sin u| \ldots$
(15) $\int \sec u d u=\ln |\sec u+\tan u j-C|$
(16) $\int \csc u ́ d u^{\prime}=-\ln \mid \csc u+\cot u_{1}^{\prime}+C$

CLASSIFY!

IMEGRATING RATIONL FUNCTIONS

(1) Reduce to "proper fractions" by ditision.

IMUEGRATING TRIGOMOTRIC FUNCTIONS

(2) Factor the denominatdr.
(3) Decompose by partial fractions into a sum of "basic" rational functions.
(4) If the denominator is $(a x+b)$ or $(a x+b)^{n}$, , use the substitution $u=(a x+b)$.
(5) If a quadratic denominator does not factor easily, complete the square. For the terms
i: $\left(a^{2}+u^{2}\right)$, integrate, \ddot{d} rectly to obtain a logarithm and/or, arctangent.
ii: $=\left(u^{2}-a^{2}\right)$, break into a sum and use the formula. on p.17; or use jartial fractions.

INTEGRATING PADOUCTS

Consider integration by parte. The formula is

$$
\int u d v=u v-\int v d u
$$

and your choice of u and $d v$ should be governed by two things:
(1) You must be able to integrate the term $d v$.
(2) You want $\int v d u$ to be easier than the original integral. This often happens when u is simplified by differentiation.
(1) Exploit tuin pairs to prepare for substitutions. Try to obtain integrals of the form $\sqrt{f}(\sin x)(\operatorname{cog} x d x) ;$ etc.
(2) Use half-angle formulas or integration by parts to reduce powers of trigonometric functions n the integrand.
(3) As a last resort, the substitution $u=\tan \left(\frac{x}{2}\right)$, transforms rational functions of $\sin x$ and $\cos x$ - to rational functions of u. (see p.32)

INTEGRATING SPECIAL FUNCTIONS

(1) If the integrand includes terme of the form

$$
\left(a^{2}-u^{2}\right)^{n / 2} ;\left(u^{2}-a^{2}\right)^{n / 2}, \text { or }\left(a^{2}+u^{2}\right)^{n / 2}
$$

(a) Draw a right triangle
(b) Place a and u so that the third side of the triangle is the term you want.
(c) "Read" the substitutions from the triangle.
(2) If the integrand is a rational function of e^{x}, make the substitutions

$$
e^{x}=u \text { and } d x=\frac{1}{u} d u
$$

(3) If the integrand is a rational function of x and $\sqrt[n]{a x+b}$, make the substitutions $\sqrt[n]{a x+b}=u ; x=\frac{1}{a}\left(u^{n}-b\right)$, and $d x=\frac{n}{a} u^{n-1} d u$.

MODIFY!

PROBLEM SIMILARITIES

(1) Look: for easy problems similar to the one you are working on.
(2) ${ }^{\text {Try }}$ to reduce the difficult . problem to the form of the easy similar problem.
(3) Try the techniques you would use on the similar problem.

SPECILL' MANIPYEATIONS')

(1) Rationalizing denominators of quotients.
(2) Special uses of . trigonometric identities.
(3) "Conimon denominator" substitutions.
(4) "Dosperation" substitutions

NEEDS ANALYSIS

(1)-Look for a term, or a form of the integral, that would enable you to solve it.
(2) Try to modify the integral to produce the perm or form you need.
(3) Try to introduce the term you need; compensate for it.

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.
Your Name-

Description of Difficulty: (Please be specific)*

Instructor: Please indicate your resolution of the difficulty in this box.Corrected errors in materials. List corrections here:Gave student better explanation, example, or procedure than in unitGive brief outline of your addition here:

Assisted student in acquiring general learning and problem-solving skills (not using examples from this unit.)
\qquad Unit No. \qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closest to your-personal opinion.

1. How useful was the amount of detail in the unit?
_ Not enough detail to understand the unit
Unit would have been clearer with more detail Appropriate amount of detail
Unit was occasionally too detailed, but this was not distractingToo much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps Sufficient information was given to solve the problems
___Sample solutions were too detailed; I didn't need them
3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
\qquad A Lot
Somewhat
A Little
Not at all
4. How long was this unit in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?

| Much | Somewhat
 Longer
 Longer\quadAbout
 the Same | Somewhat
 Shorter |
| :--- | :--- | :--- | | Much. |
| :---: |
| Shorter |

5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)

Prerequisites
___Statement of skills and concepts (objectives)
——Paragraph headings
_ Exampies
Special Assistance Supplement (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many

Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
Paragraph headings
Table of Contents
Special Assistance Supplement (if present)
Other, please explain \qquad
Please describe anything in the unit that you did not particularly like.

1

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

This table contains. the formulas which are ESSENTIAL for integration. You should know them so well that/ you never have to refer . them so well that you never have to
to the table when solving problems.

MODULES AND MONOGRAPH8 IN ONDERGRADUATE MATHEMATICS AND IT8 APPLLCATIONB FROJECT

Alan H. Schoenfeld

INTEGRATION:
Getting It All Togéther.

Solutions Manual

June 1977
edc/umap/55chapel st./newton,mass. 02160

1. (Exercise 4) Part (a) can be solved easily.

There are no easy algebraic manipulations in either part of the problem, so we look for substitutions. In both (a) and (b), the "nasty" term is $\tan ^{-1} x$. If we try

$$
u=\tan ^{-1} x, \quad \text { then } d u=\frac{1}{x^{2}+1} d x
$$

and this term does appear in (a). Using this substitution in part (a), we obtain * :

$$
\begin{gathered}
\int \frac{\tan ^{-1} x d x}{x^{2}+1}=\int\left(\tan ^{-1} x\right)\left(\frac{1}{x^{2}+1} d x\right)=\int u d u= \\
\frac{1}{2} u^{2}+\int=\frac{1}{2}\left(\tan ^{-1} x\right)^{2}+C
\end{gathered}
$$

!
(Ėxercise 2) fart (b) can be solved easily.
We begin by looking for algebràic simplifications. Boith integrals (a) and (b) can be broken into sums, but that doesn't

- look terribly promising at this point. There are no identities Which apply to either problem. .But we notice that part (b) is an "isproper fraction", so we should divide to reduce it to a proper fraction. . The quotient is (x^{2}), and the remainder is (b). Now (b) is easy to finish:
$\int \frac{x^{3}+x^{2}+1}{x+1} d x=\int\left(x^{2}+\frac{1}{x+1}\right) d x$

$$
=\frac{1}{3} x^{3}+\ln |x+1|+C .
$$

FiExercise 1)" Part (b) can be solved easily.

He might try exploring with trig identiizes in the hope of simplifying either part of this exercise. If we do, a short amount of exploration convinces us that this approach is unpromising. In both parts of this problem the "nasty" term is the denominator, $\sim(2+\sin x)$.. If we $t r y$

$$
u=\left(2+\sin ^{-} x\right), \text { then } \phi u=\cos x d x .
$$

Since, (du) is' the numerator in part (b), (b) is the easier problem to solve. We get
$\int \frac{\cos x d x}{2+\sin x}=\int \frac{d u}{u}=\ln |u|+c$

$$
=\ln \cdot|2+\sin x|+C
$$

6.

(Exercise 7) Part (b) can be solved easily.
In both parts of this example we have that the integrand is a rational function of e^{x}. While we might be tempted to jump into the substitution $u=e^{x}$, let's follow the procedure. The first of our algebraic manipulations calls for breaking an integral of a sum into a sum of integrals. If we examine (b), we see that this almost finishes the problem. We obtain

$$
\int \frac{e^{5 x}+1}{e^{x}} d x=\int\left(\frac{e^{5 x}}{e^{x}}+\frac{1}{e^{x}}\right) d x=\int\left(e^{4 x}+e^{-x}\right) d x
$$

y

$$
=\frac{1}{4} e^{4 x}-e^{-x}+C
$$

7.

Exercise 8) Part (b) can be solved easily.
As in Sample Problem 6, the moral here 25: look before you leap! We can factor the denominator into $(x-1)(x-3)$, which means that both parts of Exercise 8 can be solved by the technique of Partial Fractions. In both (a) and (b), how er, the "nasty" term is the denominator, $\left(x^{2}-4 x+3\right)$. If we try

$$
u=x^{2}-4 x+3, \quad \text { then } d u=(2 x-4) d x
$$

which is twice the numerator of part (b). Part (b) can then be solved almost immediately:
$\int \frac{(x-2) d x}{x^{2}-4 x+3}=\frac{1}{2} \int \frac{(2 x-4) d x}{x^{2}-4 x+3}=\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+C$

$$
\pm \quad=\frac{1}{2} \ln \left|x^{2}-4 x+3\right|+C
$$

8
(Exercise 3) Part (b) can be solved easily.
We might try to exploit the relationship $\tan ^{2} x+1=\sec ^{2} x$ in either part of this exercise, but manipulations with this may get complicated. We should hold off using this until we have checked for anything easier. In part (a) we have $t a n$ as the "inside" function, which suggests

$$
u=\tan x ; \quad d u=\sec ^{2} x
$$

Unfortunately, we don't have $\sec ^{2} x$ in part (a), or any easy way of getting it. So we go on to part (b). There the "inside" function is sec x, suggesting

$$
u=\sec x ; \quad d u=\sec x \tan x d x
$$

At first this doesn't look helpful either, untiluse realize that we can "borrow" a $(\sec x)$ from $\left(\sec ^{4} x\right)=\left(\sec ^{3} x\right)(\sec x)$. Then $\int \sec ^{4} x \tan x, d x=\int\left[\sec ^{3} x\right][\sec x \tan x d x]$.

$$
=\int u^{3} d u=\frac{1}{4} u^{4}+C=\frac{1}{4} \sec ^{4} x+C
$$

Solutions, Chapter 2, PART I:
1 (Exercise 4) $\int \frac{6 x_{i n}^{2} d x}{\sqrt{3 x+1}}$
The SIMg\#IFYing technique's of Chapter 1 don't seem to help here. Our clue to approaching then hblem is "the term $\sqrt{3 x+1}$ in the numerator. This is one bspecial functions we studied in section $4,-\sqrt[n]{a x+b}$, and suggest, we substitutions $u \equiv \sqrt{3 x+1} ; u^{2}-3 x+1 ; \quad x_{-}=\frac{1}{3}\left(u^{2}-1\right) ;, d x \neq \frac{2}{3} u d u$.

The methods of "Chapter' 1 don't seem, to apply. The integrand is' a combination of trig functions, so we check for the apptopriate technique there. There doesn't see to be any way to exploit "twin pairs", and there are no powers to redyce, so we are left with the "last resorty" substitutions based on $u=\tan \left(\frac{x}{2}\right):$
3.
(Exercise 15) $\cdot \sqrt{\left(\sin ^{2} x-\cos ^{2} x\right) d x}$
'We could use the techniques of the Trigonometric. Functions section, but we should check for easy alternatives first. If we rememer the trigonometric identity,

$$
\cos 2 x=\operatorname{cbs}^{2} x-\sin ^{2} x,
$$

the-problen can bé done easily by the methods of Chapter 1 .
(Exércise 3)

$$
\int \frac{4 d x}{e^{x}+1}
$$

There are no, apparent simplifications, and the term e^{x} in the denominator indicajes that we should considetrithe. . substitutions $u=e_{i}^{x} d u=e^{x} d x ; d x=\frac{d u}{u}$.

Solutions, Chapter 2, 'PART I
5.
(Exercise.15)

$$
\int \frac{\tan ^{-1} x \cdot d x}{x^{2}+1}
$$

∞

The methods of Chapter 1 apply here. The "nasty" term is $\tan ^{-1} x$; and if we set $u=\tan ^{-1} x$, then $d u=\frac{d x}{x^{2}+1}$. From this point on the problem is easy.
6.
(Exercise 1)

$$
\int \frac{7 d x}{x \sqrt{x^{2}+4}}
$$

There are no apparent simplifications for this problem. Our clue for approaching, it is the term $\sqrt{x^{2}+4}$, which is one of the special forms we studied in section'. 4. It suggests trig substitutions. based on 'the triangle to the right.

The integrand in this exercise is a rational function, so - We should follow, the procedure for rational functions.

8
(Exercise 6)

There are no apparent simplifications.; Here the integrand is a product of dissimilar.functions, so integration by parts is i likely technique. The two choices we have are..
(a): $u=x ; d v=\tan ^{-1} x d x$.
(b): $u, \tan ^{-1} x d v=x d x$.

Chpice (a) doesn't look promising; because we wfuld have to integrate $d v=\tan ^{-1} x d x .1$ In choice (b), we diffetentiate
 we use integration by parts,
with $u=\tan ^{-1} x ; d v=x d x$.

$$
\int \frac{\cos (\ln x) \cdot d x}{x}
$$

Since this integrand contains an "inside" function, ($\ln \mathrm{x}$), our first approach should be to try the substitution

$$
u=\ln x .
$$

10 (Exercise 2)

$$
\int 2 \tan ^{4} x d x
$$

There are no apparent simplifications. Since the problem involves trigonometric.sunctionts, we should first try to exploit the relationship, between tan x and its "twin", sec, x. If that fails, we night look for a reduction formula. .
$1 \begin{gathered}11:(\text { Exercise } 8)\end{gathered}$

$$
\begin{aligned}
& \because 1 \\
& \because \int \frac{5 d x}{\sqrt{x^{2}+6 x}}
\end{aligned}
$$

As a preliminary simplification; we might factor the term in the denominator to obtain

$$
\cdots \int \frac{5 \mathrm{dx}}{\sqrt{(x)(x+6)}}
$$

but this doesn'tr'seem'to help much. What. can we integrate?
Terms of the form

$$
\cdot 1
$$

$$
\int \frac{\text { du }}{\sqrt{\mathrm{u}^{2} \pm \mathrm{a}^{2}}} ;
$$

sa we should consider completing the square the denominator ta obtain $\int \frac{5 d x}{\sqrt{(x+3)^{2}-9}}$ with $u=(x+3)$, this

is $\int \frac{5 d i^{\prime}}{\sqrt{u^{2}-3^{2}}}$, and a trig substitution
\therefore is suggested; "with the help of the diagram given above.
1
 - ! \qquad

$$
\cdot \quad \cdot \quad \cdot
$$

1.7.(Exercise 4) $\quad \int \frac{6 x^{2} d x}{\sqrt{3 x+1}}$

See solution [1] for our reasoning. With the substitutions $. u=\sqrt{3 x+1} ; \quad u^{2}=3 x+1 ; \quad x=\frac{1}{3}\left(u^{2}-1\right) ; \quad d x=\frac{2}{3} u d u$, the integral becomes

$$
\begin{aligned}
& \int \frac{6\left[\frac{1}{3}\left(u^{2}-1\right)\right]^{2}\left[\frac{2}{3} u d u\right]}{u}=\frac{4}{9} \int\left(u^{2}-1\right)^{2} \cdot d u \\
& =\frac{4}{9} \int\left(u^{4}-2 u^{2}+1\right) d u=\frac{4}{9}\left[\frac{1}{5} u^{5}-\frac{2}{3} u^{3}+u\right]+C \\
& \quad=\frac{4}{9}\left[\frac{1}{5}(3 x+1)^{5 / 2}-\frac{2}{3}(3 x+1)_{0}^{3 / 2}+(3 x+1)^{1 / 2}+C\right. \\
&
\end{aligned}
$$

18
(Exercise 10) $\quad \int \frac{9 d x}{2+\cos x}$.
See solution [2] for our reasoning. With the substitutions $u=\tan \left(\frac{x}{2}\right) ; . \sin x=\frac{2 u}{1+u^{2}} ; \cos x=\frac{1-u^{2}}{1+u^{2}} ; \quad d x=\frac{2 d u}{1+u^{2}}$,
the integral becomes

$$
\int \frac{9 \cdot\left(\frac{2 d u}{1+u^{2}}\right)}{2+\left(\frac{1-u^{2}}{1+u^{2}}\right)}=18 \int \frac{d u}{u^{2}+3} .
$$

Now if we remember formula ${ }^{\prime \prime} 1^{\circ}$ from the table of useful integrals, this is

$$
\begin{aligned}
& \because 18\left[\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{u}{\sqrt{3}}\right)+C\right. \\
& \cdots
\end{aligned} \quad . \quad .
$$

1_{0} (Exercise 15) ${ }^{\circ} \int\left(\sin ^{2} x-\cos ^{2} x\right) d x$. See solution [3] for our reasoning. We have

$$
\begin{gathered}
\dot{f}\left(\sin ^{2} x-\cos ^{2} x\right)^{\cdot} d x==\int \\
\text { (Exercise 3) }
\end{gathered}
$$

See solution [4] for our reasoning. With the substitutions

$$
u=e^{x} ; \quad d u=e^{x} d x ; \quad d x=\frac{d u}{u},
$$

the integral becomes

$$
\int \frac{4\left[\frac{d u}{u}\right]}{u-1}=4 \int \frac{d u}{(u)(u-1)}, \text { Using partial fractions, }
$$

$$
\text { this is. } \quad 4 \int\left(\frac{1}{u-1}-\frac{1}{u}\right) d u=4(\ln |u-1|,-\ln |u|)+C
$$

$$
=4 \ln \left|\frac{u-1}{u}\right|++C=4 \ln \left|\frac{e^{x}-1}{e^{x}}\right|+C
$$

21 (Exercise 13) $\int \frac{\tan ^{-1} x d x}{x^{2}+1}$
See solution [5] for our reasoning. With the substitutions

$$
\begin{aligned}
& \quad u=\tan ^{-1} x ; \cdot d u^{5}=\frac{d x}{x^{2}+1} \\
& \text { the integral becomes } \\
& \int_{i} \tan ^{-1} x\left(\frac{d x}{x^{2} \pm 1}\right)
\end{aligned} \quad=\int u d u=\frac{1}{2} u^{2}+C \text {. } \quad \begin{aligned}
& =\frac{1}{2}\left[\tan ^{-1} x\right]^{2}+C .
\end{aligned}
$$

Donifier rale.

Solutions,
$\int \frac{7 \mathrm{dx}}{\sqrt{x^{2}+4}}$
22 (Exercise 1)

$$
\int \frac{7 d x}{\sqrt{x^{2}+4}}
$$

See solution [6] for our reasoning. Based on the triangle to the right, we obtain the substitutions $x \xlongequal{=} 2 \tan \theta$; $d x=2 \sec ^{2} \theta d \theta ;$ and $\sqrt{x^{2}+4}=2 \sec \theta$. the integral

becomes. $7 \int \frac{2 \sec ^{2} \theta d \theta}{(2 \tan \theta)(2 \sec \cdot \theta)}=\frac{7}{2} \int \frac{\sec \theta d \theta}{\tan \theta}$.
$=\frac{7}{2} \int \frac{[1 / \cos \theta] d \theta}{[\sin \theta / \cos \theta]}=\frac{7}{2} \int \frac{d \theta}{\sin \theta}=\frac{7}{2} \int \csc \theta d \theta$.
Using formula ($1^{\prime} 6$), we obtain

$$
\frac{-7}{2} \ln |\csc \theta+\cot \theta|+C
$$

Going back to the triangle to "translate" $\csc \theta$ and ${ }^{\circ} \cot \theta$ in terns of x, we obtain

$$
\frac{-7}{2}: \ln \left|\sqrt{\frac{\sqrt{x^{2}+4}}{x}}+\frac{2}{x}\right|+c
$$

23 (Exercise 12) $\int \frac{\left(x^{3}+x^{2}\right) d x}{x^{2}+x-2}$
Following the procedure for rational functions, we'obtain

$$
\begin{gathered}
\int \frac{\left(x^{3}+x^{2}\right) d x}{x^{2}+x^{-2}}=\int\left(x+\frac{2 x}{x^{2}+x-2}\right) d x \\
\int\left(x+\frac{2 x}{(x+2)(x-1)}\right) d x=\int\left(x+\frac{(4 / 3)}{x+2}+\frac{(2 / 3)}{x-1}\right) d x
\end{gathered}
$$

$$
=\frac{\frac{1}{2} x^{2}+\frac{4}{3} \ln |x+2|+\frac{2}{3} \ln |x-1|+C}{\ldots}
$$

88
$\sum_{*} 7_{0}($ exercise 8$) \cdot \int \frac{5 d x}{\sqrt{x^{2}+6 x}}$
See solution [1I] for our reasoning. After completing the square in the denominator and making the substitution $:=x+3$, the above integral becomes
$\int \frac{5 d u}{\sqrt{u^{2}-3^{2}}}$. From the triangle to the right, we obtain the
 substitutions

$$
u=\dot{3} \sec \dot{\theta} ; \quad d u=3 \sec \theta \tan \theta d \theta ; \sqrt{u^{2}-3^{2}}=3 \tan =0 .
$$

this transforms the integral to

$$
\begin{aligned}
& 5 \int \frac{3 \sec \cdot \tan \theta-d \theta}{3 \tan \theta}=5 \sqrt{\sec \theta} d \theta= \\
& 5 \ln |\sec \theta+\tan \theta|+C=5 \cdot \ln \left|\frac{u^{2}}{3}+\frac{\sqrt{u^{2}+3^{2}}}{3}\right|+C \\
& \therefore \quad=5 \ln \left|\frac{x+3}{3}+\frac{\sqrt{x^{2}+6 x}}{3}\right|+c
\end{aligned}
$$

28 Exercise 16 .
Following the procedure for rational functions, we obtain

$$
\begin{aligned}
\int \frac{x^{4} \cdot d x}{x^{3}-1} & =\int\left(x+\frac{x}{x^{3}-1}\right) d x \\
& =\int\left(x+\frac{1}{(x-1)\left(x^{2}+x+1\right)}\right) d x \\
& =\int\left(x+\frac{(1 / 3)}{x-1}+\frac{(-1 / 3) x+(1 / 3)}{x^{2}+x+1}\right) d x \\
& =\because \int x \cdot d x+\frac{1}{3} \int \frac{d x}{x-1}-\frac{1}{3} \int \frac{(x-1)}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}
\end{aligned}
$$

We now make the substitution $u=\left(x+\frac{1}{2}\right)$ in the third integral; to obtain

$$
\begin{aligned}
& \int x d x+\frac{1}{3} \int \frac{d x}{x-1}-\frac{1}{3} \int \frac{(u-3 / 2) d u}{u^{2}+3 / 4} \\
\$ & =\int x d x+\frac{1}{3} \int \frac{d x}{x-1}-\frac{1}{3} \int \frac{u d u}{u^{2}+3 / 4}+\frac{1}{2} \int \frac{d u}{u^{2}+3 / 4} \\
= & \frac{1}{2} x^{2}+\frac{1}{3} \ln |x-1|-\frac{1}{6} \ln \left|u^{2}+\frac{3}{4}\right|+\frac{1}{2}\left(\frac{1}{\sqrt{3 / 4}} \tan ^{-1}\left(\frac{u}{3 / 4}\right)\right)+C \\
= & \frac{1}{2} x^{2}+\frac{1}{3} \ln |x-1|-\frac{1}{6} \ln \left|x^{2}+x+1\right|+\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{3}}\right)+C .
\end{aligned},
$$

$$
\int \frac{9 x d x}{\sqrt{x^{2}+4}}
$$

See solution [13] for our reasoning. With the substitution $u=x^{2}+4$, we have

$$
\int \frac{9 x d x}{\sqrt{x^{2}+4}}=\frac{9}{2} \int \frac{2 x d x}{\sqrt{x^{2}+4}}=\frac{9}{2} \int \frac{d u}{\sqrt{u}}=\frac{9}{2} \int u^{-1 / 2} d u
$$

30
(Exercise 7 ?

$$
\begin{gathered}
=9 u^{1 / 2}+c=9 \\
\sqrt{2} \frac{5 x^{3} \mathrm{dx}}{\mathrm{x}^{4}-1}
\end{gathered}
$$

See solution [14] for our reasoning. With the substitution - $u \neq z^{*}\left(x^{4}-1\right) ;$ the integral is

$$
\begin{aligned}
& \int \frac{5 x^{3} d x^{4}}{x^{4}-1}=\frac{5}{4} \cdot \int \frac{4 x^{3} d x}{x^{4}-1}=\frac{5}{4}, \int \frac{d u}{u}=\frac{5}{4} \ln |u|+C \\
& \int \quad=\frac{5}{4} \ln \left|x^{4}-1\right|+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Exercise 14) } \int \csc ^{2} x \cot ^{3} x d x . \\
& \text { See solution }[15] \text { for our reasoning. With the substitutions } \\
& u=\cot x ;-d u=-\csc ^{2} x d x \text {, the above becomes } \\
& =-\int\left(\cot ^{3} x\right)\left(-\csc ^{2} x d x\right)=-\int u^{3} d u=-\frac{1}{4} u^{4}+C
\end{aligned}
$$

$$
\begin{aligned}
-\int\left(\cot ^{3} x\right)^{\prime}\left(-\csc ^{2} x d x\right) & =-\sqrt{u^{3} d u}=-\frac{1}{4} u^{4}+C \\
& \therefore \quad=\frac{-1}{4} \cot ^{4} x+C
\end{aligned}
$$

32 (Exercise 11$) \quad \int \csc ^{3} x \cot ^{3} x d z$

$$
\begin{aligned}
& \int \csc ^{3} x \cot ^{3} x d x=-\int\left(\csc ^{2} x\right)\left(\cot ^{2} x\right)\left(-\csc ^{\prime} x \cot ^{2} x d x\right) \\
& =,-\int\left(\csc ^{2} x\right)\left(\csc ^{2} x-1\right)(-\csc x \cot x d x)
\end{aligned}
$$

- At thís point: the integrand has been expressed in terms of $\because \quad$ csc x andits derivative. With the substitutions $u=$ csc x; $d u=-\csc x \cot x d x$, we obtain

$$
\begin{aligned}
& \int\left(u^{2}\right)\left(u^{2}-1\right)(d u) \\
& =\int\left(-u^{4}+u^{2}\right) d u^{0} \\
& =\frac{-1}{7} u^{5}+\frac{1}{3} u^{3}+c \\
& =\frac{1}{5} \csc ^{5} x+\frac{1}{3} \cdot \csc ^{3} x+C
\end{aligned}
$$

1. (Eserases s)

$$
\int \frac{d x}{\sqrt{1+\sqrt{x}}}
$$

Like Sample Problem (9), this problem can be approáched a number of ways. With such a nasty expression, we might be tempted to make a "desperation" substitution with

$$
u=\sqrt{1+\sqrt{x}}
$$

2. (Exerecrse $\theta) \quad \int_{x}^{1 / 2}\left(1+x^{1 / 3}\right)_{d x}$

This is not a "common denominator" substitution problem. If we multiply the two terms in the integrand, the problem can ${ }^{-}$ be handled easily by the methods of Chapter 1.
(Exercise 3)

$$
\int \frac{x^{2 / 3} d x}{x+1}
$$

This is a "common denominator" substitution problem, where - the terms in the integrand-are $-x^{2 / 3}$ and x^{1}. The common denominator is 3 , so we should make the substitution

$$
\because \quad . \quad u=x^{1 / 3}
$$

4.

(Exercise 5)

$$
\int \frac{x d x}{\sqrt{1+x}+\sqrt{1-x}}
$$

In this problem we should rationalize the denominator, and then see whatever else, is called for.
5.
(Exercise 1)
$\int \frac{x d x}{x^{4}-3 x^{2}+2}$
The form of this problem is similar to mational functions . with quadratic denoninators, We could obtain a quadratic denominator $b *$ setting $u=x^{2} . \quad 93$
(Exercise 10) $\int_{\checkmark} \frac{d x}{\sec x+\tan x}$
The easiest way to handle this problem is to recall the identity: $\tan ^{2} x+1=\sec ^{2} x$, or $\sec ^{2} x-\tan ^{2} x=1$.
We can multiply the denominator by its conjugate, sec $\dot{x}-\tan x$.
7.
(Exercise 6) $\cdot \int \frac{x^{5} d x}{\sqrt{1+x^{3}}}$
There might be any of a number of approaches to this problem. The key. observation to make is that the numerator, $x^{5} d x$, can be written as $\frac{1}{3}\left(x^{3}\right)\left(3 x^{2} d x\right)$. This makes the substitution $u={ }^{\prime} x^{3}$ look promising as a beginning; we can go on from there.
8. (Exercise 7) $\int \frac{d x}{(x+4) \sqrt{x^{2}+8 x}}$

As in Sample Problem 3, we need a way to get started on this problem. Perhaps completing the square in the denominator \sim will give us a lead.
Q.(Exercise 4) $\quad \int \sqrt{\frac{x}{x+1}} d x$

There doesn't seen to be any easy way to approach this problem. It might be worth trying a desperation substitution,

$$
u=\sqrt{\frac{x}{x+1}}
$$

10_{0} (Exercise 2) $\quad \int \frac{\tan x d x}{\sec x+2}$

Since the integrand contains an expression involving sec x in the denominator, we can ask': -what do we need to integrate such an expression? The derivative of $\sec x,[\sec x \tan x d x]$. We can obtain this by multiplying both numerator and denominato by $\sec \mathrm{x}$. ${ }^{-}$
$11_{(\text {Exercise 8) }} \cdot \iint \frac{\mathrm{dx}}{\sqrt{1+\sqrt{x}}}$
See solution [1] for our reasoning. With the substitution $u=\sqrt{1+\sqrt{x}}$, we have $u^{2}=1+\sqrt{x} ; u^{2}-1=\sqrt[3]{x} ; x=\left(u^{2}-1\right)^{z}$; and $d x=4 u\left(u^{2}-1\right) d u$. Then the integral becomes

$$
\begin{aligned}
\int \frac{4 u\left(u^{2}-1\right) d u}{u} & =4 \int\left(u^{2}-1\right) d u \\
& =\frac{4}{3} u^{3}-4 u+C . \\
& =\frac{4}{3}[1+\sqrt{x}]^{3 / 2}-4[1+\sqrt{x}]^{1 / 2}+C .
\end{aligned}
$$

12 (Exercise 9)

$$
\int x^{1 / 2}\left(1+x^{1 / 3}\right) d x
$$

$=\int\left(x^{1 / 2}+x^{5 / 6}\right) d x=\frac{2}{3} x^{3 / 2}+\frac{6}{11} x^{11 / 6}+C$.
13.(Exercise 3) $\int \frac{x^{2 / 3} d x}{x+1}$.

See solution [3] for our reasoning. With the substitution, $u=x^{1 / 3}$, we have $u^{3}=x$ and $\left(3 u^{2}, d u\right) i=d x$. The integral becomes

$$
\int \frac{\left(x^{1 / 3}\right)^{z} d x}{x+1}=\int \frac{\left(u^{2}\right)\left(3 u^{2} d u\right)}{u_{0}^{3}+1}=\int \frac{3 u^{4} d u}{u^{3}+1}
$$

If we now. follow the procedure for rational functions, we obtain \}
$=\int\left(3 u-\left(\frac{-1}{u+1}+\frac{u+1}{u^{2}-u+1}\right)\right) d u=\int\left(3 u+\frac{1}{u+1}-\frac{u+1}{\left(u-\frac{1}{2}\right)^{2}+(3 / 4)}\right) d u$.
For, the third integral, we set $w=\left(u-\frac{1}{2}\right)$. This gives us $\int 3 u d u+\int \frac{d u}{u+1}-\int \frac{(w+3 / 2) d w}{w^{2}+(3 / 4)}$
(continued...)
$=\int 3 u d u+\int \frac{d u}{u+1}-\int \frac{w d w}{w^{2}+(3 / 4)}-\frac{3}{2} \int \frac{d w}{w^{2}+(3 / 4)}$
$=\frac{3}{2} u^{2}+\ln |u+1|-\frac{1}{2} \ln \left|w^{2}+\frac{3}{4}\right|-\frac{3}{2}\left(\frac{1}{\sqrt{3 / 4}} \tan ^{-1}\left(\frac{w}{\sqrt{3 / 4}}\right)\right)+$
$=\frac{3}{2} u^{2}+\ln |u+1|-\frac{1}{2} \ln \left|u^{2}-u+1\right|-\sqrt{3} \tan ^{-1}\left(\frac{2 u-1}{\sqrt{3}} x+c\right.$
$=\frac{3}{2} x^{2 / 3} \pm \ln \left|x^{1 / 3}+1\right|-\frac{1}{2} \ln \left|x^{2 / 3}-x^{1 / 3}+1\right|-\sqrt{3} \tan ^{-1}\left(\frac{2 x^{1 / 3}-1}{\sqrt{3}}\right)+C$
$14_{\text {(Exercise 5) }} \cdot \int \frac{x \mathrm{dx}}{\sqrt{1+x}+\sqrt{1-x}}$
To rationalize the denominator in this problem, we multiply both numerator and denominator by $[\sqrt{1+x}-\sqrt{1-x}]$. This yields $\int \frac{[\sqrt{1+x}-\sqrt{1-x}], x d x \cdot}{[\sqrt{1+x}: \sqrt{1-x}][\sqrt{1+x}+\sqrt{1-x}]}=\int \frac{[\sqrt{1+x}-\sqrt{1-x}] x d x}{(1+x)-(1-x)}$
$=\int \frac{[\sqrt{1+x}-\sqrt{1-x}] \dot{x} d x}{2 x}=\frac{1}{2} \int[\sqrt{1+x}-\sqrt{1-x}] d x$

$$
=\frac{\frac{1}{3}\left((1+x)_{i,}^{3 / 2}+(1-x)^{3 / 2}\right)+c}{0}
$$

15.(Exercise 1) $\iint \frac{x d x}{x^{4}-3 x^{2}+2}$

See solution [5] for our reasoning. With the substitutions $u=\dot{\alpha}^{2} ; d u=2 x d x$, this integral becomes
$\frac{1}{v^{2}} \int \frac{2 x d x}{\left(x^{2}\right)^{2}-3\left(x^{2}\right)+2}=\cdot \frac{1}{2} \int \frac{d u}{u^{2}-3 u+2}=\frac{1}{2} \int \frac{d u}{(u-2)(u-1)}$
$=\frac{1}{2} \int\left(\frac{1}{u-2}-\frac{1}{u-1}\right) d u=\frac{1}{2}(\ln |u-2|-\ln |u-1|)+c$
$1 . \quad=\frac{1}{2} \ln \left|\frac{u-2}{u-1}\right|+c=\frac{1}{2} \ln \left|\frac{x^{2}-2}{x^{2}-1}\right|+c \ldots$
16.
: $\int \frac{d x}{\sec x+\tan x}$
See solution [6] for our reasoning. Multiplying numerator and denominator of the above integral by [sec $x-\tan x$], we obtain
$\int \frac{\left[\sec x-\tan ^{2} x\right] d x}{[\sec x-\tan x][\sec x+\tan x]}=\int \frac{[\sec x-\tan x] d x}{\sec ^{2} x-\tan ^{2} x}$ $=\int \frac{[\sec x-\tan x] d x}{1}=\int[\sec x-\tan x] d x$

$$
=\ln |\sec x+\tan x|+\ln |\cos x|+C
$$

NOTE: As usual, there is more than one way to approach this problem. If we don't notice that we can multiply by the conjugate of the denominator, or if we feel uncomfortable with -sec x and $\tan x$, we can express the integrand in terms of $\sin ^{2} x$ and $\cos x$. This. gives us
$\int \frac{d x}{\frac{1}{\cos x}+\frac{\sin x}{\cos x}}=\int \frac{\cos x d x}{\sin x+1}=\ln |\sin x+1|+C$. We can showleasily that these are the same answer. In this case the second alternative gives us a faster solution than the use of conjugates. That can happen; the important thing to have is an organized, logical procedure for approaching integrals.
17. (Exercise 6) $\quad: \int \frac{x^{5} d x}{\sqrt{1+x^{3}}}$.

See solution [7] for our reasoning. With the substitutions $u=x^{3}, d u=3 x^{2} d x$, this integral is
$\therefore \frac{1}{3} \int \frac{\left(\hat{\mathrm{x}}^{3}\right)\left(3 \mathrm{x}^{2} \mathrm{dx}\right)}{\sqrt{1+x^{3}}}=\frac{1}{3} \int \frac{u^{-0} \mathrm{du}}{\sqrt{1+u}}$.

$$
\begin{aligned}
& \int \frac{(v-1) d v}{\sqrt{v}}=\int\left(\sqrt{v}-\frac{1}{\sqrt{v}}\right) d v \\
&=\int\left[v^{1 / 2}-v^{-r / 2}\right] d v . \\
&=\frac{2}{3} v^{3 / 2}-2 v^{1 / 2}+c=\frac{2}{3}(1+u)^{3 / 2}-2(1+u)^{1 / 2}+C \\
& \therefore \therefore \\
& \therefore \quad=\frac{2}{3}\left(1+x^{3}\right)^{3 / 2}-2\left(1+x^{3}\right)^{1 / 2}+C
\end{aligned}
$$

18
(Exerc̣ise 7)

$$
\int \frac{d x}{(x+4) \sqrt{x^{2}+8 x}}
$$

See solution [8] for our reasoning. Completing the square in the denominator, we obtain
$\int \frac{d x}{(x+4) \sqrt{(x+4)^{2}-4^{2}}}$, and the substitution $u=x+4$ yields.

$$
\int \frac{. d u}{u \sqrt{u^{2}-4^{2}}}=\frac{I}{4} \sec ^{-1}\left(\frac{u}{4}\right)+C=\frac{1}{-4} \sec ^{-1}\left(\frac{x+4}{4}\right)+C
$$

19.

$$
\int \sqrt{\frac{x}{x+1}} d x
$$

This is the hardestoproblem in these'materials; don't get "dismayed if you had a lot of trouble! With the desperation substitution $u=\sqrt{\frac{x}{x+1}}$, we obtain $u^{2}=\frac{x}{x+1}$, so $u^{2}(x+1) \cdot={ }^{\circ} x$. Solving for x, we obtain $x=\left(\frac{u^{2}}{1-u^{2}}\right)$, so $d x=\left(\frac{2 u d u}{\left(1-u^{2}\right)^{2}}\right)$. The integral becomes

$$
\int(u)\left(\frac{-2 u \overline{d u}}{\left(1-u^{2}\right)^{2}}\right)=2 \cdot \int \frac{u^{2} d u}{\left(1-u^{2}\right)^{2}}
$$

The term in the denominator suggests the substitutions $\sqrt{1-u^{2}}=\cos \theta$; $u=\sin \theta_{i} d \dot{d} \equiv \cos \theta \mathrm{~d} \theta$, which. we

These substitutions transform the integral to

$$
\begin{aligned}
& 2 \int \frac{\left(\sin ^{2} \theta\right)(\cos \theta d \theta)}{\cos ^{4} \theta}=2 \int\left(\frac{\sin \theta}{\cos \theta}\right)^{2}\left(\frac{1}{\cos \theta}\right) d \theta \\
& =2 \int \tan ^{2} \theta \sec \theta d \theta=2 \int\left(\sec ^{2} \theta-1\right)(\sec \theta) d \theta \\
& \quad=2 \int \sec ^{3} \theta d \theta-2 \int \sec \theta d \theta
\end{aligned}
$$

finally, we can see our way to the end of the problem. The first integral can be done by parts, the second by formula 15. Me obtain

$$
2 \bigcup_{0}^{\infty} \text { Exercise 2) }
$$

See solution [10] for our reasoning. Multiplyang numerator and denominator by (sec x) and making the substitution $u=\sec \dot{x}$, \Rightarrow We obtain

$$
\int \frac{\sec x \tan x d x}{(\sec x)(\sec x+2)}=\int \frac{d u}{u(u+2)}
$$

$$
=\frac{1}{2} \int\left(\frac{1}{u}=\frac{1}{u+2}\right) d u=\frac{1}{2}\left(\ln \left|u_{i}-\ln \right| u+2\right)+C=\frac{1}{2} \ln \left|\frac{u}{u+2}\right|+C
$$

$$
\theta=\frac{1}{2} \ln \left|\frac{\sec x}{\sec x+2}\right|+c
$$

$$
\begin{aligned}
& 2\left(\frac{1}{2}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|)-2(\ln |\sec \theta+\tan \theta|)+C\right. \\
& =(\sec \theta \tan \theta)-\ln |\sec \theta+\tan \theta|+C \\
& =\left(\frac{1}{\sqrt{1-u^{2}}}\right)\left(\frac{u}{\sqrt{1-u^{2}}}\right)-\ln \left|\frac{1}{\sqrt{1-u^{2}}}+\frac{u}{\sqrt{1-u^{2}}}\right|+C \\
& \frac{\frac{u}{1-u^{2}}-\frac{1}{2} \ln \left|\frac{1+u}{1-u}\right|+C, \quad \text { where } u=\sqrt{\frac{x}{x+1}}}{,} \\
& \int \frac{\tan x d x}{\sec x+2}
\end{aligned}
$$

umap

MODULS AND MONOGRAPHS IN UNDERORADUATE MATHEMATICS AND ITS APPLICATIONS PROJECT

MERCATOR'S WORLD MAP AND THE CALCULUS
by Philip M. Tuchinsky

APPLICATIONS OF CALCULUS TO GEOGRAPHY
edc/umap / 55 chapel st./newton,mass. 02160

MERCATOR'S NORLD MAP AND THE CALCULUS

Philip M. Tuchinsky
Department of Mathematical Sciences

Ohio Fiesleyan University
Delaware, Ohio 43015
$6 / 26 / 78$

TABLE OF CONTENTS

1. MERCATOR'S ACHIEVEMENT

1.1 A Strategy for Navigation with Map and Compass

1.2 Rhumb Lines
1.3 The Need for a Map on Which Rhumb ines are Straight
1.4 Mercatór's Successful Map
1.5 Modern Navigators Use Mercator Char
1.6 The integral $\int \sec \phi d \phi$ is Involved 8
2. CALCULUS AND THE MERCATOR MA? 10
 10
2:3 Mercator's Insight: Vertical. Distances Must Also be
2. 4 The Vertical and Horizontai Stretching at Latitude 13
\therefore i ϕ Must Be Equal 14
2.5. Sumnary: How We Get Stralght Rhumb
2.6 How to Place the Parallels of Latitude 155
3. MORE HISTORY 16
3.1'Mercator's Map: Cartography in His Time 16
3.2 Edward Wright s Di Scovery 19
4. SEVERAL CALCULATIONS OF $\int \sec , x d x$ 22
4.1 The Usual Integration.. 22
4.2 A Partial Fractions Integration
4.2 A Partial Fractions Integration 23
24 23
24
5. A SERIES FOR $\int \sec x d x$ 27
5.f Derivation, $\begin{aligned} & \text { Wallls' Series }\end{aligned}$ 28
5.2 Numerigal Approximation of the Integral 29
6. What has calculus contributed to the mercator projection? ". 297. REFERENCES33
8. ANSWERS TO EXERCISES 35
9. SPÉCIAL ASSISTANCE, SUPPLEMENT 43

Intermodular Docionentation Sheet: UMAP Unit 206

Title: Mercator's world map and the calculus
Author: Philip M. Tuchinsky
Department of Mathematical Sciences
Ohib Wesleyan University
Delaware, Ohio 43015
Review Stage/Date: IV $^{\prime}$ 6/26/78

Classification: APPL CALC/GEOGRAPHY

Suggested Support Material: None is essential. A Hercator wall map and globe are helpful. A spherical tlack-

- board (a globe painted dull black on which chalk lines can be drawn) is an outstanding classroom aid for thes module. Physics, geology, and/or geography departruertes of ten have such a globe and will lend it.
References: See Section 7 of text.

Prerequisite Skills:

For the basic application in Sections 1, 2, 3:'
Definition of the trigonometric relationships in a triangle
The identity $\sin ^{2} x+\cos ^{2} x=1$.
Recognition of integral sums and the Riemann integrales they approach.
Definition of the natural logarithm functign, tbasis knowledge off latitude ànd longitude.
For Section" 4 add:
integration of x^{-1} to $\ln |x|$.
Partial fractions integration.
Change of Variables in integration.
Derivatives of the trigonometric functions.
. Trigonometric relations like sin $-\left(\frac{\pi}{2}-x\right)=\cos *$.
Double angle formutas from trigonometry.
$\ln (f a b)=\ln (a)+\ln$. (b).
For Section 5 add:
Convergence and sum of geometric series.
Integration of $\int \cos \dot{x} \sin ^{4} x d x$
For the exercises add: \dot{x}
Chajn rule.

- Diffiçult trigonometric idenzity work (you might.give thints).

Qutput Ski.lls: From Sections 1-3:

Describe an application which
a) caused $\int \sec x d x$ to be calculated before calculus was imedtad
b) leads to an. approximation sum ${ }^{3}$ for $\int \sec x d x$.

Sketch the basie frame work of a Mercator map.
Show a‘rhumb line path between any two cities
Describe the mathematical principles that mak on $\#$ Hération maap useful to sailors.

Discuss the advantages and shortcomings of the Mercator projection." Discuss the historical need for and development of the Hercator map and $\int \mathrm{sec} \times \mathrm{dx}$ as interdependent problems.
From Section 4:
Three calculations of $\int \sec x d x$.
, Explain why $\sqrt{x^{2}}=|x|$, not x
Integrate*using both radians and degrees,
Confidently use the easier trigonometric identities.
From Section 5:
Approxinate $\int \sec x d x, \int \tan x d x$ and ares x nurerlcally.' Integrate a serifes term by term.
From Boxes:
Briefly discuss the achievements of Gerhardus Mercator, Jares Gregory, and John Wallis.

Suggested Uses: The unit can be done all at once or in several pieces.- Section $1-3$ plus 4.1 and exercises $1 \mathrm{~b}, 2,5,6$ are aprropriate as soon as $\int \sec x d x$ is discussed. Section 4.2, 4.3 ard exercises $1,3,7,8$ call for more knowledge of integration. Section 5 and exercises 9-13 require knowledge of the series partion of calculus and might be done much later than Sections 1-4, The urit is also appropriate for independent reading by honors students and for seminar presentation'by advanced undergraduates. Other Related Units:

UHAP editor for this modure: William U. Walton
The author is indebted to V. Frederick Rickey of the Mathematics Department at Bowling Green State University in Ofrio for much of the materiall in this paper. His first introduction to this'application was through Professorसuckey's presentation "An Application of Gēography to rathematicy: $\int \sec \theta d \theta$ and its History" at the May, 1975 meeting: of the Ohio Section of the Mathematical Assoufiatign of America, and he has generously helped the author with source material. built. inceducational research in the U.S. and abroad.
PROJECT St́áaf

Ross L. Finney
Solomon Garfunke!

Felicia DeMay

- Barbara Kelczewski.

Paula M. Santillo
Zachary Zevitas
modules and monographs in undergraduate' mathemaficg and its'applications project (umap)

The goal of UMAP. is to develop, through a comminity of users and developers, a system`of instructional modules in undergraduate mathenatics and its applications which may be used to supplement existing courses and from which complete courses may eventually be

The Project is guided by a National Steering Committee of mathematicians, stientists, and educators: UMAP is funded by a grart from the 'National Science Foundation to Education Developmen Center, Inc.; a publicly supported, nonprofit corporation engaged

Director
Associate Director/Consortium Coordinator
Associate Director for Administration Coordinator for Materials Production Administrative. Assistant Staff Assistant

MERCATOR'S WORLD MAP AND THE CALCULUS

Philip Tuchinsky
Department of Mathematical Science
Ohio Wesleyan Uni'versity Delaware, Ohio 43015

$6 / 26 / 778$

1. MERCATOR'S ACHIEVEMENT

1.1 A Strategy for Navigation with Map and Compass

- Imagine youself piloting a ship at sear-how can you reliably get to your destination? Suppose you have brought the most basic of navigational aids.: a magnetic compass and good maps. The simplest way to use your compass would be to hold its needle still by keeping yourship moving in a constant compass direction. Thus, if you . travel steadily northeast, your compass needle (which points north ${ }^{1}$ will make a steady 45° angle with your direction of motion and the needle will stay still.

Figtrés 1-5 show such a northeaştward journey (an airflight from the, Galapagos Islands in the Pacific Ocean * to Franz Josef, Land in the Artic) as it would appear on five types of map. The airplane's course makes a 45°, angle with all the meridians (the north-south lines, great circles through the north' and south poles) on each map.

Whiçíh map would be the easiest one on which to lay out the cour'se? Figure 1 may give the best overall yiew of the earth as a sphere, but the Mercator projection in ℓ Figure 5 is the best for navigation because your ship's.

[^0]

Figure 1. A fjight with a.constant bearing of $45^{\circ} E$ of N from the Galapagos Islands in thevPacific to Franz Josef Land in the Arctic'

Figure 2. The flight of Figure 1 plotted on oneaform of conformal map. (The angles to the meridians are constant but because the . meridians converge the path is curved and would be difficult to plot and measure.)

3

Figure 3. Plot of flight on "plane chart" such as was in use for charts of small areas in Mercator's time. Angles are not true and a straight line would not give a path of constant bearing.

Figure 4. Flight on a cylindrical projection, a ntap often confused wittr Mercato 's. Again, the path of constant bearing is not a straight line. See Exercise 5.
1.06

43
107

Figure 5. Flight' at constant bearing on a Mercator projection. Straight line path is easily constructed, measured, and followed.
course appears there as a straight line, not a curve. It's easy to construct the course with a protractor (compass - rose) and straight edge because it is a straight line course. 1.2 Rhumb Lines

Sailors have used the compass and followed lines of constant compass direction since at least the thirteenth century. ${ }^{2}$ They called such paths on a map or chart. rhumb. lines. Cartographers and mathematicians found that the sailors' rhumb lines became spercal-like curves on the globe and named them "loxodromic curves" or loxodromes (from the Latin loxos--slant and drome--running) because they, cut ail the meridians they cross at the same slant angle (See Figure 1.). You should trace a loxodrome on a globe to see that it spirals. As a rhumb line moves north and the meridians get closer together; the line must turn steadily toward the pole to. cut all the meridians at the 'same angle. It spirals toward the pole without ever reaching* it.

[^1]
1.3 The Nedd for a Map On Which Rhumb Lines Are Straight

If you wish to follow a rhumb line course, you must know what constant compass. direction to use from your ştarting point S to your destination D. If you had a map on which the rhumb line path between any points S and D was simply the straight line between those points, you could draw that line with a ruler and read the compass direćtion by measuring, (with a protractor) the angle at which meridians are cut. Before Mercator's time sailors attempted to use prain charts (charts in which the lines of latitude were equálly spaçed) for this purpose. Figures $6 a$ and b and 7 show the efror that arises when a straight line nn a plain chart is ${ }^{\text {phs }}$ ssumed to be a rhumb line course.
1.4. Me'rcator's Süccessful Map

In the sixteetnth. century, Gerhardus Mercator recognized , that such a map, on which all rhumb lines would appear as straight lines, wodid be very useful to sailors. He, succeeded in creatifing such a map-his famous world map pulblished in 1569. This map was recognized as a gigantic achievment, the first significant improvement in map design in 1400 years. A standard reference on cartography calls the Mercator projection a "radical departure and improvement over methods existing bifore his (Mercator's) time. In contemporary judgment he was styled as 'In cosmographia longe primus', which, translated, means: In cosmography by far the first." (Deetz and Adams, p. 104.)

The Mercator world map has become such a fixture in our culture that it is familiar to every school child.' I Dremember this map as a very unsatisfactory early view of our planet, because my teacher convinced me more of its shortcomings than of i ts value. The shortcomings are serious: distances are hard to measure on the map because: northern regions appear grossly exaggerated in' area (compare Greenland to Africa on a, globe and on a Mercator map-or in Figure 1 and Figure 5); the nolar regions cannot be shown at all but must be inset as separate maps; distances are hard to

Figure 6a. A straight line "̧̧ourse joining the Panama Canal to Liand's End, England drawh on a plane chart. It advises.us to use a compass bearing of 50° as shown.

Figure 6bs The comparable stinight lineicourse on a Mercator map. The correct compass direction to follow is 56° east of compass north.

Figure 7. The naviqational advice obtained from charts 6 a and 6b leads to different results. The solid line shows' the course from 6b, a rhumb'line that does join the Panama Canal and Land's End. If we obeyed. the plane chart in 6 a and followed a constant 50° compass, bearing we wauld be far off course, as the dashed path shows.

GERHARDUS MEREATOR is the Latinized name of Gerhard Krämer, born in Flanders in 1512. He was the expert engraver of mapsections for a globe made by Gemma Frisius in 1536, a craftsman of mathematical and astronomical instruments, and a land surveyor. His major achievements as a cartographer include a globe in 1541 , a large ($132 \times 159 \mathrm{~cm}$) map of Europe (1554) which made his reputation and was reprinted with corrections in 1572, a map of,the British Isles in 1564 and the great world map of 1569. His major work was done at Duisberg, Germany where he was cosmographer to the Duke of Cleves. Mercator spent His final years creating a collection of maps of west and south Europe, of high accuracy for the period. It was published in 1595, a year after his death, as AtZas - or Cosmogröphic Meditations on the Structure of the World. Thus the word "atlas" was first applied to a collection of maps. He should not be confused with Nicholas Mercator, 1614-1687, matherpatician and ties, 197f, p. 309.)
astronomer, nor were they related. (Source: 'Dictionary of Scientific Biography Vol. IX, Am. Council of Learned Spcie-
measure because the scale changes as we look along vertical $\therefore \quad$ lines

In the schoolroom where studentsare learning about the relative sizes and locations of countries the map is at its sworst. As a navigational, aid, the map has been unsurpassed, for, 400 years because loxodromes appear ás straight lines and angles measured on the map are the same as those measured or the globe.

- 1.5 Modern Navigators Use Mercator Charts

The shortest.path between two points on a sphere is the great círcle route [s-2]: Modern air and sea navigators
\because naturally prefer, to follow that shortest route. To do so," they begin by plotting the course with a straightedge on a gnomonic map (Figure 8) on which all great circle routes appear as straight lines. However, the compass direction chainges continually along the great circle route (which, except. in special cases is not a rhumb line), and pilots still expect to be told to follow a fixed compass direc. tion. It is thus convenient and usual to replace the great circ̈le route with a sequènce of rhumb lines.

Because angles cannòt be mèasured readily on a gnomonic or great circle chart, the navigator selects convenient intersections with the meridians along his great circue course and plots these points on a large scale Mercator map.
) Straight lines drawn between these points on the Mercator projection give rhumb lines which are easy to follow as a course and which usefully approximate the great circle path. Figure 9 shows the resulting course on the Mercator map. The, - extra distance involved in following the rhumb line pieces instead of the great circle itself is minor in comparison to the improved ease and certainty of navigation.

1.6 The Integral /sec $\phi \mathrm{d} \phi$ Is Involved

In this paper"we'il explore the construction of the Mercator map in some detail. We will see why, a century before Newton and Leibnitz created, the calcilus, Mercator

Figure 8. A great circle route appears as a straight line on this gnomonic projection. (The path appears curved because of an optical - illusion; sight along it to verify that if is a straight line.)".
found himself ith need of the integrar

$$
\int_{0}^{\dot{\phi}} \sec \phi \mathrm{d} \phi .
$$

We'll briefly cover the mathematical history of this integral as well. For all practical purposes this integral was evaluated long before the invention of the calculus although no proof appeared until 1668, when the calculus was newborn but known.

.Figure 9. A series of rhumb line paths (straight line segments on this Mercator map) approximating the great circle route of Figure 8.

2. CALCULUS AND THE MERCATOR MAP

2.1 The Framework of the Mercator Map

Let's begin to create Mercator's map. The equator is a rhumb line in the east-west direction and will have to be a Straight line on the map; let's place it horizontaily across the middle. The meridians of longitude are the, northzsouth rhumb lines and must also appear on the map as straight lines. Let's place them vertically, and space them evenly. This gives us accurate right angles between the north-south and east-west meridians and the equally divided equator on the map. The other east-west rhumb lines include the arctic and antarctic circles, the tropics of Cancer and Capricorn and all the other parallels of latitude. As we will see; our main problem is. to place them as horizontal lines with such a spacing that rhumb lines will turn out to be straight lines on the map.

Two of our assumptions should be made explicit:.

* Our map is in "one-to-one" scale: "we will duplicate distances along the equator mile for mile (although other distances will be distorted). That does not yield a poc̣ket siẹe map but scalíng it down to printable size is an easy matter. Thus we'11, soon talk of "stretching" earth distances to put them on the map!

We take the earth as a sphere. 'Cartographers can include the planet's equatorial bulge, but we will not attempt to do that here,

2.2 Horizontal Distances at Latitudë ϕ Get Stretched

So far we have placed a family of parallel meridians on the map at right angles to the horizontal equator. Our troubles begin when we try' to place the parallels of latitude on the map. In Figure 10, distances along the parallels of latitude between specified meridians are seen to shrink to zero as we move toward the poles, but those distances will dque to be equal on the map because, thére, meridians are pallel lines. Thus horizontal distances on. the map will have to be longer than the true earth distances, and the stretching will have to increase as we move toward the poles. The vertical placement of these stretched horizontal lines will have to be skillfully done to keep the rhumb lines straight.

Figure 10. Corresponding points on meridians and map: EF on the globe 'stretches to E'F' on the map. globe stretches to E'F

To. see how to place the parallels of latitube, wee must study, the horizonfal stretching. A wedge of the eartich and its associated map are shown. in Figure 11. Segment 4 . a part of the equator spanning θ (radians): longituide. IFf $R(=$ approximately 4000 miles $)$ is the earth's radiues, tyieen $R \theta$ is the actual length of $A B$ and of the corresponiting $H B B^{\prime}$

r
Figure $\overrightarrow{i 1}$. A wedge of the earth and its correspondixy pratt off tetke
map.

Now consider PQ at ϕ ŗadians north latituile. $H P$ iss aa part of a circle centered at T, where T is firectily amith of the earth's center C, inside the éarth. Since $\mathbb{C T}$ amid $B C$ are parallel, the angle ϕ of 'latitude appears in tribangike

 PTQ has the same central angle θ as does sector FEBC; thetuss the actual length of $\cdot \mathrm{PQ}$ is

$$
P Q=(Q T) \quad \theta
$$

$$
P Q=(R \cos \phi) \partial
$$

122

The horizontal stretching an now be understooci. Fan eart-west lengtir $p \dot{Q}=$ " $(R \cos \phi)$, at latitude ϕ must be stretched into $P^{\prime} Q^{\prime}=Q^{\prime} R$ of the map. (lihy does $P^{\prime} Q^{\prime \prime}=$ $A^{\prime} B^{\prime}=R \theta$?) We must stretch $P Q^{\prime}$ by the factior $\frac{P^{\prime} Q^{\prime}}{P Q}$ to convert it into $P^{\prime} Q^{\prime}$ for the map, because

Since

$$
P^{\prime} Q^{\prime}=\left[\frac{\bar{p}^{\prime} Q^{\prime}}{P Q}\right] P Q .
$$

$$
{\frac{P^{\prime} Q^{\prime}}{}}_{P Q}=\frac{R \Theta}{(R \cos \phi) \theta}{ }^{\prime}=\frac{1}{\cos \phi}=\sec \phi
$$

wel get as the length of $P^{\prime} Q$ ' on the map

$$
P^{\prime} Q^{\prime}=(P Q) \sec \Phi .
$$

$\frac{\text { 2is Mercator's Insight: Vertical Distances Must Also }}{\text { Ee Stretched }}$
Mercator's gịat insî́ght was that each piece of vertical memiaian at latitude ϕ must be stretched, when put on the map, by the same factor sec ϕ. As we shall see, he thus succeeded in preserving angles, from the earth onto the map. That is, iff any two lines meet at an angle on the earth, their images copried orto the map will meet at that same angle. This winll bè true for all angles ever where on' globe and map. (A mapr that preserves fingles is calledo conformal; the study, of just, which glabe-to-map functions yield conformal maps is am important part of advanced mathematics and cartography.)

Why does making the map conformal cause the rhumb lines to appear as storaight lines? On the earth, recall, a !riumitr line cuts all the meridians at a constant angle. If thie map ismonformal, the rhumb line on the, map will cut adill the vertical parallel meridian lines at that fixed angle amdi will thus be a straight 'Iine, for straight lines are exactily the curves that cut a family of parallel lines all ats thre same angle in plane geometry. Thus to have rhumb. liness plat as straight lines, the. whole secret is to space outi the horizontal lines correctly, placing them' at such distances from the equator line, on the map that angles will bee preserved. (Of coursé, stretching the meridian lines and spacing the garallels of latitude around, the equator are two. mamess för the s̀ame task.j.
2.4 The Vertical and Horizontal Stretching at Latitude ϕ Must Be Equal
"Let's explore the stretching.further. Figure 12 shows a"rhumb linè cutting, meridian at angle α. It çuts the" Horizontal parallel of latitude at the complementary angle - is

$$
\beta=\frac{\pi}{2}-\alpha .
$$

Suppose we mova a small distance Δz along this rhumb line away, from the crossing foint'. This movement is the combined. effect of simultaneously movin $\Delta z \cos \beta$ units horizontally (eastward) and $\Delta z \sin \beta$ units vertically (northward). ${ }^{3}$ What will this movement look like on our Mercator map? If an initial point was.at latitude ϕ, the $\Delta z \cos \beta$ horizontal .portion of the movement is stretched by a factor sec ϕ. If the angles α and B are going to be preserved on the map, the vertical component of the motion must also be strefched by the same factor sec ϕ, becoming ($\Delta z^{\circ} \sin \beta$) sec ϕ. Then Δz .. ${ }^{\circ}$ the earth is mapped as $\Delta z \sec \phi$ on the map. (See Fig': 13)

, . On Earth
\because Figure 12.. The local'scene on a globe at latitude ϕ.

[^2]
- 2.5 Summary: How We Get Straight Rhumb Lines

A concise summary of our logic now reads as follows:

1. To get rhumb lines to appear as straight lines on the map, wé need To preserve angles from the earth onto the map.
2. Hörizontal distances, at latitude ϕ are stretchedby a factor sec ϕ as thety are shifted from globe to map.
3: To-preserve angles, we must also stretch the vertical lengths along the meridians by the, same factor sec ϕ at latitude ϕ.

2.6 How To Place The Parallels of Latitude

As we move north along a meridian, the latitude changes continually. What will it mean "to stretch the vertical lengths along. the meridian by the same factor sec ϕ at latitude $\phi^{\prime \prime}$?

Integral calculus provides a method. Let's try to : calculate $\mathrm{D}\left(\phi_{0}\right)$, the distance on the map along the meridian from the equator to the parallel at latitude ϕ_{0}. (If we knew the number $D\left(\phi_{0}\right)$ we would know how to locate the parallel at latitude ϕ_{0} on the Mercator map.). First, we cut the interval from 0 to ϕ_{0} into many small pieces: let $\Delta \phi$ represent a bit of angle located near ϕ, where $0 \leq \phi \leq \phi_{0}$.. This small bit of latitudinal angle subtends a bit of meridian $R \Delta \phi$ on the globe (Figure 14), a length of meridian located rough̆ly át latitude ϕ. As ι this

Figure 14. Setting up the intervel for $D\left(\phi_{0}\right)$.
119
bit of meridian is shifted from globe to map, it is stretched by, the factor sec ϕ and has length $R \Delta \phi \sec \phi$ on the map.

Thus $\dot{i}_{\dot{\prime}}^{\mathrm{D}}\left(\phi_{0}\right)$ is approximately the sum of such bits of

- length $R \sec \phi \Delta \phi$ as ϕ moves from 0 to ϕ_{0} : (1)

$$
D\left(\phi_{0}\right)=\cdot \sum R \sec \phi \Delta \phi
$$

If we let' all the $\Delta \phi$ lengths tend to zero and use more and goreyof them, we get better and better approximations of $D\left(\phi_{0}\right)$; in the limit we get

$$
\begin{equation*}
\therefore \mathrm{D}\left(\phi_{0}\right)=\int_{0}^{\phi_{0}} \mathrm{R} \sec \phi \mathrm{~d} \phi=\mathrm{R} \int_{0}^{\phi_{0}} \sec \phi \mathrm{~d} \phi \tag{2}
\end{equation*}
$$

To place all" the parallels of latitude op the Mercator map, we will need $D\left(\phi_{0}\right)$ for all values $0 \leq \phi_{0} \leq \frac{\pi}{2}$. Thus we need ofsec $\phi d \phi$ to construct the Mercator map!

$$
\text { H. 3. MORE HISTORY }{ }^{4}
$$

$\stackrel{\rightharpoonup}{4}$

3.1 Mercator's Map: Cartography In His Time

\therefore Mercator did not know that he needed the calculus to make his map. He did know that he must place the equally-

- Spaced-on-earth parallels of latitude further and further apart.. His map contained minor errors in the placing of the parallels of latitude; it also contained misplaced mountain ranges, rivers and continents, as the sketch (Figure 15) of the original $131 \times 20 \delta^{\circ}$ centimeter map shows very clearly.
* Mercator's sources were the written itineraries of travelers and the older maps of his day, both notoriously inaccurate. Where modern mapmakers spend their energy on the accurate accumulation $\circ \dot{f}$ data, Mercator's main task was to reconcile. the inevitably contradictory reports that reached him.
óne severe example will show the inaccuracies of mapping at that time. Mercator's-map constituted the first useful, dramatic improvement in mapping the known world since the time of Ptolemy (the great astronomer and geographer.') 1400^{\prime} years earlier. An. important error on those early maps resulted from taking 1° as 56.5 miles

[^3]Figure 15. Sketch of Mercator's map of 1569.
on the earth's surface. An almost-correct value of 68.5 miles per degree was known to Eratosthenes (200 B.C.) but not - accepted by Ptolemy. Thus distances were stretched acros s too many degrees of latitude and longitude. Ptolemy took the east-west length of the Mediterranean Sea as 62°. Mercatqr's value of 52° was a substantial imp.rovement but a correct value of less than 42° was not known until after 1700 A.D. One result of this error is worth mention: geggraphers of the generation before Columbus had stretched the Europe-Asia land mass.much too far around the globe; Columbus had reason to believe that a journey of reasonable ${ }^{\text {. }}$ length to the west would'bring him to the orient. Maps_of modern quality, did not appear until nineteenth century explorers began to carry sophisticated instruments, into the $\{$ field.

Mercator, facing these complex problems, spaced his parallels of latitude as best he could on the map of 1569. His exact method is not known. And sailors, properly distrustful of mapmakers, did not ajopt the Mercator map at
once. By 1600 or so, Mercator maps of portions of the earth began to appear. These were of ìarger scale and incorporated corrections in the placement of the parallels of latitude due to the work off Edward Wright. Acceptance. by sailors grew steadily. The first atlas of Mercator projections was the Arcano del Mare of Sir Robert Dudley; published in 1646. By that time Mercator maps were, the navigator's standard.
3.2 Edward Wright's Discovery

The mathematical history that arose from Mercator's achievement is astonishing. As mentioned,earlier, we do not know whether Mercator really understood where to place the parallels of latitude to straighten the rhumb lines. By the time, Edward Wright, published Certaine Errors in Navigation in 1599, the secret was out:
"the parts of the meridian at every poynt of latitude must needs increase with the same proportion wherewith the Secantes or hypotenusae of the arké, intercepted betweene those pointes of latitude and 'the aequinoctiall (equator) do increase... by perpetuall addition of the Secantes answerable the latitudes of each point...we may make a table which shall. shew the sections and poinţs of latitude in the merkdians of the nautical planisphaere: by which sections, the parallels" are to be drawne." [From Wright (1599, pp. 17-18) as quoted in Cajor̄i (1915; pp. (312-313).].
Wright recognized that a sum of secants was needed; by his "perpetuall addition" we assume he meant the continuous summation of integration. He could not have known of integration as an anti-differentiation process, but the intuitive notion of a limit of integral sums was afloat in the intellectual seas of that time. provide the navigational corrections, Wright published atable of summationapproximations of the integral (2) for ϕ between 0 and 45°. at intervals of 1 minute of latitude.
$122 \quad . \quad . \quad . \quad{ }^{18}$
3.3 Later Math matical History
, Geographers really needed an integration formula for - the integral so that lengthy .summations could be avoided. The following fifty years saw a search for such a farmula through non-calculus techniques. In 1614 Napier published tables of sines and logarithnk of sines, af though these, were not quite logarithms as we know them today. In 1620 Edmund Gunter published a table of $\log (\tan \theta)$. By 1645, Henry Bond discovered by chance and published in Norwood's Epitome of Navigation, as Edmund Halley tells us half a century 1ater,
"that the Meridian Line was Analogous to a Scale of Logarithmick Tangents of half the complements of the \rightarrow Latitudes." [From Halley (1698, p.202) as quoted in Cajori (1915, p. 314).]
Bond's discovery is that

$$
\begin{equation*}
\int_{0}^{\phi} \sec _{\phi} \phi d \phi=-\ln \tan \left[\frac{1}{2}\left(\frac{\pi}{2}-\phi\right)\right] \tag{3}
\end{equation*}
$$

a, correct formula not usually seen by calculus students. Bond did not prove the farmula, but led a number of prominent mathematicians, including John Collins, N. Mercator, William Oughtred and John Wallis, to attempt the proof.
Bond's conjecture came from comparison of tables and graphs.

- During the 1660^{\prime} s, Newton and Leibnitz produced a systematic calculus and by 1668 , via a nastily complicated geometric argument, James Gregory proved the truth of (3). 5 Buring the vnext decade or two, simple calculations of $\int \sec \phi d_{\phi}$ were found. Throughout, this period, mathematicians were quite conscious that they were providing the theory necessary for an accurate Mercator projection and they consistently regarded the task as an important and worthy one.

Thus $\int \sec ^{\text {ef }} \phi \mathrm{d} \phi$ is one case where an integral was first treated by summation long before the birth of the calculus

51 cannot resist including" a quote, ascribed to Edmund Halley quoted from Cajori's article. Halley, in reviewing the research on our problem, says about Gregory's "proof that it involved "a long train of Consequences and Complication of Proportions, whereby the evidence of the Demonstration is in a great measure lost, and the Reader wearied before he attain it."
and was eventually made part of the calculus mainstream. This integral is one of the most esoteric that calculus. students are asked to handle because the usual integration methods given seém unmotivated, and "magical:". But the. integral's importance for applications makes its study worthwhile, and we will next exámine several techniques for calculating it. (If Sections 4 and/or 5 are omitted, it is still appropriate tooread Section 6.)

Exercises

1. Differentiate to confirm that
a). $\int_{0}^{x} \sec x d x=-\ln \tan \left(\frac{1}{2}\left(\frac{\pi}{2}-x\right)\right)$
ab). $\int_{0}^{x} \sec x d x=\ln (\sec x+\tan x)$ for $0 \leq x<\pi / 2$
c). $\int_{0}^{x} \cdot{ }^{-\sec x d x=\ln \tan \left(\frac{1}{2}\left(\frac{\pi^{\circ}}{2}+x\right)\right), ~() ~}$
2. Starting with blank graph paper, make part of a Mercator"map, as follows: put in the equator, the meridians at $0^{\circ}, 30^{\circ}, 60^{\circ}, \ldots$, 330° latitude; and parallelș of latitude at $10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}$, $50^{\circ}, 60^{\circ}, 70^{\circ}$ and 80° north and south. (Arrange the scale so that
\therefore these parallels do fitt. Now, using a globe or non-Mercator world map as a source of data, sketch in Greenland and Africa. Do your results look about dike, Figure 5? Do Africa and Greenland have
: roughly equal areas, as the map seems to say? (look up the actual area in the almanac or atlas.).
3. The formulas in Exercise 1 are for x measured in radians. Convert any one of them so that it gives

for y measured in degrees.
4. It is probable that Mercator constructed'his map grid by using a table of secants-at one degree interguals. Adding up the secants from one degree to 30 degrees would give him the approximate
spacing of the 30° line of latitude in terms of the size of one 124
degree at the equator. Without knowing it, he was using the approximation

$$
\int_{0^{\prime}}^{30^{\circ}} \sec \phi d \phi \cong \sum_{i=1}^{i=30} \sec \phi_{i} \Delta \phi_{i}
$$

Try this approximation yourself to find the distance in earth radi (radians) from the equator to 30° north latitude on the map. First use steps of 5° - and then of 1° (Remember $1^{\circ}=\frac{\pi^{\circ}}{.180}$ radians). Compare your results to the exact value given by equation 3. Do you think Mercator's probable method was sufficiently accurate for a a small scale world map? When you have completed Section 5, compare your gesult to the value given, by the series approximation of Exercise 12.
5. I was taught, erroneously, that a Mercator map is obtained when a paper cylinder is wrapped around the earth, tangent at. the equator as in the sketch, and points on earth bre, projected onto the cylinder as though by a point-size light at the earth.'s center. What spacing of the longitude-circles does this projection involve (instead of the

$$
D(\phi)=R \int_{0}^{\phi} \sec \phi d \phi
$$

placement of the circle at latitude ϕ on the Mercator map)? Are the longitude lines more spread out on this map or on the Mercator map?

CYLINDRICAL PRRDJECTION Point A is mapped to A^{\prime} Figure 4 shows a map. made with this cylindrical projection.
(lints for Exercises 3 and 5 may be found on page 32.)

6: Answer each question, supporting your answer with specific. evidence from the unit:
(1). Do we know enough about integration when we have learned to calculate integrals by antidifferentiation?
b) Did Newton and Leibnitz create the calculus in response to'scientific questions as part of the intellectual growth of, their age or did they create it out of thin air because.of its internal logic and beauty?
c) Can $\int \sec (\mathrm{x}) \cdot \mathrm{dx}$; be calculated between 1 imits $\mathrm{x}=\mathrm{a}$ and $x=b$ without the use-of a "closed integration formula?"
d) What is the advantage of salling a rhumb line course' as opposed to another course? Are there disadvantages in sailing the rhumb line and, if so, what are they?
e) On an accurate Mercator map of the world, how or where is the north pole located?
f) On an accurate Mericator world map, does an inch of map distance along the parallel of latitude at 40° north represent the same, earth-distance as and inch of map distance along the paraliel at 30° north?

- g). Is the Mercator map an easy one to use to measure the - distance between Chicago and New Orleans?

SEVERAL CAłCULATIONS OF $\int \sec x d x$

4.1 The Us,ual Integration

A typical, sneaky calculation of this integral is $\int \sec x d x=\int \sec x \cdot \frac{\sec x+\tan x}{\sec x+\tan x} d x$ $=\int \frac{\frac{d}{d x}(\sec x+\tan x)^{\circ}}{\sec x+\tan x} d x$
(4)

$$
=\ln |\sec x+\tan x|+c
$$

*This section may be omitted. See Suggested Uses on inside of titie page.
.*
and no motivation other than "look, it works" seems possible. We have used the well-known result

$$
\int \frac{d y}{y}=\ln |y|+c
$$

4.2 A Partial Fractions Integration

A līthe obvious trigonometry permits us to calculate the integral by partial fractions. Some equal signs have been marked for further comment:

$$
\begin{aligned}
\int \sec x d x & =\int \frac{d x}{\cos x} \Theta \int \frac{\cos x d x}{\cos ^{2} x} \\
& =\int \frac{\cos x d x}{1-\sin ^{2} x}=\int \frac{\cos x \cdot d x}{(1-\sin x)(1+\sin x)}
\end{aligned}
$$

The multiplication by $1=\cos x / \cos x$ at Ξ is done so that the next'step Θ can be done, a modest example of planning ahead. Here are the partial fractions : *

Thus

2

$$
\because 127
$$

$$
\begin{aligned}
& \frac{1}{(1-\sin x)(1+\sin x)}{ }^{\prime}=\frac{1 / 2}{1-\sin x}+\frac{1 / 2}{1+\sin x} . \\
& \int \sec x d x=\frac{1}{2} \int \frac{\cos x}{1-\sin x}+\frac{\cos x}{1+\sin x} d x \\
& =\frac{1}{2}[-\ln (1-\sin x)+\ln .(1+\sin x)]+c \\
& =\frac{1}{2} \ln \frac{1+\sin x}{1-\sin x}+c \\
& \square \frac{1}{2} \ln \left\{\frac{1+\sin x}{1-\sin x} \cdot \frac{1+\sin x}{1+\sin x}\right)+c \\
& \text { v } \quad \bigodot \frac{1}{2} \text { in } \frac{(1+\sin x)^{2}}{1-\sin ^{2} x}+c \\
& \Theta \frac{1}{2} \ln \frac{(1+\sin x)^{2}}{\cos ^{2} x}+c \\
& =\ln \sqrt{\left(\frac{1+\sin x}{\cos x}\right)^{2}}+c
\end{aligned}
$$

$=\ln |\sec x+\tan x|+c$.
Again, the decision at $[3$ leads to improvements at the following Θ steps.

The step marked Δ rests on the fact that

$$
\begin{equation*}
\sqrt{y^{2}}=|y| \tag{5}
\end{equation*}
$$

although you might think more immediately of
(6)

$$
{\sqrt{y^{2}}}^{\dot{1}}=\dot{y} ?
$$

Both (5) and (6) are correct when $y \geq 0$ but (5) is ${ }^{\circ}$ still true when y is negative:

$$
\sqrt{(-5)^{2}}=|-5|=5
$$

while (6) is not:

$$
\sqrt{(-5)^{2}} \neq-5 .
$$

Thus, the absolute value bars arise very naturally in the integration formula.

The calculation involves no trigonometry more sophisticated than $\sin ^{2} x+\cos ^{2} x /=1$ and $1 / \cos x={ }^{\circ} \sec x$, but requires a little algebraie grganization. It was apparently first done by Isaac Barrow in abo $t 1670$ and may be the earliest use of partial fractions in, integration.

4.3 Gregory's Form 0 / the integral

It is not difficult to derive (3), Gregory's'form of the ointegral. The needed trigonometry this time is that

$$
\cos x=\cdot \sin \left(\frac{\pi}{2}-x\right)
$$

and the doutble angle formula

$$
\sin \left(\frac{\pi}{2}-x\right)=2 \sin \left(\frac{1}{2}\left(\frac{\pi}{2}-x\right)\right) \cos \left(\frac{1}{2}\left(\frac{\pi}{2}-x\right)\right)
$$

Here it is:

$$
\int \sec x d x=\int \cdot \frac{d x}{\cos x}=\int \frac{d x}{\sin \left(\frac{\pi}{2}-x\right)}
$$

$$
=\cdot \int \frac{d x}{2 \sin \left(\frac{\pi / 2-x}{2}\right) \cos \left(\frac{\pi / 2-x}{2}\right)}
$$

$$
\left[\exists \int \frac{d x}{2 \frac{\sin y}{\cos y} \cos ^{2} y} \quad \text { where } y=(\pi / 2-x) / 2\right.
$$

$$
=\frac{1}{2} \int \frac{\sec ^{2} y \mathrm{~d} x}{\tan y} .
$$

Now change variables to y, using $d y=-\frac{1}{2} d x$, apá get

$$
=-\int \frac{\sec ^{2} y d y}{\tan y}=-\ln |\tan y|+c
$$

$$
=-\cdot \ln \cdot\left|\tan \frac{1}{2}\left(\frac{\pi}{2}-x\right)\right|+k
$$

The algebra at Ξ is sneakier, than one might like, admit. The minus sign here is not unreasonable. For our basic interval $x \in\left(0, \frac{\pi}{2}\right)$, $\sec x>0$ and the integral >0. But $(\pi / 2-x) / 2$ is between 0 and $\pi / 4$, its tangent is between 0 and 1 , and the. In would be negative. The minus sign straightens that out. (

Another form of the integral is' given in Problem 7.
And it should be possible to convert $\ln (\sec \theta+\tan \theta)$ into

- Ingtan(($\pi / 2-x) / 2)$) via trigonometry, should it not? You are askêd to do so in Problem 8.

JAMES GREGORIE or Gregory.. 1638-1675, created mach mpore of infportance in mathematics and optics than the was gineen cerre "dit for in his own day. A great technological sactimevenertiof that time was the design of efficient low-distortion tediescopsss. Gregory contributed experimental designs that influenced Manton's reflector telescopes; the Cassegrain design in It 772 was the ultimate successful result of this effort.

Gregory put much effort into finding the lemgths, arneas and volumes assoclated to the conic sections. These Tresiltos were needed for engineering work such as design off rapricail instruments. Difficult integrations were involved, annd weere done by geometric methods using classical Greek scrowikedgeoff the conics, physical principles, etc. The calculation off $\int \sec x d x$ for use ${ }^{\wedge}$ Ingthe Mercator ${ }^{\circ}$ Projection is meme sexampe. His later mathematics centered on calculation of tootes coff ppodit nomials. He used approximation methods that werse rediesconeredd by Newton, . Simpson,' Taylor and Cotes some years tater, anud credited to them. He was also a pioneer in the use off inffinitee series; see Exercise 13.

His work was not influential becausetbregory, treactiong ant isolated universities, was too much out if commujeationnwith his proper peers. His generation saw its work sabsorbed aas small portions of the deeper, richer, systematic calrailus dateveloped by Néwton and Leibniz. (Source: Dictioncany aff 3 Brientific Biography, Vol. V; Pp 524-530 and I.B. Boyer., IA ミitistouy of Mathematics.)
(Hint fö Exercise 7 may be found on paqe 32 .)

5. A SERTES FOR $\int \sec x d x$

Kecall that Mercator's need was to calculate

$$
\int_{\phi}^{\phi} \sec \phi d \phi
$$

fiñr many values df ϕ, even every $1 / 60$ of a degree. . While Greggon's proóf that a "logarithick Tangent" formula was Gorment for this integral was valuable, it helped the task off computation only to the extent thát tables of $\log (\tan$) werne araitabIe. In "1685, John Wallis published a series fform of the integral; offeíing a wholly new and. fairly comrenient computational method.

लिhis: section may be omitted. See Suggested Uses'on inside of titiep pages.

5.1 Derivation of Wallis' Series

This series is very easy to derive. From section 4.2, in the partial fractions derivation, we have

$$
\begin{aligned}
& \int_{0}^{x} \sec x d x=\ldots=\int_{0}^{x} \frac{\cos \dot{x} d x}{1-\sin ^{2} x} \\
&=\int_{0}^{x^{x}} \cos x\left[1+\sin ^{2} x+\sin ^{4} x\right. \\
&\left.\quad+\sin ^{6} x+\ldots\right] d x
\end{aligned}
$$

All we have done here is to use the geometric series formula

$$
\frac{1}{1-a}=1+a+a^{2}+a^{3}+a^{4}+\ldots \text { if }|a|<1
$$

with $\equiv \neq \sin ^{2} x$, (Which does satisfy $|a|<1$ for the $x \varepsilon(0, \pi / 2)$ that concern us).

The next step is to convert this integral-of-an-infinitesufinto an infinite-sum-of-integrals, which we calculate term by term ${ }^{6}$. .Continuing:

$$
\begin{aligned}
\int_{0}^{x} \sec x d x= & \int_{0}^{x} \cos x \cdot 1 d x+\int_{0}^{x} \cos x \cdot \sin ^{2} x d x+ \\
& \cdot \int_{0}^{x} \cos x \cdot \sin ^{4} x d x+\int_{0}^{x} \cos x \cdot \sin ^{6} x d x+\ldots \\
= & \sin x+\frac{\sin ^{3} x}{3}+\frac{\sin ^{5} x}{5}+\frac{\sin ^{7} x}{7}+\ldots
\end{aligned}
$$

$$
\begin{equation*}
=y+\frac{y^{3}}{3}+\frac{y^{3}}{5}+\frac{y^{7}}{7} \neq \ldots \text { with } y=\sin x \tag{8}
\end{equation*}
$$

\checkmark This series is convergent for any $x \in\left[0, \pi / 2^{2}\right)$ as Exercise 11 asks you to show.

[^4]
5.2 Numerical Approximation of the Integral

We can use (8) to approximate

$$
\int_{0}^{x} \sec x d x
$$

by getting $y=\sin x$ from a table and taking partial sums of (8) until the desired level of convergence is obtained. You are asked to do so on the computer in Exercise 12.
The series is not an exceptionally fast-converging one. For $x=\pi / 6$ some partial sums are:

Highest power of $\sin x$ included		Partial Sum
1		0.49999999
- 3		0.54166666
, 5		0.54791666
7		0.54903273
9		0.54924975
11	1	0.54929414
13		0.54930352
15		0.54930556
17		0.54930601

The correct value, for comparison, is

$$
\cdot \int_{0}^{\pi / 6} \cdot \sec x d x \doteq 0.54930614 .
$$

Many integrations thát lead to obnoxious formulas can be converted into series calculations leading to convergent, computable answers. Wallis published a series for

$$
\int \tan x d x
$$

in 1685, too, and we include this one as Exercise 9 , as one example. See also-Exercise 10.

6. WHAT HAS CALCULUS CONTRTBUTED TO THE
 MERCATOR PROJECTION?

The map that Mercater published in 1569 was revolutionary because it simplified the task of navigation at sea -- sailors could plot rhumb line courses by the simple use of straight lines. By about 1600 corrected versions, of Mercator world map were accurate enough to satisfy the practical reqưirements of navigation at sea and the map
soon came into wide use. But all of this was accomplished before the invention of the calculus; what has calculus really added to the achievements, of Mercator?

As more and more detailed lercator charts of smaller and smaller parts of the earth's surface have been made over the centuries, a more and more accurate spacing of the parallels of latitude has been necessary. Once the precise mathematical calculation of $\int \sec \theta d \theta$ was known, this spacing could be immediately accomplished to any degree of accuracy. The only limitations in the production of Mercator maps were those imposed by the printing process, ${ }^{\prime}$ size and quality of paper, and so on. Nopmathematical barriers stood in the way of the cartographer, because methods had been provided to create the Mercator projection both in theory and to any level of accuracy in practice.

The influence of Mercator on the course of mathematical development was important. Along with many other technologiçal problems of that age, the problem of refining the Mercator projection to a hi'gh vel of accuracy inspired the mathematicians and guided their efforts in developing the calculus. They did not quit working on cartography-inspired problems once the Mercator problem had been solved, of course. Singe, 1600 the Mercator projection has been further refined (to take intolaccount the equatorial bulge of the earth, for example) through use of more mathematics and many other projections have been developed on a sound mathematical basis.

Exercises

$+$
9. Use this start to get a series-form, also given by Wallis in 1685, for
\uparrow

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x d x}{\cos x} \\
& =\int \frac{\sin x \cos x d x}{\cos ^{2} x}
\end{aligned}
$$

The answer willz be
$=., \int_{0}^{x} \tan x d x=\frac{1}{2}\left(s^{2}+\frac{s^{4}}{2}+\frac{s^{6}}{3}+\frac{s^{8}}{4}+\ldots\right)_{0}$
where $s=\sin (x)$.
For what x does this converge and why?
10. What goes wrong when we try to carry out Exercise g for

$$
\int_{0}^{x} \cot x d x ?
$$

11. Give a proof that Wallis' series

$$
y+\frac{y^{3}}{3}+\frac{y^{5}}{5}+\frac{y^{7}}{7}+\ldots
$$

with $y=\sin x$ for some $x \in[0, \pi / 2)$, is convergent

- a) by a comparison test
b) by another test
c) For what y (and then what x) does this series converge?

12. A computing project: use Waliis' series

$$
\int_{0}^{x} \sec x d x=s+\frac{s^{3}}{3}+\frac{s^{5}}{5}+\ldots \text { where } s=\sin (x)
$$

to calculate on the computer successive partial sum approximations,of the integral. Your instructor wi,ll tell you what interval $[0, x]$ to use. Continue until you have, the integral approximated within. 5×10^{-6}. How will you decide when you have calculdted enough terms to the series and are ready to get off the machine?
13. a) Derive Gregory's'series: /
$\arctan x=\int_{0}^{x} \frac{d x}{1+x^{2}}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5} \cdot-\frac{x^{7}}{7}+\ldots$.
Hint: Replace $1 /\left(1+x^{2}\right)$ by a geometric series before integrating term by term.
b) for what x does this alternating series'converge?
c) Use the computer and this series to get a tabletof arctan x for x-vaiues that your instructor assigns. (Hów can you easily decide when to get off the machine, for $x \in[0,1]$? What is an estimate of the error if yourstop after sotyany terms?).
d). What doe's the series tell you about a relationship between "arctan x and $\arctan _{i .}^{\prime \prime}(-x)$?
Hints for Exercises
3. Change variables using $y=\frac{180}{\pi} x$. The result will be an integral in x, where x is measured in radians.
5. In Figure 13 , angle ϕ is the latitude of points A^{\prime}, A^{\prime}, and $D_{2}(\phi)$ gives the spacing of the parallel of latitude just as $D(\phi)$ did for, the Mercator map. Try to find $D_{2}(\phi)$ and then show
-7. Start with $\int \sec x d x=\int \frac{d x}{D_{2}(\phi) \geq D(\phi) .}=\int \frac{d x}{\cos x}=1\left(x+\frac{\pi}{2}\right)$.
9: Reread the beginning of Section 5.1.
10. The lower limit of integration, 0 , causes the integral to be improper: Is it finite?

7. REFERENCES

Cajeri, Florian, 1915: "On。an Integration Ante-dating the Integral Calculus" Bibliotheca Mathematica, 3rd Series, 14 (1915) pp. 312-319.
P
Carslaw, H.S., 1924: "The Story of Mercator's Map. A Chapter in the History of Mathematics." The Mathematical Gazette XII (Jan. 1924) pp 1-7.
Crone, G.R., 1966: Maps and Their Makers. Capricorn Books, New York, 1966.
Deetz, Charles H. and Oscar S. Adams, 1944: Elements of Map. Projection With Application to Map and Chart Construction, 5th Edition, revised, 1944. Special. Pub-

- lication No. 68 of The Coast and Geodetic Survey, U.S. Department of Commerce.

Halley, Edmund, 1698: "An Easie Demonstration of the Analogy of the Logarithmick Tangents to the Meridian Line or suw of the Secants: with various methods for Computing the same to the utmost Exactness", Philosophical Transactions XIX (1695-1697), London, 1698.
Hobbs, Richard R., 1976: Marine Navigation I; Piloting. Fundamentals of Naval Science Sefies, Naval Institute Press, Annapolis, Md., 1974. Reprịnted 1976 with corrections.

Parsons, E.J.S. and W.'F. Morrís, 1939:, "Edward Wright and hìs Work", Amagio Mundi 3 (1939) pp 61-71.
Taylof, E.G.R. 1971: The Haven-Finding Art. Hollis. and Carter bondon 1971.
Sadler, D.H. and E.G.R. Taylor, 1953. "The Doctrine of Nauticall'Triangles. Compendious. Part I - Thomas Hariot's Manuscript (by Taylor). . Part II -"Calculating the Meridional Parts (by Sadler)." J. of the Tnstitute of Navigation; London 6 (1953) Pp 131-147.

Wright, Edward, 1599: Certaine Errors in Navigatior,

- tusing of the sea Chart, Compass, Cross Staffe and Tábles. of declination of the Sunne, and fixed Starres detected and corrected, London, printed by Valentine Sims, 1599.
Note: Historical material in this paper has been drawn almost totally from (Cajori, 1915) and (Crone, 1966) only. Other references are given to allow the reader quick access to the literature for 'further research.

In this brief paper, complex historical ideas have naturally been compressed more than they deserve. Any inaccurate impressions that may be conveyed as a result are the sole responsibility of the author of this paper.

138

1. a) $\frac{d}{d x}\left[-\ln \tan \left(\frac{1}{2}\left(\frac{\pi}{2}-x\right)\right)\right]$

$$
=-\frac{1}{\tan \left(\frac{1}{2}\left(\frac{\pi}{2}-x\right)\right]} \sec ^{2}\left(\frac{1}{2}\left(\frac{\pi}{2}-x\right)\right) \cdot \frac{1}{2} \cdot(-1)
$$

$=\frac{1}{2} \frac{1 / \cos ^{2} y}{\sin y / \cos y}$.
where $y=\frac{1}{2}\left[\frac{\pi}{2}-x\right]$
$=\frac{1}{2 \cos y \sin y}=\frac{\cdot 1}{\sin (2 y)}=\csc (2 y)_{a}$
$=\csc \left(\frac{\pi}{2}-x\right)=\sec x$.
b) $\frac{d}{d x}(\ln \cdot(\sec x+\tan x))$

$$
\begin{aligned}
& =\frac{1}{\sec x+\tan x} \cdot\left(\sec x \tan x+\sec ^{2} x\right) \\
& =\frac{1}{\sec x+\tan x}(\sec x+\tan x) \sec x \\
& =\sec x .
\end{aligned}
$$

c) $\frac{d}{d x}\left[\ln \tan \left(\frac{1}{2}\left(\frac{\pi}{2}+x\right)\right]\right]$

$$
\begin{aligned}
& =\frac{1}{\tan \left(\frac{1}{2}\left(\frac{\pi}{2}+x\right)\right)} \sec ^{2}\left(\frac{1}{2}\left(\frac{\pi}{2}+x\right)\right) \cdot \frac{1}{2} \\
& =\frac{1}{2 \sin z \cos z}, \quad \text { for } z=\frac{1}{2}\left(\frac{\pi}{2}+x\right) \text { just as in (a) above. } \\
& =\frac{1}{\sin (2 z)}=\csc \left(\frac{\pi}{2}+x\right) \neq \sec x
\end{aligned}
$$

- 2.. The area of Greenland is approximately ${ }^{-} 840,000$ square miles, and the area of Africa is $11,706,727$ square miles.
\therefore 3. $\int \sec y d y=\int \sec \left(\frac{180}{\pi} x\right) \frac{180}{\pi} d x$

$$
\begin{aligned}
& =\frac{180}{\pi} \int \sec \left(\frac{180}{\pi} x\right) d x \\
& =\frac{180}{\pi} \cdot \frac{\pi}{180} \ln \left|\sec \left(\frac{180}{\pi} x\right)+\tan \left(\frac{180}{\pi} x\right)\right|+c \\
& =\ln |\sec y+\tan y|+c .
\end{aligned}
$$

Change of variables:

$$
\begin{aligned}
& y=\frac{180}{\pi} x \\
& d^{\prime} y=\frac{180}{\pi} d x
\end{aligned}
$$

4. With 5°.steps, $\int_{0}^{30^{\circ}} \operatorname{seq} \phi d \phi=0.5564789339$.

With i° steps, $-\int_{0}^{30^{\circ}} \sec \phi d \phi=0.5506730838$.
Equation (3) gives $\int_{0}^{30^{\circ}} \sec \dot{\phi} d \phi=-\ln \tan \left[\frac{1}{2}\left(\frac{\pi}{2}-\cdots \phi\right)\right)_{\phi=0}^{\phi=\frac{\pi}{6}}$ $=0.5493061443$.
5. From Figure 15 ,

$$
\frac{D_{2}(\dot{\phi})}{R}=\tan \phi
$$

so, $\quad D_{2}(\phi)=R \tan \phi$
must be compared to

$$
D^{\prime}(\phi)-\frac{1}{R} \int_{0}^{\phi} \sec \phi d \phi .
$$

The easiest way to show $D_{2}(\phi) \geq D(\phi)$ is to notice that the derivatives are easy to compare:

$$
\frac{d^{\prime}}{d \phi} D_{2}(\phi)=R \sec ^{2} \phi \geq R \sec \phi=\frac{d}{d \phi} D(\phi)
$$

Since $D_{2}(0)=D(0)=0$, we can conclude that $D_{2}(\phi) \geq D(\phi)$ far all $\phi \varepsilon\left(0, \frac{\pi}{2}\right)$.
6. (Sample answers)
, a) The construction of the Mercator map leads us to discover $\int \sec x d x$ as a limit of integral sums; derivatives do not enter the sproblem. The integral was adequately approximated decades before an antidifferentiátion formula was discovered.
b) Ideas that are now part of the calculus and problems calling for the calculus were "in the air" long before Leibnitz and Newton. For example: Cavalieri's integration of x^{n}; Mercator's need for $\int \sec x d x y$ Gregory's geometric calculation of integrals.
c) Yes, as a finite integral sum $\Sigma(\sec x ;) \Delta x$ or by use of finitely many terms of Wallis' series.
d) A rhumb line is easy to sail because the pilat simply keeps an eye on his compass. He wants to keep the compass needle reasonably still. One disadvantagent the rhumb line path is its greater length in comparison to the great circle path. Extra distance costs time, fuel, and money.
e) The north pole needs to be located a distance
!.

$$
\begin{aligned}
& \text { pole needs to be located a } \\
& 0\left(\frac{\pi}{2}\right)=\pi \int_{0}^{\pi / 2} \sec \theta d \theta=\infty
\end{aligned}
$$

away from the equator. It is off the map!
. f) If an inch of map distance at $40^{\circ} \mathrm{N}$ represents A earthmiles and an inch at $50^{\circ} \mathrm{N}$ represents B miles, then

$$
\frac{A}{B}=\frac{\sec 40^{\circ}}{\sec 50^{\circ}}
$$

because of the "stretching" of earth distances as they are placed on the Mercator map. Thus A $\ddagger \mathrm{B}$.
g) The scale changes continually along north-south lines of a Mercator map. Thus a mostly north-to-south distance like that from Chicago to New Orleans is quite hard to. calculate from the map.

$$
\begin{aligned}
\text { 7. } \quad \int \sec x d x & =\int \frac{d x}{\cos x}=\int \frac{d x}{\sin \left(x+\frac{\pi}{2}\right)} \\
& =\int \frac{d x}{2 \sin y \cos y}, y=\frac{1}{2}\left(x+\frac{\pi}{2}\right) \\
\cdot \quad & =\int \frac{d x}{2 \frac{\sin y}{\cos y} \cos ^{2} y}=\int \frac{\sec ^{2} y d y}{\tan y}
\end{aligned}
$$

$$
=\ln \tan \dot{y}+c,{ }^{\prime} \text { done. }
$$

8. a) Easier solution due to Ronald Shubert, Chairman", Department of. Mathematics, Elizabethtown College; Elizabethtown, Pa.:
$\tan \frac{A}{2}=\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}}=\frac{2 \sin ^{2} \frac{A}{2}}{2 \sin \frac{A}{2} \cos \frac{A}{2}}=\frac{1-\cos A}{\sin A}$
$=\csc \mathrm{A}-\cot \mathrm{A}$,
and thus,

$$
\begin{aligned}
\tan \left[\frac{x}{2}+\frac{\pi}{4}\right] & =\tan \frac{1}{2}\left[\bar{x}+\frac{\pi}{2}\right] \\
& =\csc \left(x+\frac{\pi}{2}\right)-\cot \left(x+\frac{\pi}{2}\right) \\
& =\sec x+\tan x .
\end{aligned}
$$

then

$$
\tan \left[\frac{x}{2}+4\right]=\frac{\tan \frac{x}{2}+1}{1-\tan \frac{x}{2} \cdot 1}
$$

$$
=\frac{1+\sqrt{\frac{1-\cos x}{1+\cos x}}}{1-\sqrt{\frac{1-\cos x}{1+\cos x}}} \cdot \frac{i+\sqrt{\frac{1-\cos x}{1+\cos x}}}{1-\sqrt{\frac{1-\cos x}{1+\cos x}}}
$$

$$
=\frac{1+\frac{1-\cos x}{1+\cos x}+2 \sqrt{\frac{1-\cos x}{1+\cos x}}}{\frac{1-\cos x}{1+\cos x}}
$$

$=\frac{2+2 \cos x}{2 \cos x}=\sec ^{\circ} x+\tan x$.
142
b) This ${ }_{0}$ is easy to see in the form

$$
\cot \left[\frac{\pi}{4}-y\right\}=\tan \left(\frac{\pi}{4}+y\right), y=\frac{x}{2},
$$

when the graphs are drawn. A proof will drag you into straight-forward use of formulas like (**) above in 8a.
9. $. \int \tan x d x=$.

$$
=\int \sin x \cos x\left(1+\sin ^{2} x+\sin ^{4} x+\sin ^{6} x+\ldots\right) d x .
$$

Put in $y=\sin ^{2} x$:

$$
\begin{aligned}
& =\frac{1}{2} \int\left(1+y+y^{2}+y^{3}+\ldots\right) d y \\
& =\frac{1}{2}\left(c+y+\frac{y^{2}}{2}+\frac{y^{3}}{3}+\ldots\right) \\
& =\frac{1}{2}\left(c+\sin ^{2} x+\frac{\sin ^{4} x}{2}+\frac{\sin ^{6} x}{3}+\ldots\right) .
\end{aligned}
$$

10. The integral is infinite and we get this absurd divergent series:
$\int_{0}^{x} \cot x d x=\int \frac{\cos x}{\sin x} d x$
$=\int \frac{\cos x \sin x \cdot d x}{\sin ^{2} x}$
$=\int \frac{\cos ^{2} x \sin ^{2} x d x^{*}: \cos ^{2} x}{1-2}$
$=-\frac{1}{2} \int \frac{d y_{x}}{y-y}$ 话th $y=\cos ^{2} x$
$=-\frac{1}{2}\left(1+y+y^{2}+y^{3}+\ldots.\right) d y$
$=-\frac{1}{2}\left(c+y^{-}+\frac{y^{2}}{2{ }^{\circ}}+\frac{y^{3}}{3}+\frac{y^{4}}{4}+\ldots\right) . \quad \therefore$
The left is $+\infty$ and the right stde.looks negative!
11. a) A term by term comparison with

$$
y+y^{3}+y^{5}+y^{7}+
$$

(a convergent geometric series with $y=\sin x \ll^{\prime} 1$) shows the convergence of Wallis' series.
b) The ratio test tells us to calculate, for cour sserites

$$
\sum_{n=0}^{\infty} \frac{y^{2 n+1}}{2 n+!}
$$

$$
R=1 i m\left|\frac{\dot{y}^{2 n+3} /(2 n+3)}{y^{2 n+1}: /(2 n+1)}\right|=y^{2}
$$

Since $R<1$, the series as convergent. Dther tystos maxy also be used.
c) The ratio-test done in (b) tells us that the sseriees converges when $y^{2}<1$ (i.e., $-1<y<7$) 3 and ddineges whinen $y^{2}>1$ (i.b., $y>1$ or $y<-1$). For $y=7$ wo cget do divergent series. For $y=-1$ we get \exists comvergent aituer nating series. Thus we have convergence forr $-11<y y \ll \pi$ exačtly. How, what x gives $-1 \leq 5 \ln x<-T]$ Nillimedix except?
12. Computer results for $x=5^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 725^{\circ}$, and 80° are below.

For x nearing 90°, sin \times near 1 , we need quite a few terms in a partial sum to get good accuracy!
13. a) $\arctan x=\int_{0}^{x} \frac{1}{1+x^{2}} d x$

$$
\begin{aligned}
& =\int_{0}^{x}\left(1-x^{2}+x^{4}-x^{6}+x^{8}-+\cdots\right) d x \\
& =x-\frac{x^{3}}{3}+\frac{x^{2}}{5}-\frac{x^{7}}{7^{4}}+\cdots
\end{aligned}
$$

b) use thé ratio test: $R=\lim \left|\frac{x^{2 n+3} /(2 n+3)}{x^{2 n}+3 /(2 n+1)}\right|^{=}=x^{2}$

Thus the series converges when- x^{2} < 1 , diverges when $x^{2}>1$. For $x^{2}=1(x= \pm 1)$ we get a convergent alternating series. Thus the series converges for $-1 \leq \dot{x} \leq 1$.
d) Plug in $-x$ for x and show aŕc $\tan (-x)=-\arctan (x)$:
connect the North Pole $\&$ with any other point P excent the South Pole, there is a unique great circle passing through N and P. . The shorter arc between N and p along that unique great circle is the shortest path on the globe connecting N and P, the great circle route between them.

Similarly, there is a full set of great circles through any point Q on the globe. Between Q and its opposite point R there are infinitely many great circle routes, Connecting Q and any other point R (not opposite to Q) on the sphere, there is a unique great circle and along that circle lies the great circle route, again the shortest between Q and R.
)

The Project would like to thank Marjorie A. Fitting of San Jose State University, ${ }^{\text {B }}$ Barbara Juister of Algin Community College, Roland Smith of Russell Sage College, and L.M. Larsen of Kearney State College for their reviews, and all others who assisted in the production of this unit.

This unit was field-tested landor student ${ }^{8}$ reviewed in prelimary form by Alan Shuchat, Wellesley College, Wellesley, Massachusetts; Peter Nicholls, Northern Illinois University, DeKalb, Illinois; Richard G. Montgomery, Southern Oregon State College, Ashland, Oregon; Kurt Kreith, University of California at Davis; Robert L. Baker, Jr., U.S. Naval Academy, Annapolis, Maryland; James Bradley, Roberts Wesleyan College, Rochester, New York; and Jonathan Choate, The Groton School, Groton, Massachusetts, and has been revised on the basis of data received from these sites.

Intermodular Description Sheet: . UMAP Unit 207

Title: - MANAGEMENT OF A BUFFALO HERD

Author:
Philip M. Tuchinsky
Department of Mathematical Sciences
Ohio Wesleyan University .
Delaware, obio 43015
θ
Review Stage/Date: 111 12/28/77
Classification: APPL LIN ALG/HARVESTING/LESLIE-TYPE MODEL
Suggested Support Material: Key exercises call for computer use.
References: ${ }^{\text {r }}$ See Section 6 of text.
Prerequisite Skills:
lo Matrix mattiplication; matrix inverses; calculation of the inverse by row (Gaussian) elimination (optional): overdetermined lineaf equat lons; elementary matrix algebra.
2. Ho elgentheory is used. No background in biology/ecology/ ranching is needed.

Qutput Skills:

1. Calculate with lineat difference equations on computer.
2. : identify overdetermined linear equations and decide when
. 0 they have a solution.
3. Set tip and solve matrix equations from word problems.
4. Sum finite geometric series for matrix case.
5. Describe an application that uses linear equations to model birth; aging and death in a population. Specifically, detail userof a matrix to transform that population through time.
6. Differentiate between matrix level and entry level calcula tions and give example's where both are helpful
7. Explain context where polynomial functionsyof a matrix inevitably arise..
8. Discuss major striengths and weaknesses of a linear model in a nonlinear reality.
9. Simulate severál policies of harvesting by making varied use of a computer simulation.
a 3
Predicted Jeaching Time: 2-3 class periods, inciuding discussion of computer project results. This assupes. that class time is mostly refated to the fath and studehits read the'biological content for themselves.

Suggested Uses: Sections 4 and 5 are independefit of each other;
either can be done first. Sectjons 4.6 and 5.2 are harider
than the other three application examples in 4.1, 4.3,5.1.
Section 4.2 many be onitted.
A wide range öf basic linear algebra skPlls can be tied".
together by working "through. this module:" Computer experience
with a linear transformation is a key benefit of this
module -- If at all possible; I recommend use of some of
exercises 3-8, Section 2.6

This -module is suitable for a first linear algebra course or a post-linear-algebra course in mathematical modeling. It is suitable for presentation by advanced students in a seminar.

The matrix is not diagonalizable: To pursue the calculations in Section 4.5 further, the natural path is to seek. the eigenvalues of matrix M. But the more general

where a, b, c, d, e are all $\in(0,1)$, and the eigenvalues are zero (twice), parameter a, real $x>a$, and a complex conjugate pair u, \bar{u}. The characteriştic equation that yields these roots is:

$$
\operatorname{det}\left(M_{1}-\lambda I\right)=\lambda^{2}(a-\lambda)\left(-\lambda^{3}+a \lambda^{2}+b c e\right)=0
$$

The eigenspace of zero is unfortunately one-dimensional; thus the Jordan form above. The.square, cube, and higher power's of this Jordan form are diagonal.

modules and honogkaphs in undergraduate hathematics and its applications project (umap)

The goal of UMAP is to deveiop, through a community of users and developers, a system of ihstructionai modules in undergraduate mathematics and its applications which may be used to supplement existing courses and from which complete courses may eventually be bullt.

The Project is guided by a National Steering Committee of mathematicians, scientists and educators. UMAP is funded.by a grant from the. Nationai Science Foundation to Education Deveiopmen Center, Inc., a pubiicly supporțed, nonprofit corporàtion engaged in'eduçational research in the U.S.'and’ abroad.

PROJECT STAFF

Ross L. Finney	Director
Soiomon Gardunkel	Associate
Coordinator	

- Feiicia Veitzel Barbara Kelczewski Dianne Lally Paula M_{2} Santilio Jack Alexander Edwina Hichener

Assoclate-Director/Consortium Coordinator
Associate Director for mdministration
Coordinator for Materials Production
Project Secretary
Secretary/Financiai Assistant
Editoriai Consultant
Editorial Consultant

1.1 What Harvest Should You Take?

Imagine yourself.as the operator of a buffalo ranch. ${ }^{l}$ Yơ have a certain herd on hand; and each year you "harvest': 'a number of mature buffalo for their meat. You permit the remaining herd, for the next year, to replenish itself through its own natural breeding. The herd has a certain known structure: it is made up of known proportions of adult vs., immature animals, of females vis. males. Here are soṃe questions you might ask while simultaneously trying to gain a good harvest and maintain - the herd for good future harvests:
-. What harvest policy will lead to a herd next year that has the'same size and structure as this year's herd?
\therefore What annual harvest will permit the herd to grow steadily.so that in ten jears it will have doubled in size while keeping the same proportional structure?
\because Do substantially different future herds result if more, the same number, or less females are harvested than males?

1.2 What Herd Should You Start With?

Next,’imagine yourself es planning to enter the buffalo-ranching industry. You set goals (based on your costs, capital, desired income, etc.) for ${ }^{\text {a }}$ desired 'harvest. That is, you select, as a basic parameter of your business, a number of mature animals that you *intend to harvest each year. You might ask:
W.t. Mart in

Steven J. Brams
Llayron.Clarkson
James D. Forman
Ernest J. Heniey
Donald A. Larson
Willilam F. Lucas
Frederick Mosteller
Walter E. Sears
George Springer
Arnold A. Strassenburg
Alfred B. Wificox

The Proit

review and all others who to thank Edward L. Kellèr for his
This materlal was prepared with the support of National Science Fqundation Grant No. SED76-19615. Rečommendations expressed are those of the author and do not. necessarity reflect the views of the NSF nor of the National Steering Comittee.

MIT (Chairman)
New York University
Texas Southern University
Rochester Institute of Technology University of Houston
SUNY at Buffaio
Cornell Uni vèrsity
Hârvard University
University of Michigan Press Indiana University SUNY at Stony Brook Mathematical Association of America rica

Although buffalo management is not a major industry, this paper is developed in terms of it because a widely availabie computer program named BUFLO i's based on the same model. The methods discussed here are-the subject of research in human population dynamics; cattle, sheep, and other ranching industries; forest, fishing, and wildife management. See the references.
-- What initial size and structure of herd will provide the desired harvest?
-- How should the quota be distributed among male and female animals to achieve a herd pf smallest size that will continue to yield the quota?

1.3 Wildilife Management

Finally, imagine yourself as the manager of a game preserve. Conditions here are quite unlike those on a ranch because. the buffalo herd lives among its natural' predators, such as thewolf. You have a limited amount of land, and its vegetation must support the herd. What quotas of male and female buffalo should you íicense hunters to kili each year to maintain the herd at an appropriate size? .

1.4 The Task Ahead

In this paper we will consider a mathematical model .based on linear algebra - of a buffalo herd. It will be possible to answer the questions above using the model, but the modẹ is a much simplified version of the situation in nature. We will consider the underlying assumptions of the model and their limitations to some extent.

While we.will look at the model mostly as a management tool, we will also be in a position (in the exercises in Section. 2.6)...to study historical issues concerning the destruction of the vast U.S. buffalo population that thrived on the Great Plains in the early 1800 's.
2. THE MODEL

2.1. Herd Components apid Their Survival Rates

We consider ${ }^{2}$ six categories of buffalo within the herd: calves are in their first year of infe, yearlings in their second, and all older buffalo are adults. Each age group is broken down in male and female categories.

[^5]Each 100 adult cows will bear approximately 48 male calves and 42 female calves each year in late spríng: This 90% reproduction rate is almost unrelated to the number of adult males in the herd because male buffato are polygamous.

Buffalo naturally suffer different death rates at different ages. ${ }^{3}$ Because of deaths at birth and succh natural enemies as the wolf and coyote, only about 60% of the calves survive to become next year's yearijngs and about 75% of the yearlings become adults.- Once they reach maturity, buffalo are quite safe from their enemies until they weaken from illness, injury, or old age: 95 of the adults survive from each year to the next. We will takè these numbers to be the same for males and femades and the same year after year.

2.2 Basic Model Equations

It ${ }^{\prime}$ is easy to organize this data into a mathepatical
Let model. Let

- $\quad A M=$ number of adult males ${ }^{\text {- }}$

(1)

$$
\text { AF }=\text { number, of adult females }
$$

$Y M, Y F=$ humbers of male yearlings, female yearlings" $C M, C F=$ numbers of male calves, female calves.".
or more specifically, let these be the numbers of buffalo.at thé end of, "this year" jusit after" the haryest. Let $_{1}{ }^{\prime \prime}{ }^{\prime}$: AF',..., CF' be the comparable counts' for next year's herd, also.at the completion of (next, year's) harvest. - Let
$Q M^{\prime}=$ number of adult' males harvested 'next year"
QF' = number' of adult females harvested "next year" :
(it is our poliey to harvest only adult buffalo.)

1. Then, the breeding, process, followed by harvest, is contained in these equations:
[^6][^7]Let＇s read these equations in detail．Because off natural deaths，． 95 AM represents＇the survinuoss meat year among this year＇s adult males and ．$T 5 \cdot \square 1$ bet of this year＇s yearlings who survive to become aadulint males．Thus $.95 \mathrm{AM}+.75 \mathrm{YM}$ represents the total off aridity males just before harvest next year．the imagine that thee harvest takes place at one specific moment yin g yeast， perhaps on a ${ }^{*}$ day in the fall．）Thus＇the ajfternitranesctt total＂，AM＇，is correctly given in the 王irsit equation off （2）．The second equation treats the adult females ssiniti－ larly．．The third and fourth equations say tijatt 600% off this year＇s calves survive to become next year＇ts near． lings．The last two equations say that，for eesaid hturuiterdd adult cows after harvest this year，The feedidurill grow by 48 male calves and 42 female calves to＇beéemirn resect year．

2．3．The After－Harvest Model in Vector and Mario Notation

 1 and so on．Define the vectors：

$$
\begin{aligned}
& \vec{G}_{j}=\text { herd structure after harvest in the } j^{\text {th }} \text { year } \\
& (j,=0,1,2,3, \cdots) .
\end{aligned}
$$

In our earlier notation，the first of these siox－didinen－ sional vectors are

We must gather the harvest quotas into vieettors，tomas． －Put
$\stackrel{\rightharpoonup}{a_{i}}=\left(\begin{array}{c}O H^{\prime} \\ Q F^{\prime} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$
ass ant example of
$\bar{Q}_{j}=$ harvest in $j^{t h}$ year（fast four entries are aliways zero）．

Kith this notation established，it iss time ta re－ write（2）．as

ar
（3）

$$
\vec{G}_{I}=M \vec{G}_{0}-\vec{Q}_{I}
$$

where M is the 6×6 matrix just above＇．The wearr－to－ year process is given more generally as
（4）． $\overrightarrow{\vec{E}}_{j+1}=M \vec{G}_{j}-Q_{j+1}, \quad j=0, \eta_{m} \dot{Z}_{n} B_{m}$
This：is the after harvest mode I because it immilues hern counts \vec{G}_{j} taken just after the haturest is completed．

We may call iN the transformation matrix of our model，for it transforms its input，＂the feral stricture just after harvest，into the herd structure that birth n aging and death will produce＂just before harvest in the födioning year

2゙．44 The Before－Harvest Model
The model just discussed is useful pf e me have a head and．want to examine what next yearns harvest will gijree us as a：new herd．But suppose we are trying to sedient this year＇s harvest so that next year＂s bern cam be studied．Then we want before－turwestocill counts：to which we can apply the funnest：They pessenwe aa notation of ，their own：
$\vec{H}_{j}=\begin{aligned} & \text { herd before harvest-in the } j^{\text {th }} \text { year, } \\ & j=0,1,2, \ldots\end{aligned}$
Thus $\vec{G}_{j}=\overrightarrow{\mathrm{H}}_{\mathrm{j}}-\overrightarrow{\mathrm{Q}}_{\mathbf{j}}$ and the last paragraph of Section 2.3 says that $\vec{H}_{j+1}=\mathrm{M}_{\mathrm{G}}^{\mathrm{j}}, \cdot \mathrm{j}=0,1,2, \ldots$

The before-harvest-model relates H_{j} to $H_{j \in 1}$.
Clearly, H_{j} is diminished by Q_{j} at harvest and the new herd $H_{j}-Q_{j}$ undergoes the breeding transformation. Thus
(5) $H_{j+1}=M\left(H_{j}-Q_{j}\right), j=0,1,2,3, \ldots$

2.5 Survival Rates Would. Be Larger on a Ranch

One more comment. The birth and death rates were given for a herdiliving in the wild, subject to its natural predators. (The effects of man as a predator are reflected in $Q M$ and $Q F$, not the giver percentages.) Most of our effort, however, will be with questions that relate to ranching, where herds are fenced and natural predators álmost absent. We would expect much larger fractions of each category to survive the year. However,

* there are no accepted numbers to use in M, and, rather than arbitrarily pick some, we will use the same matrix M. for both wilderness and ranch applicatiofis. The results will be qualitatively the same for higher surviyal rates (as the author has checked in some detail).

2.6 Exercises and Computer Projects.

1. In the week before harvest last year your" rary had a buffalo . herd with this struoture:

$$
\begin{array}{ll}
A M=200 & Y M=300 \\
A F=1000 & Y F=300
\end{array} \quad C H=.520
$$

Your harvesting policy each year ts to take 100 adult males and 200 adult females. Calculate the structure of the herd
a. after last year's, harvest
b.. before this year's harvest
c. after this year's harvest
d. before next yeár's harvest

- e. after next year's harvest

159
f. Is the herd likely to grow or shrink if you continue this policy into the future, or fan't you ţell? Justify your answer.
2. Use equation (4) repeatedly to show that, over secveral years involving different farvests, an initial herd G_{0} will 'transform into

$$
\begin{aligned}
& \vec{G}_{T}=M \vec{G}_{0}-\vec{Q} \\
& \vec{G}_{2}=M^{2} \vec{G}_{0}-\vec{Q}_{2}-M \vec{Q}_{1} \\
& \vec{G}_{3}=M^{3} \vec{G}_{0}-\stackrel{\rightharpoonup}{Q}_{3}-M \vec{Q}_{2}-M \vec{Q}_{1}, \text { etc. }
\end{aligned}
$$

- Now, provide a biological meaning for each term in the equations. For example, $M^{2} \vec{G}$ is the herd that result ${ }^{\prime}$ after two years if no harvests are taken. The other terms in the second equation correct this to account for the harvests. What does the $\overrightarrow{M Q}_{1}$ term mean?

The remaining problems in this section call for the yse of a computer.
3. Write a computer program that will calculate next year's herd size from this,year's, using the after-harvěst model. It should receive as inputs: (1) the initial herd structure $\stackrel{\rightharpoonup}{G}_{0}$; (2) the constant harvest; (3) the number of years the herd is to be studied. The program should loop to calculate the herd size year by year for the number of years requested. It should print out the successive years and the herd structure that would result-for that year, using our model. ${ }^{4}$
4. The U.S. Buffalo Herd in 1830. The authors of the. BUFLO computer program (from whick own model is taken; see the references) state that the total buffalo herd in the United States in 1830 consisted of 60 million animals distributed as follows:

[^8]| 30% male adul'ts | | 27% female adults |
| :--- | :--- | :--- |
| 9% male yearlings | 8% female yearlings | |
| 14% male calves | . | 12% female calves |

(These figures should be taken as good historic guesses; estimates of the total herd, size vary widely above and below 60 million.) Let this data give your initial herd. Take a constant harvest of 4 million animals annually for a period of ten years. Distribute that harvest in various ways among males and females, trying to find a harvest that leaves the herd approximately unchanged after ten years. That is, split the harvest among mele and female adults in a specific way and trace the herd for ten years using your computer program for Exercise 3. Then try other splittings of the harivest in the same way. Several computer"runs can be used or you can loop. A convenient way to get the number 60 mi ion into the machine is 60.E6 in Fortrantor Basic.
5. Start with you computer program from Exercise 3 and the initial -

- herd given in Exerćise 4 . Take a 4 million animal harvest annually for twenty years, using these strategies:
a. harvest 100% adult males
b. harvest 75% adult males, 25% females.
c. harvest 50% adult males, 50% females
- d. harvest 25% adult males, 75% females
c. e. harvest 100% adult females.

The results are strikingly different. Discuss the biological reaspns.
6. Repeat Exercise 5, taking' a much larger harvest (say 12 million animals) annually. Compare to other results you have.
7. Let's examine the effects of a natural catastrophe (flood, range fire, etc.) on'a herd. Take the initial herd from Exercise 4 again' ánd set the constant annual harvest to zero. Drastically, reduce the birth and survival rates in the matrix M and transform the herd forward for one year, to simulate a catastrophe. Now put our usual nembers back in M and trace the herd forward for nine more years, still taking no harvest. What are the long-term effects of the catastrophe?
8. Repeat Exercise 7, but this time take constant annual harvests (in the catastrophic year and the orthers) of 1 million or 4 million animals, splitting the harvest among males and females in the ways listed in Exercişe 5. Comment on the combined effects of catastrophe and harvest. Which harvests warsen the effects of the ", enatastrophe? Which overcome it?

3. ASSUMPTIONS, STRENGTHS, AND WEAKNESSES

3.1 The Model's Basic Strengths

The examples in Sections 4 and 5 will show that we can really calculate with this model; it is a workable management tool. It does reflect the basit processes of birth, aging, and death among buffalo. The equations in Sections 2, 4 and 5 all have reasonable biological orfeconomac interpretations/.

The actual numbers used as birth and survival rates are reasonably, close to correct figures. One, piece of evidence for, this is that, among adult buffalo a life * span of approximately 25 years was the rule ${ }^{5}$ at the time when great wild herds roamed the plains. Our model predicts an ayerage ${ }^{-}$ife span of 21.5 years (where we count buffafo that die between their 2 nd and 3 rd birthdays as age $2 \frac{1}{2}$, etc.)

In Example 3, Section 4.6, we will show that no more than about 14% of a herd may be harvested annually without evéntually depleting the herd. . This vafue would vary in nature, but the model is qualitatively.correct enough to convince me that a steady harvest of (say) 20% of the herd would destroy the herd in time. Exercises 5 and 6 provide strong evidence of this.

[^9]Whether one should blindly accept advice from the model is another matter. The model is built on a number of assumptions that do not correspond to nature. The most important of these is that the birth and survival rates used in M are assumed to be constant year after year; this would not be true in nature'. We can regard the survival rates in M as averages for "normal" years that provide generally favorable weather and feeding conditions. Abnormal conditions like severe storms, range fires, drought, floods, and disease might temporarily cause much dower birth and survival rates. Our model does not provide for such catastrophes, ${ }^{6}$ although' they might not be ragre in the.uíld or on a'ranch.

The constant birth and survival rates do not permit the study of overcrowding or overpopulation.. Instead, the model assumes that unlimited land, food and water are available for the herd. In the wild, an overpopulated. herd would eat poorly and its birth and survival rates would decrease. it would be more subject to disease. " On a well-run ranch ${ }^{\text {w }}$ we would not expect overpopulation. We yill see in Sections 4 and 5 that the herd size \because can be related to the harvest in ways that make overpopulation manageable: In any case, the model is one of unlimited exponential growth for the herd, tempered by. the harvesting process.

Another weakness of the model is that harvesting is done only once a year, rather than steadfly or several times yearly; Reality was different: Plains Indian tribes held lengthy summer and winter buffalo hunts. Whitẹ mèn slaughtered the buffalo continually in the 1800's. On a ranch today, the herd would be thinned as meat prices and the availability of rangeland and water dictate.

[^10]Yet another weakness is that no economics is in, cluded in the model. The áctual quotas harvested would. surely be related to the price of meat and the cóst of feeding the herd on any ranch. The managex:of a game. preserve might not be troubled by such questions (if his'grazing lands are*sufficient for the herd so that no feed is to be purchased). There is no single obvious way.to extend the model so that economics is effectively included.

The breeding mechanisms of the model are not ideal. In fact, buffalo begin to reproduce at ages two pr,three; we have assumed that all two-year-olds are full adults. And the number of calves born has been made a simple fraction of the number of adult females. This is roughly true in a polygamously mating herd if reasonable numbers of adult bulls are in the herd. In. Gur model, a value $A M=0$ would nöt interrupt the mating process, as it woudd in nature. In fact, the actual herd would be in danger of extinction if any of the six categories grew too smail. 'This can not be included in a linear model. In using the modél, one could declare the herd "extinct" if any ca'tegory "wére to grow too small.
-Finally, we have lumped all adult buffalo into two categòries and declared them all equal in their ability to survive and breed, ignoring the obvious variations' with age..

Despite all these defects", and otheirs, thert I've undoubtedly missed, the model as pressented offers a useful simplification, of the herd. let'sput it to use.

4. APPLICATIONS: ESTABLISHING A HERD

4.1 A Hérd and Harvest That Con'tinue Year After Year

Examplé ' What size and structure of herd \vec{G}_{0} 'must we have (or put together) this year so that next year we may take a pretchosen harvest \vec{Q}_{1} and then have a herd \vec{G}_{1} such that $\overrightarrow{\mathrm{G}}_{1}=\overrightarrow{\mathrm{E}}_{0}$?
A^{4} businessman plañing to create a ranch might ask this question'. He chooses his annual "product" \vec{Q}_{1} and wants to know what "capital"investment" \vec{G}_{0} he should make so that it will maintain itself from year to year ($\vec{G}_{1}=\vec{G}_{0}$) and yield product \vec{Q}_{1}. Since we end up. with $=\vec{G}_{0}$, the process of harvesting $\vec{\bigotimes}_{d}$ and mintaining a herd of the şăme size and structure can continue year after year: wé call the herd and harvest vectors steady state. .

As the chosen notation indicates, it is natural, to use the after-harvest-count \vec{G}_{0}, \dot{G}_{1} for the herd, because the year-long study-period for the herd progresses. from initial herd through the breeding process to the .-pre-set harvest at the end of the period.

Thus we know \vec{Q}_{1} and want to solve' for \vec{G}_{0} in

$$
\begin{align*}
& \vec{G}_{1}=\vec{G}_{0} \tag{76}\\
& \vec{G}_{1}=M \vec{G}_{0}-\vec{Q}_{1} . \text { [compare (3)]. }
\end{align*}
$$

We can replace \vec{G}_{1} with \vec{G}_{0} in the second equation of (6), getting,

$$
\vec{G}_{0}=M \vec{G}_{0}-\vec{Q}_{1}
$$

and rearrange to read (I is the 6×6 identity matrix) (7) $(n-1) \vec{G}_{0}=\vec{Q}_{1}$.

This is a. set of six linear equationg for the unknowns $\vec{G}_{0} ; M$ and \vec{Q}_{1} are known. In fact we are asked to solve

$$
(M-I) \vec{G}_{0}=\left(\begin{array}{cccccc}
-.05 & 0 & .75 & 0 & 0 & 0 \\
0 & -.05 & 0 & .75 & 0 & 0 \\
0 & 0 & -1 & 0 & .6 & 0 \\
0 & 0 & 0 & -1 & 0 & .6 \\
0 & .48 & 0 & 0 & -1 & 0 \\
\dot{0} & .42 & 0 & 0 & 0 & -1
\end{array}\right) \vec{G}_{0}=\vec{Q}_{1}
$$

There is a unique soluthon because $M-I$, is non-
singular. We will calculate $(M-I)^{2}$ in Séction 4,2 . below. In terms of it we can write our solutionto : \quad.
'to theixproblem posed in Example 1 as

$$
\begin{equation*}
\therefore \vec{G}_{0}=(M-I)^{-1} \vec{Q}_{1} \tag{9}
\end{equation*}
$$

Notice that we've completely solved the problem at matrix level: we can write the sglution in (9) without actually looking at any of the specific numerical entries of M; we use M as a single itef, not a collection of 36 numbers, However, we do have to use the entries of.M to establish that (M-I) ${ }^{-1}$ exists and to actually calculate the solution in. (9) : that work is at entry level, not matrix level.
4.2 Calculation of $(\mathrm{M}-\mathrm{I})^{-1}$

We would need ${ }^{*}(\mathrm{M}-\mathrm{I})^{-1}$ to proceed further with (9), so we have the opportunity to carry through an unpleasant matrix pivôting Gaussian-elimination calç̣lation by hand, in detail.

The reader who would beñefit from such an example is invited tó follow along, electtronic calculator in hand, verifying each step. The reader who prefers to see how the answer is used in the rest of this section is welcome to do so: skip to the paragraph containing equation (10) at the end of this section.

Recaíl that, to find the inverse ${ }^{7}$, we list $\mathrm{M}-\mathrm{I}$ and adjoin to it a six-by-six identity matrix to create a 6×12 matrix:
$\left(\begin{array}{cccccc|cccccc}-.05 & 0 & .75 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -.05 & 0 & .75 & 0 & 0 & 0 & .1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & .6 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & .6 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & .48 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & .42 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$.

Now we reduce the left side to a six-by-six
identity matrix using only elementary row operations:-
we may (1) multiply a row (all 12 columns) by a non-zero
${ }^{7}$ There are other', less efficient methods.
scalar, or (2) add a scalar multiple of one row to another row, or (3) interchange any two rows. To work now: multiply the top two rows by -20 each (to convert the -.05 's into l's for the $6 \times 6 \mathrm{I}$). Get

check
these
rows

0 \& 1 \& 0 \& -15 \& 0 \& 0

0 \& 0 \& -1 \& 0 \& .6 \& 0 \& -20 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& -1 \& 0 \& .6 \& 0 \& 1 \& 0 \& 0 \& 0

0 \& .48 \& 0 \& 0 \& -1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0

0 \& .42 \& 0 \& 0 \& 0 \& -1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0

0 \& 0 \& 0 \& 1\end{array}\right)\)

The first column on the left is fine. Make the second column fi.t the goal of a 6×6 I by subtracting .48 times row 2 from row' 5 , and .42 of row 2 from, row 6 .
These two elementary row operations give us

Mutiply row 3. by -1 and use that new row 3 to kill the : -15 (in the 1,3 siot) by adding 15 of the new. row 3 to row 1:

$$
\begin{aligned}
& \text { check } \\
& \text { these } \\
& \text { rows }
\end{aligned} \rightarrow\left(\begin{array}{cccccc|cccccc}
-1 & 0 & 0 & 0 & -5 & 0 & -20 & 0 & -15 & 0 & 0 & 0 \\
0 & 1 & 0 & -15 & 0 & 0 & 0 & -20 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -6 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 6 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 7.2 & -1 & 0 & 0 & 9.6 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Thé first three columins now match a 6×6 I. Please notice that what we are about to do in column 4 does not disturb the first three columñs: - We gain this because
we work frow left to right, leaving friendly zeros
Jbehind. Multiply row 4 by $w 1$ to get a new row'4. Add appropriate multiples of this new row. 4 to rows 2,5 , and 6 so that the rest of column 4 is zeroed. Reach -

You should be able to decide how we get to the next matrix. The result is:

$$
\rightarrow\left(\begin{array}{llllll|llllll}
0 & 0 & 0 & 0 & 0 & -38.88 & -20 & -86.4 & -15 & -64.8 & -9 & 0 \\
0 & 1 & 0 & 0 & 0 & -9 & 0 & -20 & 0 & -15 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -2.592 & 0 & -5.76 & -1 & -4.32 & -.6 & 0 \\
0 & 0 & 0 & 1 & 0 & -.6 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -4.32 & 0 & -9.6 & 0 & -7.2 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 2.78 & 0 & 8.4 & 0 & 6.3 & 0 & 1
\end{array}\right) .
$$

Finally we multiply the 6 th row by $\frac{1}{2.78}$ and clear the sixth column to. reach

$$
\left.\begin{array}{l}
+ \\
+ \\
+ \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow
\end{array} \quad: \begin{array}{cccccc}
-20 & 31.080 & -15 & 23.310 & -9 & 13.986 \\
0 & 7.1944 & 0 & 5.3958 & 0 & 3.2374 \\
0 & 2.0720 & -1 & 1.5540 & -.6 & .93237 \\
0 & 1.8130 & 0 & .35972 & 0 & .21583 \\
0 & \cdot 3.4533 & 0 & .2 .5900 & -1 & 1.5539 \\
0 & 3.0216 & 0 & 2.2662 & 0 & .35971
\end{array}\right)
$$

The matrix that has appeared on.the right is $(M-I)^{-1}$. The first, third and fifth columns are exact, and. the others are correctly rounded to.five significant digits, which is more than we can make good use of below.
Keeping four significant digitś, our final result for the inverse is:
(10) (M-I) $-=\left(\begin{array}{ccccccc}-20 & 31.08^{\circ} & -15^{\circ} & 23.31 & . & -9 & 13.99 \\ 0 & 7.194 & 0 & .5 .396^{\circ} & 0 & 3.237 \\ 0 & 2.072 & -1 . & 1.554 & -.6 & .9324 \\ 0 . & 1.813 & 0 & -.3597 & 0 & .2158 \\ 0 & 3.453 & 0 & 2.590 & -1 & 1.554 \\ 0 & 3.022 & 0 & 2.266 & 0 & .3597\end{array}\right)$. 15
4.3 A Steady Harvest Plus Controlled Growth of
the Herd
Example 2. Our ranch-planning businessman now wants a herd that yields harvest \vec{Q} next year (and every year. thereafter) while it grows by 408 during the first two years. The larger herd is to have exactly the same" proportional structure as the original one.

Again we . regard \rangle as known and use the afterharvest model. After a year's growth and next year's harvest, initial herd \vec{G}_{0} (which we will calculate) -will become
.(1la)

$$
\vec{G}_{1}=M \vec{G}_{0}-\vec{Q}
$$

The next year's growth and eventual harvest yields

$$
\begin{align*}
\vec{G}_{2} & =M \vec{G}_{1}-\vec{Q} \quad \text { (same } Q \text { each year) } \\
& =M\left(M \vec{G}_{0} \cdot \because \vec{Q}-\vec{Q}\right. \tag{11l}\\
& =M^{2} \vec{G}_{0}-M \vec{Q}-\vec{Q}
\end{align*}
$$

and we want 403 growth (plus the harvests) after two years:

$$
\begin{equation*}
\vec{G}_{2}=(1.4) \vec{G}_{0} \tag{Ilc}
\end{equation*}
$$

From (11 b,c) we conclude

$$
M^{2} \vec{G}_{0} \cdot-m \vec{Q}-\vec{Q}=1.4 \vec{G}_{0}
$$

and we rearrange this to

In (12) we have a set of 6 linear equations that have a unique solution. (We won't prove that $M^{2}-1.41$ has an inverse, but it's true.) Our' problem has this solution, written at matrix level:

$$
\begin{equation*}
\vec{G}_{0}=\left(n^{2}-1.4 I\right)^{-1}(n+I) \vec{Q} \tag{13}
\end{equation*}
$$

4:4 Exercises

9. a. Write equations' comparable to (6) or ($11 \mathrm{a}, \mathrm{b}, \mathrm{c}$) for this situation: We'are given an annual harvest Q. We want to,
choose the herd \vec{G}_{0} so that, after growth and a harvest next year, we will have a herd that is 12% farger. It is to have the same structure as \vec{G}_{0} (i.e. be $1.12 \vec{G}_{0}$).
b. Solve your equations from (a) at matrix level for \vec{G}_{0}.
10. A buffalo herd \vec{G}_{0} will be allowed to grow until next year, when harvest \vec{Q} will be taken. The resulting herd \vec{G}_{F} will be aflowed to grow another year, when a larger harvest $1.1 \overrightarrow{\mathrm{Q}}$ will be taken. Calculate \vec{G}_{0} so that this proces's leads to a final resulting herd \vec{G}_{2} such that $\vec{G}_{2}=\vec{G}_{0}$.
11. From this year's herd \vec{G}_{0} a harvest \vec{Q} will be taken next year. After another year's growth, a harvest $1.2 \overrightarrow{\mathrm{Q}}$ will be taken. The final resulting herd \vec{G}_{2} is to be 25% larger than \vec{G}_{0} (i.e. $\vec{G}_{2}=1.25 \vec{G}_{0}$).
a. Write equations for this situation comparable to (lla,b,c).
b. Solve for \vec{G}_{0}.
12. A herd \vec{G}_{0} grows for five years with no harvest being taken. In the fofth year, harvest \vec{Q} is subtracted. The'resut tying herd \vec{G}_{5} is exactly double \vec{G}_{0}. Find \vec{G}_{0}.
13: Find \vec{G}_{0} if, after 5 years during which the same known harvest $\stackrel{\rightharpoonup}{\mathrm{Q}}$ is taken at the end of each year, the herd is to double: $\overrightarrow{\mathrm{G}}_{5}=2 \stackrel{\rightharpoonup}{\mathrm{G}}_{0}$.
13. Find \vec{G}_{0} if the herd is to double in six years ($\left.\vec{G}_{6}=2 \vec{G}_{0}\right)$. Assume that the same known harvest Q is taken after the second, fourth, and sixth years of growth.

4.5 Mathematical Insights

The example of Section $4: 1$ and 4.3 and the exercises , of 4.4 should have provid̆ed you with experience that makes these comments believable:
a. When calculating with matrices, we find that algebra arises that is much like the algebra we learned long ago for numbers. Most of 'what we can do with numbers is also correct for matrices. (Key exception: matrix multiplication is not commutarive.) We can even sum geometric series .- see Section 5.2 below. It pays
to think of a matrix as the analog of a single mantibers.
b. We may naturally need to calculate high powers ((luikee M^{10}) of matrices. An easier, way to ido thiss wrould bise very welcome. There is one: when you learn sibtoutt "eigenvalues and eigenvectors" you will ssee tituat technique.
c. Expressions like $M^{2}-1.4 I, M+I, M^{9}+M^{8}+M^{7}+\frac{\vdots}{\therefore}$. $+M^{2}+M+I$ (see Section 5.2), called polynomialis in the (square) matrix M, enter our work in a matumal way and are worth study. They are polynomialiss in M_{1} In the same sense that $4 x^{2}-3 x+5$ is a poilyomial in x, i.e., they are sums of integer powers ;af $M, ~ o \pi r$, equivalently, linear combinations of $I=M^{n}, M ; N^{2} \cdot N^{3}$, etc.
d. All our calculations in the example were iat matrux. level and at that level we got a lot done. Bbut further progress with expressions like (9) or (508) requires that we go to entry level (eauation ilevad). Matrix algebra is a powerful tool, but by dealligg with the matrix as a whole we are out of rousch with the individual entries, and their information may ber critical:. .

4.6 An Efficiently Small Herd

Example 3. For any specified harvest aprotasis (QM and $Q F$; we have found an appropriate steady oftate hreid (which will yield those quotas) in Example i. 药ut perhaps our real goal is simply to harvest T saninaliss, with $T=Q M+Q F$. Naturally, we wish to do intis wath the smallest pösible herd "(which would require the lrewst land, feed, fencing, handiing by employees, paprerwark, etc.) Is there some way to split up F into OM anid $Q \mathrm{FF}$ so that the herd is smallest?

We set up the algebra in this way: Qurwill tae syouce fraction of I, say $Q M=p \cdot T$ where $0 \leq P \leq 1$. Siminaiky, $Q F=q \cdot T$ with $0 \leq q \leq 1$. Since $T=Q M+O F, T+4=11$.
(Forr example, if we end up selecting it hanrest on 75 madess and 254 females $p=.75, q=.25$ -) We wish to choosec p and q.

Thus, in (9), using new scalars P, q amd \mathbb{T}_{n} the harvest is *

$$
\vec{Q}_{1}=\left(\begin{array}{l}
p \tag{14}\\
q \\
0 \\
0 \\
0 \\
0
\end{array}\right) T \quad \text { and } \vec{\epsilon}_{0}^{2}=(H-I)^{-\pi}\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \pi
$$

The herd \vec{G}_{0} is now a multiple of the totall farmest T. We cant think of

$$
\begin{equation*}
(\mu+I)^{-1} \tag{15}
\end{equation*}
$$

$\left(\begin{array}{l}p \\ q \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right)$

- As: the "herd structure per animal haruested" or the mini-herd needed, to produce one harvested animal, because whem mulltipilied by T, it becomess thë total herd $\vec{G}_{\text {(}}^{0}$ -

The nerd.size (the tatal number of aminalls in the heard), for a herd $\overrightarrow{\mathrm{G}}_{0}$ will be
$(06 \dot{0}) \quad(1,1,1,1,1,1) \cdot \vec{G}_{0}=(t, 1, t, t, n, n)-((1, N-I))^{-11}$
because multiplying by this vectar $\left(\mathbb{I}_{n} \mathbb{H}_{n} \mathbb{H}_{n} \mathbb{I}_{n} \mathbb{H}_{n} \mathbb{H}\right)$ simply adids upf the entries in \vec{G}_{0}. Since this is a mulltipile off TT , wes s-implify by studying

HS = "herd size per amimall lranuesued"
= 'herd size'/T

172

171

Again: our goal is to select p and q to make $H S$ as small as possible.

To this point, we have dealt at matrix level, aside from setting up \vec{Q}_{1} with scalars p, q, and T. From here we must work at entry levè, calculating the individual equations. se plug in $(M-I)^{-1}$ from (10), Section 4.2, and calculate
(17) HS $=(1,1,1,1,1,1)\left(\begin{array}{r}-20 p+31.08 q \\ 7.194 q \\ -2.072 q \\ 1.813 q \\ 3.453 q \\ 3.022 q\end{array}\right):=-20 p+48.63 q$.

Here we have rounded to two decimal places.
The goal was to select p and q such that
$0 \leq p \leq 1, a_{0} \leq q \leq 1, p+q=1$; and HS is minimal. That's easy: as p increases, q must decrease and HS grows steadily smaller; thus, $p_{1}=1, q=0$ is the "right. anser," and. the correct herd size per animal harvested. is HS = -20! Clearly'nonsense!

- We have ignored two biological restraints that will correct this nonsense. First, the herd size per animal harvested zust be positive: HS>0. This imposes another condition on p, q :

$$
\Leftrightarrow p<\frac{48.63}{H S}=-20 p+48.63 q>0
$$

Since $p+q=1$ we have $1 \cdot q<2.4315 q \Leftrightarrow q{ }^{\prime}>1 / 3.4315=$.2914 and $p<.7086$. Thus our nonsense value $p=1$ is ruled out.

* Sécondly, all six components of the mini-herd that produces one animal for harvest [see (15)] must be positive. Onçe we plug in p 'and q, these components are given by the column vector shown in (1.7). (Trace the calculations until yoúsee this.) All six will be positive if we insist that

$$
\begin{array}{ll}
& -20 p+31.08 q>0 \\
\Leftrightarrow & p<\frac{31.08}{20} q=1.554 q \\
\Leftrightarrow & \quad-q<1.554 q \\
\Leftrightarrow & q>1 / 2.554=.39154 \\
\Leftrightarrow & p<.60846 .
\end{array}
$$

Conclusions: by taking $p<.60846$ but close to that value, and $q=1$ - p, the herd size may be taken close to minimal.

In Table I, various values of p and q are used. The resulting values of HS and the resulting herds are shown. The percentage breakdown of the herd into its six components is given (or equivalently, an actual breakdown for a herd of 100 animals is given). Recall that $H S$ is the size of the mini-herd that yields one animal for harvest; thus \mathbb{V} / HS is the fraction of the initial herd G_{0} (investment) that is harvested after a year. Example: in the first column, each 6.90 animals breed to become 7.90 animals and yield a 176.90 or 14.5% "output." These figures are given as "\% harvest."

Here $p=$ fraction of adults that are males; $q=1 \sim p=$ fraction of adults that are females. Herds of smaller size HS (animals per animal harvested) result as p is taken closer to .60846, which it cannot equal or exceed.

The structure and size of a herd that will yield a harvest of T animals annually varies considerably as we

$$
174
$$

apportion the harvest differently among adult male and female animals. In a polygamous herd, there, is no need " to have anywhere near one bull jer cow to achieve the birth rates for calves we have assumed. In this regard, it is common in cattle ranching to run 1 bull with• 20-30 cows. The first-three herds in the table above have cow-to-bull ratios of $120(=40.9 / .34), 22, \cdot$ and 16 ; the other herds have much lower ratios. Thus herd (2) appears to be practical and is fairly close to minimal size.

4.7. Exercises

15. a. In Example 3, show that a $25: 1$ ratio of adult cows to bulls'arises when $p=.60624$ is used.
\dot{b}. What value of p leads to a $\mathbf{3 0 : 1}$ ratio?
16. Check our, work in Example 3 as follows: take a herd of one million animals structured like herd (2) in Table 1. (Thus thère are 18,000 adult males, etc.) Use the after-harvest model as programed in Exericise 3, and take a 14.2% harvest, using the values of p and q given in the table for herd 2 to calculate the constant annual harvest. On the computer, trace this initial herd for 20 years. it should remain roughly constant in size and structure.

5. APPLICATIONS: CALCULATING THE HARVEST ${ }^{*}$

We will now ask what harvest should be taken from a herd already in our possession, if it is to be preserved in size for the future. We also will discuss harvests that provide for controlled growth of the herd. This is in contrasit to Section 4, where we "designed" herds to. provide specified harvests. Entirely different difficultìes will appear:

5.1 Steady Annúal Harvests and Herd

Example 4. Given "this year's" herd \vec{H}_{0}, what harvest, Q_{0} should be taken from it so that next year's herd H_{1} will have the same size and structure as this year's
herd, i.e. $\stackrel{\rightharpoonup}{H}_{l}=\vec{H}_{0}$? (The process can then go on for mány yeârs, yielḍing steady-state harvests and herds.)

This question arises before we harvest, of course; thus we use the count-before-harvest modez. Then we must solve.

$$
\begin{aligned}
& ? \vec{H}_{1}=\vec{H}_{0} \\
& \therefore \quad \vec{H}_{1}=M\left(\vec{H}_{0}-\vec{C}_{0}\right) \quad \text { [compare (5) }
\end{aligned}
$$

for \vec{Q}_{0}, when \vec{H}_{0} is known. Simplify the notation to $\vec{Q}=\vec{Q}_{0}$ and $\vec{H}=\vec{H}_{0}=\vec{H}_{1}$ and use algebra to reach
$M Q=(M-1) H$.
(Here I is the 6×6 identityomatrix.) The "obvious" next step is to multiply through by M^{-1} and get the "rightianswer" $\bar{Q}=M^{-1}(M-i) H$. Unfortunately, M^{-1} does not exist!

So far we have wo used matrix algebra to calculate with the matrices as a. whole, not their individual entries. To make'more progress we must go down to entry level and look at the individual equafions that make up the matrix level full. system.

Let's examine (18) in detail. We appear to have six linear equations for the six unknowns in \vec{Q}. (The right side is known.) However, four of the six entries in \bar{Q} were set as zero from the beginning. (We harvest only adult buffalo.) Thus, in (18) we have six equations in two inknowns, $Q M$ and $Q F$. The equations are overdetermined. Usually, two conditions (equations) suffice to determine two unknowns. Only if we are lucky, by having the extna four conditions here add no contradictory requirements f. for $Q M$ and $Q F$, will we have any solutions at all.

When are we lucky? The six equations say in detail: 8

[^11]haryest and'
\[

$$
\begin{aligned}
& \left\{\begin{array}{l}
48 \mathrm{QF}=.48 \mathrm{AF}, \mathrm{CM} \\
42 \mathrm{QF}=.42 \cdot \mathrm{AF}-\mathrm{CF}
\end{array}\right\} \longrightarrow\left\{\begin{array}{l}
C \mathrm{CM}_{1}=.48(\mathrm{AF}-\mathrm{QF}) \\
\mathrm{CF}=.42 \cdot(\mathrm{AF}-Q F)
\end{array}\right\}
\end{aligned}
$$
\]

Now, the values of $A M, A F, Y M, Y F, C M,{ }^{-} C$ to be known, so we could solve for our unknowns, $Q F$, using equations (19a) alone. Then equations (19* lead to a contradiction unle'ss the values of $A M, A F, '$ $\mathrm{M}, \mathrm{YF}, \mathrm{CM}, \mathrm{CF}, \mathrm{Q} M$ and $\mathrm{Q} \mathrm{F}^{\oplus}$ already known happen to satis. fy (19b, c): 'Any herd fore which these four equations (19b,c) are Kot sati-sfted cdnnoto duplicate itşelf from this year to next no matter whit 家arvest is taken. (Récall that we are requiring $H_{1}^{\prime}=H_{0}^{*}$ with the strict: mathematical meaning of equality for vectors.)

This makes sense if we read equations ($19 \mathrm{~b}, \mathrm{c}$) biologically. Consider (19b) : to have $\vec{H}_{1}=\vec{H}_{0}$ "'this year's yearlings (which, if they survive, are adults in H_{1}^{\prime}) must be exactly replaced irf H_{1} by the survivors of this year's calves. Equations (19b) say that YM and CM ; , YF and CF in our herd $\vec{H}=\vec{H}_{0}=\vec{H}_{1, \text { must }}$ be in the natural balance of six yearlings per ten calves for each sex so that the surviyal rate of .6 will cause this year's'caives to exactly, replace the yearling 'population as', the year passes.

Now interpret (19c): This,year.'s c̣alves must also Be precisely replaced by newboŕn calves if $\vec{H}_{i}=\vec{H}_{0}$ is to'be true. After the harvest, there will be $A F-Q F$ adult females. and "they Will give-birth to . 48 (AF, - QF) new'calf males and . $42(\mathrm{AFF}$ - QF) new calf females by next year.
Equations (19c) simply say that these, biqths, forming the calf populations of \vec{H}_{1}, must exactaly replace $C M$ and CF in H_{0}.

Thus, the fourr extra conditions in the overdetermined system (19) simply require that the herd have a natural age ' balance so. that, considering the survival rates, it will replenish itself despite the harvest.

5.2 Tonstant Harvests From a Growing Herd

Example 5. We, want to 'select a harvest \vec{Q} so that,

 taking the, same harvest every year, the herd will double in ten years while retaining the same proportional, structure. That is, if H_{0} is our initial herd before harvest this year, then at the end of ten years we want. to have $2 H_{0}$, as the herd structure. .* We use the before-harvest-count because, again, that is when the question of selecting a quota arises". . Let \vec{H}_{j} be the herd before harvest in, the j th year, $j=0,1,{ }^{\text {th }}$ $2, \ldots, 10$. Then

$$
\begin{aligned}
& \vec{H}_{1}=\mu\left(\vec{H}_{0}-\vec{Q}\right) \\
& \vec{H}_{2}={ }^{-} M\left(\vec{H}_{1}-\vec{Q}\right)=M \vec{H}_{1}-M \vec{Q} \\
& =\dot{M}^{2}\left(\vec{H}_{0}-\vec{n}\right)-\overrightarrow{M O} \\
& =M^{2} \vec{H}_{0}-M^{2} \vec{Q}-\dot{\vec{Q}} \\
& \vec{H}_{3}=M\left(\vec{H}_{2}-\overrightarrow{\mathrm{Q}}\right) \\
& =M^{3} \vec{H}_{0}-M^{3} \vec{Q}-M^{2} \vec{Q}-M \vec{Q}, \text { etc. } \\
& 2 \vec{H}_{0}=\vec{H}_{10}^{N}=M^{i 0_{H}} \vec{H}_{0}-M^{10} \vec{Q}-M^{9} \stackrel{\rightharpoonup}{Q}-\ldots-M \stackrel{\rightharpoonup}{Q} \\
& \left.=M^{i O_{H}}-\dot{(I}+M+M^{2}+\ldots+\dot{M}^{9}\right) M \vec{Q}:
\end{aligned}
$$

Thíus:

In this equation, we know \vec{H}_{0} and want \vec{Q}. Therefore, write it as the set; of ${ }^{\text {'linear equations }}$

$$
\begin{equation*}
\underbrace{\left(I+M+M^{2}+\ldots+M^{9}\right) M}_{\text {knowr } 6 \times 6 \text { matrix }})_{\text {unknown }}^{\stackrel{Q}{Q}}=\underbrace{\left(M^{i 0}-2 I\right) \vec{H}_{0}}_{\text {ail.known }} \text {. } \tag{20}
\end{equation*}
$$

Áll of this has "been at matrix level. We push ahead in that spirit.

Have you noticed thet $I+M+M^{2}+\ldots+M^{9} \cdot 100 \mathrm{ks}$ like a geometric. series? When numbers are involved, we know how to add up such expressions:

$$
i+a+a^{2}+\ldots{ }^{2}+a^{n-i}=\frac{1-a^{n}}{1-a} \text { if } a \neq i
$$

Can we do something similar here, when M and I are square matrices?

Indeed we can. Put $S=1+M+M^{2} .+\ldots+M^{9}$.
Thus S is a 6×6 matrix, and MS makes sense: MS $=$ $M+M^{2}+\ldots M^{10}$. Subtraction leads to the familiar massive cancellation:

$$
(I-M) S=S \cdot H S=I: M^{10} .
$$

In fact, ($I-M)^{-1}$ does exist for our 6×6 mátrix M. Wंe calculated ($M-1)^{-1}$ in Section 4.2; of course $\left(I^{-}-M\right)^{-1}=-(M-1)^{-1}$. Thus
(21) $S^{-}=1+M^{0}+M^{2}+\ldots+{ }^{9}=\left(I-M T^{-1}\left(I-M^{10}\right)\right.$.

The analogy, to the numerical sometric series formula: is striking. It might tempt to tobelieve the infinite geometrife seties formula:

Indeed, this formula' is valid for certain families of matríces M and infinite series.of matríices is a fascinating subject in, its own fight: We will not explore in that direction now, but one .thing is clear: a sensible defintorion of "convergence" for such series would be our first task:

We were interested in solving the linear equations (20) for \% We have made: progress: using (21) in (20) we ob.tain:

$$
(I-M)^{-1}\left(I-M^{10} Y M Q^{\circ}=\left(M^{10}-2 I\right) H_{0}\right.
$$

We can multiply through by $I-M$, and by $\left(I-M^{10}\right)^{-1}$,
(Whichrdoes exist (proof omitted):

$$
\begin{equation*}
H Z=\left(I .-M^{10}\right)^{-1}(I-M)\left(M^{10}-2 I\right) \vec{H}_{0} \tag{122}
\end{equation*}
$$

That, is as far as we can go at matrix level in this

dexample $\dot{\xi}^{\dot{j}}$ because M^{-1} dóes ngt exist. The right side of
(22) is known (although unpreasant to c .system is overdetermined. Some hordican be doubied in ten years in the way we suggested, but most cannot.

Of course, we can approximately double the, herd, and (22) will help us see how. We have examined whether we can precisely double it..

5.3 Exercises

17. a. Is the initial herd given in Exercise 1 a "natural" one which, if. a proper harvest $Q M$ and $Q F$ were taken, could. exactly reproduce itself next year? Explain your ánswer.
b. Repeat a. for the initial herd of Exercise 4.
18. a. Show that M^{-1} does not exist." In how many ways can you dd this?
b. If we replace the $\neq, 0$ entries in M with arbitrary numbers a, b, c, d, e, f, g, h, we get

Show that $(\mathbb{M})^{-1}$ does not exist, either. Thus the overdetermined' nature 'of Examples 4 and 5 does no \ddot{t} depend on specific birth and surivival rates. (The reader who knows. about determinants will have an advantage in this problem.)
19. a. Revise Example 5 so that the herd will grow by 50% in 'ten years. . That is, set $\mathrm{H}_{10}=1.5 \mathrm{H}_{0}$ and carry through

* the algebry of Example 5 for this hew casel. Reach equa${ }_{4}$ tions analogous to (22).
b. Repeat a. with 50% growth over eight years.

20. Check our geometric sérites result in (21) by carefuliy míliplying out the left side of $(\dot{I}-M)\left(I+M+M^{2}+\ldots+M^{9}\right)=I-M^{10}$, to gèt the right side. (Why does thistconfirm equation (21) ?) Identif all the algebrait? properties of matrix multiplication and"addit!on that you use, such as the associative law of místiplication; left distributive law, etc.
first met this model when Karl Zinn of the Center for Research on Learning and Teaching at the University of Michigan introduc,ed me to a computer program named BUFLO; written. by L. Braun and R. L. Siegel of the Polytechnic Institute of Eronklyn and distributed nationally by the Program Library, Digital Equipment Corporation, Maynard, Massachusetts 01745 . The program andrits documentatidn are part of project EXTEND and the Huntington Two Computer Project. Program BuFio Interacitively permits one to follow a buffalo herd through many years while applying a varfety of management policies. "

While equations' (2) are takeñ directly ${ }^{\circ} \mathrm{fr} \mathrm{O}_{\mathrm{m}}$ BUFLO,". I am solely responsible for the mathematics that follows in this paper.

An alternative discussion of exactly the same model ${ }^{\circ}$ with different survival rates basec on an actual modern buffalo herd may be found in:

- Watt, Kenneth E. F., Ecology and Resource: Management; McGraw Hill, 1968 , p. 358 ffis This is an excellent book for ali readers in applications of undergraduate-level math
tó biology.
The buffalo model discussed there is drawn from:.
Fuller, W. A., "Biology and Management of the Bision of Wood Buffalo National Park," Canadian Department of Northern Affairs Natural Resources No. Wildife Management Bulletin, Series I,

As. I read Watt, the survival coefficients matrix used. by Fuller and Watt is:

$$
\because \quad \because=\left(\begin{array}{cccccc}
-9 & 0 & .75 & 0 & 0 & 0 \\
0 & .9 & 0 & .75 & 0 & 0 \\
0 & 0 & 0 & 0 & .4 & 0 \\
0 & 0 & 0 & 0 & 0 & .4 \\
0 & 36 & 0 & 0 & 0 & 0 \\
0 & .3 N & 0 & 0 & 0 & 0
\end{array}\right) .
$$

and their" "guesstimated" 1830 herd of 40 million buffalo is structured as:

$A M$	$=16.8$ million.	$Y M$	$=1.2$
$A F$	$=16.8$	$C M$	$=2.0$
	$Y F$	$=1.2$	$C F$

- Dur model is a simplified variant of the more important ldslie models for populations with age structure. The original paper's ares

Leslie, P.H., "The uses of matrices in certain population máthematics,"'Biómetrika 33 (1945), pp. 183-212.
Leslie, P.H., "Some further notes on the use of matrices in population mathematics," Biometrika 35 (1948), pp.. 213-245.
Much research by Lesyie and others has followed, with the goal of overcóming the límitations of Leslie's"original models. These datitations are much the same as the ' ones we have dịsussed for our simpler model: use of constant coeffiçients from year to year and linearity of the model. In addition, the Leslie approach has been , applied to much more tinan buffalo herds. The interested feader might start with:

Pielou, E.C., An Introduction to Mathematieal - Ecology, Wiley-Interscience, New York, 1969. Chapter III covers the Leslie model. Pielou is a leading arathematical biologist; her books are among the basic advanced work in the field.
Usher, M.B., 'A matrix approach to the management of renewable resources, with special reference to selection forests." Journal of Applied Ecology 3 (1966); pp. 355-367.
Usher, tr. B.,"A matrix approach to the management of renewable resources", with special reference to selection forests - two extensions."

- Journal of Applied Ecology 6^{1} (1969), pp. 347-8.

Usher, B., "A matrix model for forest management," Biometrics 25 (1969), pp. 309-315.
Fowler, Charles W, and Smith, Tim, "A matrix. method for determining stable densities and age distributions and its application to Africañ elephant populations.': University of Washington Quantitative Science Paper N6. 31, Seattle, January 1972. (hirite Fowlex or Sitith at U. Washington, Seattle, 98195 for, more information.)

A well-written disciussion of the Leslie model withapplication to harvesting of herds (including dafa for sheep ranching) is

Anton, Howard, and Chris Rorres, Applications of Linear Algebra, John Wiley है Sons, 1977, Chapters 9 and 10 .

7. ACKNONLEDGEMENTS

I want to thank a number of people who have contributed as this paper has evolved into this third edition. Thanks to:

- 悊arl 2 inn of the Center for Research on Learning
- and Teaching, University of Michigan, For -introducing me to the model and encouraging. mé to develop its mathematical content.
-- Tom Hern and Fred Rickey of Bowling Green State University, and David Staley of Ohio Wesleyan University for class-testing earlier editions
- in their linear algebra courses.
-- Bill Cannon of the U.S. Department of Agri'culture Laboratory, Delaware, Ohio, for putting me in contact with much literature in this field and critically reading the first edition.
-. Edward Kelly, California Statg University
at Hayward, for a careful review of the. second edition.
-- Sol Garfunkel for administrative and editorial work at 'Project UMA,'.

8. ANSHERS TO EXEREISES

1. 14il wite vectors horizontally to save space. We are given $' \vec{H}_{0}=.\left(200,1000,300,300^{\circ}, 520,: 500\right)$ and $Q=(100,200$,
$\therefore 0,0,0,0)$.

- I a. $\vec{G}_{0}=H_{0}-0^{-}$
$=\left(100 ; 800,300,300,520^{\circ} ; 500\right)$

183.

b. $\stackrel{\rightharpoonup}{H}_{1}=\mu \vec{G}_{0}=(320,985, h 312,300,384,336)$
c. ${\overrightarrow{T_{1}}}_{1}=\vec{H}_{1}-\vec{Q}=(220,785,312,300,384,336)$
d. $\vec{H}_{2}=M \vec{G}_{1}=(443,971,230,202,377,330)$
(Decimal results have been rounded.)
e. $\vec{G}_{2}=\vec{H}_{2}-\vec{Q}=\left(343^{\circ}, 771,230,272,377,330\right)$
$f_{\text {. }}$ The herd is shrinking slowily in the key category of adult females. This will continue for a while, çasing the whole herd to shrink slowly.
2. Over two years \vec{G}_{0}, if left unharvested, would become $M^{2} G_{0}$. The harve'st ${ }^{\circ} Q_{2}$ is subtracted, of course. We, also subtract, not Q_{1}, but the descendontts of the harvested sub-herd Q_{1} at the end of the two year period, \vec{Q}_{1}. The linearity of the model assures that these sub-herds can all be superimposed.
3. A FORTRAN, program is =1isted in Table 2, pages 34 and 35.
4. This may have been a frustrating problem -- it has no sólution. The herd is inherent fy unstable because, in 1830, it was growing exponentially (or would have been, had not white man interfered). A harvest of 1.4 million males, 2.6 million females will convert the initial herd of 60 million into a herd. of 59.984 million in ten years, but the herd stfucture. is drastically changed. The new herd.has many, fewer calves than the-original, and the-herd is in fact headed for extinction. Other harvests of 4 million lead to herds that grow rapidly or decline.rapidly, but this herd is inherently unstable. And that's the wholepoint.

5,6. Computer printouts àre displâyed in Tables 3 and 4 (pp.36-42). The point'is that, by slaughtering females we also slaughter their patential progeny. SThe effect of harvesting a lot of females is to destroy the herd. Also, all of the herds that involve 20% harvest (Exerci,se 6) meet a fast extinction.
7. One example'is shown in Table 5 (page 43), with commentary. You should try others.
9:• a. $\begin{aligned} \vec{G}_{1} & =M \vec{G}_{0}-\vec{Q}^{\prime} \\ \vec{G}_{1} & =1.12 \vec{G}_{0 f 1}\end{aligned}$
184
b. $\vec{G}_{0}=(H-1.12 I)^{-1} \vec{Q}$
10. Equations

$$
\begin{aligned}
\vec{G}_{1} & =\dot{M \vec{G}_{\theta}}-\vec{Q} \\
\vec{G}_{2} & =M \vec{G}_{1}-1.1 \vec{Q}_{0} \\
\vec{G}_{2} & =\vec{G}_{0}
\end{aligned}
$$

lead to solution.

$$
\vec{t}_{0}^{5}=\left(n^{2}-1\right)^{\infty} \cdot\left(n^{2}+1 . i=\overrightarrow{\mathrm{R}}\right.
$$

ii. Equations

$$
\begin{aligned}
\vec{G}_{1} & =M \vec{G}_{0}-\vec{Q} \\
\vec{G}_{2} & =M \vec{G}_{1}-1.2 \dot{Q} \\
-\vec{G}_{2} & =1.25 \vec{G}_{0}
\end{aligned}
$$

lead to solution

$$
\left.{ }^{6} 0=n^{2}-1.251\right)^{-1}(n+121 \dot{\vec{k}}
$$

have solution

$$
\vec{G}_{0}^{\prime}=\left(n^{5} \div 2 I\right)^{-1} \vec{Q}_{n}
$$

13. Equations

$$
\vec{G}_{1}=\vec{H}_{0}^{\prime}=\dot{\vec{l}}
$$

$$
\vec{G}_{2}=M \vec{G}_{1}-\vec{Q}
$$

$$
\vec{G}_{3}=M \vec{G}_{2}-\vec{Q}
$$

$$
\vec{C}_{4}=\vec{n}_{3}-\vec{Q}
$$

$$
\vec{G}_{5}=\overrightarrow{C l}_{4}-\vec{Q}
$$

$$
\vec{G}_{5}=2 \vec{G}_{0}
$$

\%

condense to

14.4 Equations $\vec{G}_{1}=\frac{\vec{G}_{0}}{G}$

$$
\vec{G}_{2}=M \vec{G}_{1}-\vec{Q}
$$

$$
\vec{G}_{3}=M \vec{G}_{2}
$$

$$
\vec{C}_{4}=M \vec{C}_{3},-\vec{Q}
$$

ϑ

* $\vec{G}_{5}=M \vec{G}_{4}$

$$
\begin{aligned}
& \overrightarrow{\vec{G}_{6}}=M \vec{G}_{5}-\vec{Q} \\
& \vec{G}_{G}=2 \vec{G}_{G} .
\end{aligned}
$$

condense to

$$
-2 \vec{G}_{0}=\vec{G}_{6}=r^{6} \vec{G}_{0}-\left(s^{4}+m^{2}+m\right) \overrightarrow{C D}_{7}
$$

$$
\vec{G}_{0}=\left(n^{6}-2 I\right)^{-1}\left(n^{4}+m^{2}+\vec{D}\right),
$$

155 b: $F=$. 60661
 ares right or target.
 are nat satisfied by $\mathrm{OH}_{4}=5200_{n}$, $4=3000$.
 witt 12\% female calves and 8% female yearnings.
199. as. Change the equations to
$\overrightarrow{H_{i}}=\mu^{1 \sigma^{\prime}} H_{\alpha}-H\left(I+M+H^{2}+\cdots+\mu^{2}\right) \vec{O}$ $H_{70}=1.5 \vec{H}_{0_{2}}$
Then' (22:) is replaced by the overdetermined system

$\vec{H}_{8 \Sigma}=1.5 \vec{H}_{0}^{\circ}$
lead to this replacement form (mm) $=$

TABLE 2

A listing of my FORTRAN program, used to create all the printouts that follow, is given below. It does more than Problem 6 asks, because it gives the results, in'percentages and in actual millions of buffalo. The program was or un on an IBM. 1130 computer but should easily adapt to any standard FORTRAN.
this program accompanies the 'application paper

- management of a buffalo herd

PLACE PARS OF DATA CARDS BEHIND ONE ANOTHER PRORAM TERMINATES AM SHOT.
OUTPUT IS GIVEN IN MILLIONS OF ANINALS ANO ALSO in A PERCENTAGE

100 101 102

$$
E_{1}-7
$$

C PRINTABLE ${ }^{\text {O }}$ OF PERCENTS

RITE 5,105

RITE IS
ORA
IMIt
ONSTANT ANNUAL harvest is 5186.2

The data cards that produce the printout of Table 3, page 36, are these, given as samples. Many pairs of data cards can precede the fake pair.

blank card

35

Twenty-year'printouts for the five cases
called for in Exercise 5 follow.
Case a)

			MILLIONS	OF BU	LO		
YEAR	TOTAL	AM	AF	\checkmark YM	YF	M	CF
0	50.999	18.000	16.200	5.400	4.800	8.400	. 200
1	60.079	17.150	18.990	5.040	4.320	7.775	6.803
2	. 63.191	16.072	21.280	4.665°	4.082	9.115	7.975
3	67.453	14.768	23.278 。	5.469	4.785	10.214	8. 937
4	72.276	14.131	25.70.3	6.128	5.362	11.173	9.776
5	78.165	14.021	28.440	6.704	5.866	12.337	10.795
6	85.242	14.348	31.417	7.402	6.477	13.651	11.944
7	93.521.	15.183	34.704	8.190	7.166	15.08 b	13.195
8	. 103.112	16.567	38.344	9.048	7.917	16.658	14.576
9	114.14%	18.524	42.365	9.995	8.745	18.405	16.104
10.	. 126.736	21.094	46.806	- 11.043	9.662	20.335	3
11	141.039	. 24.322	51.713	12.201	10.676	22.467	19.658
12	157.210	28.257	, 5y. 134	13.480	$11: 795$	24.822	21.719
13	. 175.426	32.954	. 63.124	14.893	13.031	27.424	23.996
14	195.884	38.477	69.742	116.454	14.397	30.299	26.512
75	218.803	'44.894	77.053	18.179	15.907°	33.476	29.291
16	244.425	52.284	85.131	20.085	17.575	36.985	32.362
17	273.018	60. 734	94.056	22.191	19.417	40.863	35.755
18	304.879	70.341	103.916	24.517	21.453	45.146	39.503
19	340.338	81.212^{35}	+14.810	27.088	23.702	49.879	43.644
20	379.759	93.468	126.846	29.927*	26.186	55.109	48.220

Case b)

CONSTANT ANNUAL HARVEST IS 3.00 MALES, 1.00 FEMALES (MILLIONS)
constant annual harvest is 4.00 males, 0.00 females (hillions)

YEAR	total	PERCE AM.	AF ${ }_{\text {DI }}$	YM ${ }_{\text {UH }}$	$\begin{aligned} & \text { FHERD. } \\ & Y F \end{aligned}$	CM	CF
0	100.0	* 30.0	${ }^{2} 27.0$	9.0	8.0	14.0	12.0
1	100.0	28.5	31.6	8.3	7.1	12.9	12.0
2	100.0	25.4	33.6	7.3	$6.4{ }^{-}$	14.4	12.6
3	100.0	21.8	134.5 .	8.1	7.0	15.1	13.2
4	100.0	19.5	35.5.	8.4	9.4	15.4	13.2 13.5
5	-100.0	17.9	36.3	8.5	-7.5	15.4	13.5 13.8
6	100.0	16.8	36.8	8.6	7.5	16.0	14.0
7 -8	100.0^{\prime}	16.2	37.1	8.7	7.6	16.1	14.1
8	100.0	16.0	37.1	8.7	7.6	16.1	14.1
9	100.0	16.2	37.1	8.7	7.6	16.1	14.1
10	100.0	16.6	36.9	$8.7{ }^{\circ}$	7.6	16.0	14.0
11	99.9	17.2	36.6	8.6	7.5	15.9	13.9
12	100.0	17.9	36.3	8.5	7.5	15.7	13.8
13	-100.0	18.7	35.9	8.4	7.4	15.6	13.6
14	100.0	19.6	35.6	8.4	7.3	.15.4	33.5
15	100.0	20.5	$35.2{ }^{\circ}$	8.3	7.2	15.2	13.3
16	100.0	- 21.3	34.8	8.2	7.1	15.1	13.2
17	99.9 100.0	22.2	34.4	8.1	7.1	14.9	13.0
19	100.0	23.0 23.8	34.0 33.7	8.0	7.0	14.8	12.9
20	100.0	23.8 24.6	33.7 33.4	7.9	6.9	14.8	12.8
	100.0		33.4	7.8	6.8,	14.5	12.6

YEAR	TOTAL	PERC AM.	E DI	YTIO	OF HERD.		
0	100.0	${ }^{*} 30.0$			YF	CM	CF
1	100.0	28.5	31.6	8.3	7.1		12.0
2	100.0	25.4	83.6	7.3	7.1 6.4	12.9 14.4	11.3
3	100.0	21.8	34.5	8.1	6.4 7.0	15.1	12.6 13.2
4	100.0	19.5	35.5.	8.4	$\bigcirc 7.4$	15.4	13.2 13.5
5	-100.0	17.9	36.3	8.5	7.5	15.7	13.8
6	100.0	16.8	36.8	8.6	7.5	16.0	14.0
7	100.0^{\prime}	16.2	37.1	8.7	7.6	16.1	14.1
8	100.0	16.0	37.1	8.7.	7.6	16.1	14.1
9	100.0	16.2	37.1	$8.7{ }^{\circ}$	7.6	16.1	14.1
10	100.0	16.6	36.9	8.7	7.6	16.0	14.0
11	99.9	17.2	36.6	8.6	7.5	15.9	13.9
12	100.0	17.9	36.3	8.5	7.5	15.7	13.8
13	-100.0	18.7	35.9	8.4	7.4	15.6	13.6
14	100.0	19.6	35.6	8.4	7.3	.15.4	33.5
15	100.0	20.5	$35.2{ }^{\circ}$	8.3 -	7.2	15.2	13.3
16	100.0	- 21.3	34.8	8.2	7.1	15.1	13.2
17	99.9 100.0	22.2	34.4	8.1	7.1	14.9	13.0 .12 .0
19	100.0	23.0	34.0	8,0	7.0	14.8	12.9 ${ }^{\circ}$
20	100.0	23.8 24.6	33.7 33.4	7.9	6.9	14.8	12.8
	100	. 24.6	33.4	7.8	6.8,	14.5	12.6

Case c)

MILLIONS OF BUFFALO

| MILLIONS | OF BUFFALO | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| AF | YM | YF | CM | CF |
| 16.200 | 5.400 | 4.800 | 8.400 | 7.200 |
| 15.989 | 5.040 | 4.320 | 7.775 | 6.803 |
| 15.430 | 4.665 | 4.082 | 7.675 | 6.715 |
| 14.720 | 4.605 | 4.029 | 7.406 | 6.480 |
| 14.006 | 4.443 | 3.888 | 7.065 | 6.182 |
| 13.222 | 4.239 | 3.709 | 6.723 | 5.882 |
| 12.343 | 4.033 | 3.529 | 6.346 | 5.553 |
| 11.374 | .3 .808 | 3.332 | 5.925 | 5.184 |
| 10.304 | 3.555 | 3.110 | 5.459 | 4.777 |
| 9.122 | 3.275 | 2.866 | 4.946 | 4.327 |
| 7.815 | 2.987 | 2.596 | 4.378 | 3.831 |
| 6.372 | 2.627 | 2.298 | 3.751 | 3.282 |
| 4.778 | 2.250 | 1.969 | 3.058 | 2.676 |
| 3.016 | 1.835 | 1.605 | 2.293 | 2.006 |
| 1.069 | 1.376 | 1.204 | 1.447 | 1.266 |
| -1.080 | 0.868 | 0.760 | 0.513 | 0.449 |
| -3.456 | 0.308 | 0.269 | -0.518 | -0.453 |
| -6.081 | -0.311 | -0.272 | -1.659 | -1.451 |
| -8.981 | -0.995 | -0.871 | -2.919 | -2.554 |
| -12.185 | -1.751 | -1.532 | -4.311 | -3.772 |
| -15.7 .25 | -2.586 | -2.263 | -5.849 | -5.117 |

			MILLPONS	OF BUF	ALO	-	
YEAR	TOTAL	AM	AF	YM	YF,	CM	CF
0	59.999	-18.000	16.200	5.400	4.800	8.400	7.200
1	60.079	19.150	16.990	5.040	4.320	7.775	6.803
2	61.391	19.972	17.380	4.665	4,082	8.155	7.135
3	62.863	20.473	17.573	4.893	4.281	8.342	7.299
4	64.226	21.119	17.905	5.005	4.379	8.435	7.380
5	65.717	21.817	18.295	5.061	4.428	8.594	7.520
6	67.359	22.522	. 18.701	5.156	4. 512	8.781	7.684
7	69:126	23.263	19.151	5.269	4.610	8.976	7.854
8	71.038	$\cdot 24.052$	19.651	5.386	4.712	9.192	8.043
9	73.120	24.889	20.203	5.515	4.826	9.432	8.253
10	75.389	25.781	20.812	5.659	4.952	9.697	8.485
11	77.864	26.737	. 21.486	5.818	5.091	$9.99{ }^{\circ}$	8.741
12	80.571	27.764°	22.230°	5.994	5.244	10.313	9.024
13	83.533	28.871.	23.052	6.188.	5.414	10.670	9.336
14	86.781	30.069	23.960	6.402	5.602	11.065	9.682
15	90.344	31.367	24.964	6.639	5.809	11.501	10.063
16	94.257	32.778	26.072	6.900	6.038	11:982	10.484
17	, 98.559	34.314	27.297	7.189	6.290	12.514	10.950
18	103.290	35.991	28.651	7.508	6.570	13.102	11.465
19	180.496	-37.823 ${ }^{\circ}$	30.146	9.861	6.879	13.752	12.033
20	114.330	39.828	31.798	8.251	7.220	14.470	12.661
\bigcirc							

Case d):

YEAR	TOTAL	AH
0	59.999	18.000
1	60.079	20.150
2	60.491	21.922
3	60.568	25.325
4	60.201	24.613
5	59.493	25.715
6	58.417	26.609
7	56.928	27.304
8	55.002	27.795
9	52.610	28.071
10	49.715	28.125
11	46.277	27.944
12	42.251	27.517
13	37.587	26.830
14	32.229	25.865
15	26.115	24.603
16	19.174	23.025
17	11.329	21.105
18	2.495	18.816
19	-7.423	16.129
20	-18.533	13.008

$-10.53313 .008$

		PER	TAGE DI	BUTI	OF H		
YEAR	TOTAL	AM	- AF	YM	YF	CM	CF
0	. 100.0	30.0	27.0	9.0	8.0	14.0	12.0
1	$\because 100.0$	31.8	28.2	8.3	7.1	12.9	11.3
2	100.0	. 32.5	- 28.3 .	7.5	6.6	13.2	11.6
3	100.0	32.5	27.9	7.7	6.8	13.2	11.6
4	99.9	32.8	27.8 -	7.7	6.8	$13.1{ }^{\circ}$.11 .4
5	99.9	33.1	-27.8	7.7	6.7	13.0	-11.4
, 68	100.0	33.4	- 27.7	7.6	6.6	13.0	11.4
7	100.0	33.6	+ 27.7	7.6	6.6	12.9	11.3
8	$\checkmark 99.9$.	33.8	$\therefore!27.6$	7.5	6.6	12.9	11.3
9	${ }^{100.0}{ }^{\circ}$	- 34.0	27.6	7.5	6.6	12.9	11.2
10^{*}	100:0	${ }^{3} 34.1$	27.6	7.5	6.5	12.8	-11.2
11	- 99.9	c $34.3{ }^{4}$	27.5	7.4	6.5	12.8	. 11.2
-12	1000.0	. $34.4{ }^{\text {² }}$	27.5 ¢	7. ${ }^{3}$	6.5	12.8	- 11.2
13	. 100.00°	$34: 5$	27.5 .	7.4	6.4	. 12.8	- 11.1.
14 1	$100.0{ }^{\circ}$	34.6	$27.6{ }^{\circ}$	7.3	6.4	1284	11.1
15	$100.0{ }^{\circ}$	34.7	27.6	7.3	6.4	12.7	11.1 *
16	.100 .0	- 34.7	27.6	7.3	6.4	12.7	11.1
17	100.0	34.8	27.6	7.2	6.3	12.6	11.1
18	100.0	34.8	27.7	7.2	6.3 *	. 12.6	11.0 .
19.	100.0	34.8	27.7	$7.2{ }^{\circ}$	6.3	12.6*	-111.0
20	100.0	34.8	27.8	7.2	6.3	12.6	11.0

a

CONSTANT ANNUAL HARVĖST IS 2.00 MALES, 2.00. FEMALES (MILLIONS)

Case e)

			MILLIONS	OF BU			
- YEAR	TOTAL	AM	AF	YM	YF	CM	CF
0	59.999	18.000	16.200	5.400	4.800	8.400	7.200
\cdots	60.079	21.150	14.989	5.040	$4.320{ }^{\circ}$	7.775	6.803
2	59.591	23.872	13.480	4.665	4.082	7.195	6.295
3	58.273	26.178	11.868	4.317	13.377	6.470	5.661
4	56.175	28.107	10.107	3.882	3.397	5.696	4.984
5	53.269	29.613	8.150	3.418	2.990	4.851	4.2 .45
6	49.475	30.696	5.985	2.971	2.547	3.912	3.423
7	44.730	31.344	3.597	2.347	2.053	2.873	2.514
8	38.965	31.538	0.957	1.723	1.508	1.726	1.510
9	32.099	31.254	-1.958	1.035	0.906	0.459	0.402

Twenty percẹnt harvests lead to early extinction in all fiyt cases requested in. Exercise 6:

- 'Case a).

	\sim		MILLIONS	QF BUFFA			
YEAR	TOTAL	AM	AF	YM	YF	CH	CF
0	59.999	18.000	16.200	5.400	4.800	8.400	7.300
1	52079	9.149	18.990	5.040	4.320	7.775	6.803
2	47.591	0.472	21.280	4.665	- 4.082	9.115	7.975
3	44.633	-8.051	23.278	5.469	4.785	10.214	8.937
		PERCENTAGE DISTRIBUTION OF HERD					
YEAR	total	AM	AF	- YM	YF	CM	CF
- 0	100.0	30.0	27.0	$\bigcirc 9.0$	8.0	14.0	12.0
1	100.0	17.5	- 36.4	9.6	8.2	14.9	13.0
2	100.0	0.9	44.7	9.8	-8.5	19.1	16.7

YEAR	TOTAL	AM	AF	YM	YF	CM	CF
0	100.0	30.0	27.0	9.0	8.0	14.0	12.0
1	100.0	35.2	24.9	8.3	7.1	12.9	11.3
2	100.0	40.0	22.6	7.8	$6.8{ }^{\circ}$	12.0	10.5
3	100.0	44.9	20.3	7.4	6.4	<11.1	9.7
4	100.0	50.0	17.9	6.9.	6.0	10.1	8.8
5	100.0	55.5	15.3	6.4	5.6	9.1	7.9
6	100.0	62.0	12.0	5.8	5.1	7.9	6.9
7	100.0	70.0-	8.0	5.2	4.5	6.4	5.6
8	100.0	80.9	2.4	4.4	3.8	4.4	3.8

CONSTANT. ANNUAL HARVEST IS 9.00 'MALES, 3.00 FEMALES (MILLIONS)
Case c)

CONSTANT ANNUAL HARVEST' IS 6.00 MALES, 6.00 FEMALES. (MILLIONS)

Table 4 (continued)
Case d)

MILLIONS OF BUFFALO							
YEAR	TOTAL	AM	AF	YM	YF	CM	CF
0	59.999	18:000	16.200	5.400	4.800	8.400	7.200
1	52.079	18.150	9.989	5.040	4.320	7.775	6.803
2	39.491	18.022	3.730	4.665	4.082	4.795	4.195
3	23.978	17.620	-2.394	2.877	2.517	1.790	1.,566
-	PERCENTAGE DISTRIBUTION .OF HERD						
YEAR	TOTAL	AM	AF	YM	YF	CM	CF
0	100.00	30.0	27.0	- 9.0	8.0	14.0	12.0
1	100.00	34.8	19.1	9.6	8.2	14.9	13.0
2	100.00	45.6	- 9.4	11.8	10.3	12.1	10.6

CONSTANT ANNUAL HARVEST 153.00 MALES, 9.00 FEMALES (MILLIONS).

CONSTANT ANAUAL HARVEST is 0.00 MALES. 12.00 fEMALES (MILLIONS)

Data for Exercise 7. As one example, the Initial herd was transformed for one year in this catastrophic way:

and then transformed further for 19 more years using the usual matrix M. The results:

Data for Exercise 16. The herd does indeed Femain very stable. There is some roundoff error: the barvests taken were . 086 and .056 annually (males, females, in millions), rather than the .086052 and -055948 that the table's data for herd 2 indicates.

)	MILLIONS OF BuFfalo					
YEAR	total ${ }^{\text {a }}$	AM	AF	YM	YF	CM	CF
0	0.999	0.018	0.403	0.116	0.101.	0.193	0.169
1	1.800	0.018	0.402	0.115	0.101	0.193	0.169
2	1.000	0.018	0.402	f0.116	0.101	0.193	0.169
3	1.000	0.018	0.402	0.115	0.101	0.193	0.169
4	1.000	0.018	0.402	0.115	0.101	0.193	0.169
5	1.000	0.018	0.402	0.115	0.101	0.193	0.169
6	1.000	0.018	0.402	0.115	0.101	0.193	0.169
7	1.000	0.018	0.402	0.115	0.101	0.193	0.169
8	1.000	0.018	0.402	0.115	0.101	0.193	0.169
9	r. 000	0.018	0.402	0.115	0.101	0.193	0.168
10	0.999	0.018	0.402	0.115	0.101	0.193	0.168
11	0.999	0.018	0.402	0.115	0.101	0.193	0.168
12	0.999	0.018	0.402	0.115	0.101	0.193	0.168
13.	0.999	0.018	0.401	0.115	0.101	0.192 .	0.168
14	0.999	0.018	0.401	0.115	0.101	0.192	0.168
15	0.998	0.018	0.401	0.115	0.101	0.192	0.168
16	0.998	0.018	0.401	0.115	0.101	0.192	0.168
17	0.998	0.018	0.401	$0: 115$	0.101	0.192	0.168
18	0.997	0.017	0.401	0.115	0.101 .	0.192	0.168
19	0.997	0.017	0.401	0.115	0.101	0.192	0.168
20	0.996	0.017	0.401	0.115	0.101	0.192	0.168

percentage distribution of hero

Student: If you have trouble with a specific part of out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.

Your Name

Unit No.
Model Exam
Problem No.
Text
Problem No. \qquad

Instructor: Please indicate your resolution of the difficulty in this box. -
Corrected errors. fin materials. List corrections here:

Gave student et ter explanation, example, of procedure than in unit. Give brief outline of your addition here:

Assisted student in acquiring general learning and problem-solving. skills (not using examples from this unit.)

Instructor's Signature \qquad

Name \qquad Un'it No. \qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?
_ Not enough detail to understand the unit Unit would have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
Too much detail; I was often distracted
2.. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps Sufficient information was given to solve the: problems
Sample solutions were too detailed; I didn't need them
3. Except for fulfilling the prerequisifes, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
\qquad A Lot \qquad Soméwhat
A Little \qquad Not at all
4. "How long was this unit ${ }^{\text {f }}$ in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?.

5. Were any of the following parts of the unit confusing or distracting? (Check

Prerequisites
Statement of skills and concepts (objectives) Paragriaph headings -
Examples
Special Assistance Supplement (if present)
Other, please explain \qquad
6. Were any of the following parts os the unit particularly helpful? (Check as many as apply.) ${ }^{\text {b }}$.

Prerequisites
Statement of skills and concepts (objectives)
Examples
Problems
Paragraph headings.
Table of Contents
Special Assistance Supplement (if present)
Other, please explain
Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

PART•L: SUPPLY AND DEMAND FOR A SINGI E PRODUCT 1

1. Price Equilibrium 4
2. The Purpose of This Paper3. Assumptions about the Economy4. Supply and Demand depend on Price5. The One-Product Model- 2- 2
3. Equilibrium in the One-Product diodel3
5
PART II: . THE ANALOGOUS TWO-PRODUCT MODEL 6
4. Modeling Two Interrelated Products 6
. The Two-Product Model in Vector and Matrix Notation
7
5. Equilibrium Supply and Demand in the Two-Product Model 9
6. Matrix' Level vs. Entry Level Calculations 12
PART III: GENERALIZATION TO n-PRODUCTS $i 3$
7. The Model with n-Products 13
8. Solution of the n-Product Model 15
PART IV: HOW DID WE GET THIS FAR? 16
9. Making a Start 16 17
10. Improving on Our First Effort
11. Improving on Our First Effort
PART V: TWO ECONOMIC INSIGHTS FROM THE MODEL 18
12. Total Demand 18
21
ARE LINEAR FUNCTIONS CRUCIAI. TO THE MODEL?
13. A Job for Taylor's Theorem 211
14. Discontinuous Supply and Demand Curves 24
PART VII: SOLUTIONS TO EXERCISES 26

Author:. Philip M. Tuchinsky
7623 Charlesworth

- Dearborn Hts.., Michigar 48127

Dr. Tuchinsky is a computer scientiSt and applied mathematitian at Ford Motor Company/s Research and Engineering Center. He formerly tagh In the Mathematical Sciences Department of Ohio Wesleyan University (where earlier editions of this.paper were written).
Review Stage/Date: , III 9/20/79

Classification: APPL LIN ALG/ECON

- Approximate Class Time: Two 50 -minute classes.

Intended-Audience: 'Linear algebra students' who have just learned about calculatition of matrix inverses. To read Part VI, a student shoul 1 havel had some contact with differential calculus. The paper is $\boldsymbol{c}_{\text {数o suitable for independent reading or seminar }}$ presentation by more advanced stypents.
Prerequisite Skills:

1. Elementary high-school algebra.
2. , Graphing of straight lines.
3. Familiarity with functions and function notation.
4. Knowledge of the domain of a function.
5. Interval notation $[a, b]$.
6. Matrix and vector notation.
7. Elementary matrix algebra including multiplication of matrices.
8. Matrix inverses as a concept, with algebraicilaws and notation.
(For Part VI only:)
9: The derivative and its notation.
9. Continuity and genẹral stmoothness concepts.
10. Tayior's Theorem (the equation of the tangent line).
11. Newton's Method (one variable) is mentioned in Exercise 17. (Part VI is a nice vehicle for motivating Newton's Method.). Output Skills:
12. Discuss the movement of prices due to shifts in supply and demand, ant price equilibrium.
13. Define total demand and free supply and describe the effect on pricas of an increase in either.
14. Desćribe an application leading to a set of linear equations
15. Tell whether calculations are at matrix level or entry level in linear algebra.
16. - (Optimistically) Abifity to generalize a simple, model from one yariable to two and then many.
17. (Part VI) Describe an application of the tangent line.

* other Related Units:

Unit 209: General Equilibrium: A Leontief Economic Módet.
(C) 1979 EDC/Project UMAP.

All rights reserved.
.
MODULES AND MONOGRAPHS IN UNDERGRADUATE mathematics and ITS APPLICATIONS PROJECT (UMAP)

The goai of UMAP is to develop, through a community' of users and developers, a system of instructional modules in undergraduate mathematics and its applications which may be used to supplement existing courses and from which complete courses máy eventually be buill.

The Project is guided by a National Steering Committee of mathematicians, scientists, and educators. UMAP is funded by a grant from the National Science Foundation to Education Developmen Center, Inc., a publicly supported, nonprofit corporation engaged in educational research in the U.S. and abroad.
PROJECT STAFF
Ross L. Finney
Solomon Garfyhkel
Felicia DeMay
Barbara Keldzewski
Paula M. Santillo
Zachary Zeyitas

Director
Associate Director/Consortium
Coordinator
Associate Director for Administration Coordinator for Materials Production Administrative Assistant Staff Assistant
national steering committee
W.T. Marti

Steven J. Brams
Llayron Clarkson
Ernest J. Henley
William Hogan
Donald A. Larson
William F. Lucas
R. Duncan Luce

George Miller
Frederiçk Mosteller .
Walter E. Sears
George Springer
Arnold A. Strassenburg
Alfred B. Willcox
M.I.T. (Chair)

New York University
Texas Southern University
Uniyersity of Houston
Harvard University
SUNY at Buffalo
Cornell University
Harvard University
Nassau Community College
Harvard University
University of Michigain Press
Indiana University
SUNY at Stony. Brook
Mathēmatical Association of America

The Project would like to thank Kenpeth R. Rebman of California State University at Hayward and K.L. Huehn of California Polytechnic State University for their reviews, and all others who assisted in the production of this unit.

This material was prepared with the support of National Science, Foundation Grant No. SED76-19615 A02. Recommendations expressed are those of the author and do' not necessarily reflect. the views of the NSF, nor of the National Steering Cominttee.

ECONOMIC EQUILIBRIUM: SIMPLE LINEAR MODELS PART* I: SUPBLY AND DEMAND FOR \& A SINGLE PRODUCT

1. Price Equilibrium

A product is "in equilibrıum" or "at its equilibrium price" when supply equals demand for it. This means the amount of the product available from, sellers equals the amount that purchasers want to buy.t (We include any commodity, service or manufactured product under the general umbrella of "products" here.)
, Of course, supply and demand are seldom exactly equal for any produćt and even if: achieved, equilibrium is momentary. If supply exceeds demand, sellers lower their prices to attractobuÿers; i.e., prices tend to decrease. - If demand exceeds supply, the buyers who most want the product bid up its price, and prices rise in response. It is exactly when supply equals demand that these $\mathrm{t}^{\circ} \mathrm{o}^{\circ}$ opposite economic forces are balanced, leaving'the price at a standştill. Thät balanced state of opposing forces is, exactly the usual meaning of "equilibriup."

2. The Purpose of This Paper

We will study everal versions of a very elementary - mathematical model of price equilibrium in this paper. Hopefully, the econemic content is clear and interesting, but our main goal is màremetical. We will discover that mathematical economists infoitably find themselves using linear algebra to express. fheir ideas. If we went beyond our simple model to some of the multitude of economic models proposed in recent decades we would find more advanced mathematical tools in use; queueing theory, differẹntial/difference equations, time series forecasting, linear programming, etc. All of these use linear algebra and linearizing methods to achieve. practical results-so

$$
+204 \% \cdot \quad+\quad
$$

- a very simple linear algebraic introduction to mathématical economics is appropriate.
- Our work here can serve as one instance of an. ipportant phenomenon: linear algebra is a basic tool uSed in virtually all areas of applied mathematics.

3. Assumptions about the Economy

We will assume an economy that is grossly simplified from reality, a classic, competitive, capitalistic economy of the Adam Smith variety. 'Prices are not controlled by government, buyers or sellers in this econpmy-they fluctuafe freely in response to supply and demand. There aré no monopolies, no cartels, no collusion among buyers and sellers. Inflation is not modeled; the en'tire discussion is in terms.of "1967 dollars" or some other standard monetary unit of purchasing power.

Buyers and sellers in our economy have "'perfect informátion." This means that they all know the current supply, demand and price, as if all buying and selling were done in one large auction room with all potential buyers and sellers participating.

4. 'Supply and Demand depend on Price

Let's analyze supply and demiand for one product. let

$$
\begin{align*}
D & =\text { current demand for the product (in dollars) } \\
1 S & =\text { cutrent supply of the product (in dollars) } \tag{1}\\
P & =\text { current price of the product (dollars/item) }
\end{align*}
$$

We, might have expressed D and S as the amounts demanded and supplied in production-units (boxcar-loads, dozens of eggs, etc.). H6wever, we will want to compare onel product to, another later, so we'll express D and S in dollars from the start. Once the current price P is known we convert the amounts demanded and supplied into dollars to calculate D and S. (If 4 million dozen eggs are demanded
at a wholesalet price of 0.5 dollarsidozen, we. have a \$2 mildion demand D for eggs.)

In fact, it is natural to regard. D and S as functions of the price P. ; This goes band-in hand with our assump$t \neq 0$ of a purely, capitalistic economy of vailue-conscious buyers and profiť-conscious sellẹrs. (In reality súpply and demand depend on price as well as such emotional elements as style, fads, and the effects of fantasyoriented advertising.)

5. The One-Product Model

The simplest way to make D and S functions of P is to usq straight lines. That is, let's take as our mathematical model

$$
\begin{align*}
& D=a+b p \\
& S=c+d P \tag{2}
\end{align*}
$$

Figure 1. Supply and demand lines for one product.

- Figure 2. "The one-product" model.
where a, b^{\prime}, c, and d are real constants. What can we ; say about a, b, c, and d on qualitative grounds? As the price ${ }^{-P}$ grows, we expect demand to drop (at a highe); price there are fewer buyers), so slope $b<0$. Since $\mathrm{D} \geq{ }^{\circ} 0$, we know $a>0$. And as P grows, the supply S will. grow because more companies find it profitable to make the product, hence slope $d>0$., Figure 1 sketches this situation and shows $c<0$; let's see why. There will be some price-of-first-supply P_{s} (namely, the cost of manufacturing) such that no supplier will make the product (i) if $\mathrm{P}<\mathrm{P}_{\mathrm{s}}$. Thus our s'traight'line must cross the price axis at positive P_{s} and c, its intercept on the vertical axis, must be negative.

Figure 1 also shows the price-of-last-demand P_{d} at which the demand line reaches zero: at pricesr $P>P_{d}$ no one is interested in buying the product. Only nonnegative yalues of D and' S make economic sense, of course. $\boldsymbol{f}^{\text {Thus }}$ we'll consider P only in the domain $\left[P_{s}, P_{d}\right]$, as shown in Figures 1 and 2.

$$
206
$$

Equilibrium in the One-Product Model

. The price equilibrium occurs when $S=D$ (supply equals demand). As the sketch shows (Figure 2), there is one price P^{*} for which our model predicts equilibrium (see Exercise l). The corresponding dollar amounts S^{*} and D^{*} are also sketched. We can calculate P^{*} by setting $S=D$ in (2) rand solving to get

$$
\text { (Ba) } \quad p *=\frac{a-c}{d-b}
$$

By plugging P^{*} back in for P in either equation of (2) we also find the equilibrium demand supply level:

$$
\begin{equation*}
S^{*}=D^{*}=\frac{d a-* b c}{d-b} \tag{3b}
\end{equation*}
$$

What have we achieved with this bit ofeahigh:school algebra? Under the crude assumption that simple equations like (2) hold, we can predict the price P^{*} a product should sell at and the amounts $S^{*}=D^{*}$ that people should make and will buy: Our next goal is to extend this model to more complicated cases of general equilibrium where many competing.products are in equilibrium simultaneously.

Exercise 1. Find $P *, D^{*}, S *$ if the formulas for supply and demandare

$$
\begin{aligned}
& D=22-1.5 \mathrm{P} \\
& \mathrm{~S}=-5+5.25 \mathrm{P}
\end{aligned}
$$

Use these three methods:
a. algebraically solve for $P *, D^{*}, S^{*}$.
: b. identify a, b, c, and ϕ and substitute them in ($3 a, b$)
c. graph the lines and read the equilibrium point off the graph.

Exercise $\dot{2}$: Repeat Exercise 1 for

$$
\begin{aligned}
& D=30-4 P \\
& S=6 P-2 .
\end{aligned}
$$

Exercise 3. Equations (2) with $a>0, b<0, . c<0, \cdot d>0$ give linear functions of real P.
a. How do you know that these lines meet, exactly once somewhere in the plane? . :
b. How do you know that the point of intersection ($\left.P^{*}, S^{*}\right)=\left(P^{*}, D^{*}\right)$ satisfies $P_{S} \leq P^{*} \leq P_{d}$ and $S^{*} \geq 0$, $D^{*} \geq 0$? (This requires an economic argument. Show that it is not true based on the mathematical facts alone.)

PART II: THE ANALOGOUS TWO-PRODUCT MODELs

7. Modeling Two Interrelated Products ${ }^{\text {- }}$

In a real economy, the supply and demand for a product depends' on its price and on the prices of other related products (and on other factors). When products can substitute for each other, this is especially -clear. For example, as large cars have become expensive to buy and operate, people have substituted smaller cars. It is logical to think of the supply and demand amounts for large cars as functions of ${ }^{\circ}$ both lad rye car and small car prices. The demand function for cars of any size might also depend on the price of labor for having the car serviced and repaired, the price of gasoline, the price of auto parts, etc. It' does not depend on most other prices (like that of perfume) but there are important interrelationships amoung products and, to make our mathematical model more realistic, we should include many of those relationships.

As a first step, let's study a two-product market. Put

We assume $D_{1}, S_{1}, \overline{D_{2}}, S_{2}$ all to be functions of the two prices P_{1}, P_{2} and all are expressed in dollars: Again we assume the simplest functions [compare notation with ?. (2)] :
(5)

$$
\left\{\begin{array}{l}
\mathrm{D}_{1}=\mathrm{a}_{1}+\mathrm{b}_{11} \mathrm{p}_{1}+\mathrm{b}_{12} \dot{p}_{2} \\
\mathrm{D}_{2}=\dot{a}_{2}+\mathrm{b}_{21} \mathrm{p}_{1}+\mathrm{b}_{22} \mathrm{p}_{2}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
S_{1}=c_{1}+d_{11} p_{1}+d_{12} p_{2}= \\
S_{2}=c_{2}+d_{21} p_{1}+d_{22} p_{2}
\end{array}\right.
$$

The a's, ${ }^{\prime}$'s, c's and d's are all known real constants.
In the context. of our large cars -small cars example, we can predict the signs of these constants. The demand for large cars, D_{1}, should be positive, should decrease as P_{1} increases and should increase as P_{2} increases (ie., as small cars become more expensive and hence less.
attractive to buyers). "Thus $a_{1}>0, \mathrm{~b}_{11}<0, \mathrm{~b}_{12}>\sigma_{i}$ Similarly, $a_{2} \geq 0, b_{21}>0, b_{22}<0$. The supply $S_{1}{ }^{4}$ of large cars should grow as P_{1} increases and also grow as P_{2} increases (because higher prices for small cars should shift -demand, to their competitive large cars and hence stimulate production of large cars). Thus $\hat{c}_{1}<0$ (for - - the same threshold-of-manufacturing-costs reasons as before), $\mathrm{d}_{11}>0$ and $\mathrm{d}_{12}>0$. Similarly, $\mathrm{c}_{2}<\sim 0, \mathrm{~d}_{21}>0$, $\mathrm{d}_{22}>0$.

'8. The Two-Product Model in Vector and Matrix- Notation

Of course we will set $S_{1}=D_{1}$ and $S_{2}=, D_{2}$ (supply 'equals demand) and try to calculate the equilibrium prices $P_{1}{ }^{*} A_{2}{ }^{*}$. But that will be easier to do after we arrange(5) 'as
(6)

$$
\begin{array}{r}
,\left[\begin{array}{l}
D_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \cdot+\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left[\begin{array}{l}
\mathrm{P}_{1} \\
P_{2}
\end{array}\right] \\
\because \quad\left[\begin{array}{l}
S_{1} \\
S_{2}
\end{array}\right] \cdot\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]+\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right]\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]
\end{array}
$$

and shift to the obvious matrix notation. Define

$$
\stackrel{\rightharpoonup}{\mathrm{D}}=\left[\begin{array}{l}
\mathrm{D}_{1} \\
\mathrm{D}_{2}
\end{array}\right], \quad \stackrel{\rightharpoonup}{\mathrm{S}}=\left[\begin{array}{l}
\mathrm{S}_{1} \\
\mathrm{~S}_{2}
\end{array}\right], \quad \cdot \stackrel{\rightharpoonup}{\mathrm{p}}=\left[\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2}
\end{array}\right]
$$

$$
\left.\dot{\vec{a}}=\begin{array}{c}
\dot{a} \tag{7}\\
a_{1} \\
a_{2}
\end{array}\right], \quad \stackrel{\dot{b}}{ }=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right], \quad \vec{c}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right], \quad d_{o_{2}}=\left[\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right]
$$

and rewrite (6) ps

$$
\begin{align*}
& \overrightarrow{\mathrm{D}}=\overrightarrow{\mathrm{a}}+\mathrm{b} \stackrel{\rightharpoonup}{\mathrm{P}} \\
& \overrightarrow{\mathrm{~S}}=\stackrel{\rightharpoonup}{\mathrm{c}}+\mathrm{d} \overrightarrow{\mathrm{P}} \tag{8}
\end{align*}
$$

Compare (2). Notice how naturally (2) has been generalized through the use of linear algebra. The "supply equals demand" equations are now $S_{1}=D_{1}$ and $S_{2}=D_{2}$, ie.,

$$
\begin{align*}
& \text { The equilibrium price vector } \vec{p}^{*}=\cdot\left[\begin{array}{l}
P_{1} 1^{*} \\
P_{2}^{*}
\end{array}\right] \text { is the value" } \tag{S}\\
& \text { we get by substituting (8) into } \left.(9)^{*}\right]
\end{align*}
$$ of $\overrightarrow{\mathrm{P}}$ we get by substituting (8) into (9):

$$
\stackrel{\rightharpoonup}{\mathrm{c}}+\mathrm{d} \stackrel{\rightharpoonup}{\mathrm{p}}^{*}=\stackrel{\grave{a}}{\stackrel{\rightharpoonup}{a}}+\mathrm{b} \stackrel{\rightharpoonup}{\mathrm{p}}^{*}
$$

Elementary matrix, algebra leads to .
(10)

$$
(d-b) \stackrel{\rightharpoonup}{p} *^{A}=\overrightarrow{a-c}
$$

which is a set of linear equations for $\stackrel{\rightharpoonup}{\mathrm{P}} *$."We'll as sume that the 2×2 matrixt $d-b$ has an inverse and we'ir mültiply through by (d-b) ${ }^{-1}$ from the fleft:

$$
\begin{equation*}
\cdot \stackrel{\rightharpoonup}{p} *=(d-b)^{-r}(\stackrel{\rightharpoonup}{a-c}) . \tag{11a}
\end{equation*}
$$

Compare this to (3á): multiplication by the matrix invarse of d-b here very naturally replaces multiplication by the recipfócal of scalar d-b there.
Exercise 4. Find the equilibrium prices if

$$
\begin{aligned}
& X D_{1} \\
&=12-1.5 P_{i}+P_{2} \\
& D_{2}=20_{0}+2 P_{1}-P_{2} \\
& S_{1}=-6+1.6 P_{1}+2 P_{2} \\
& S_{2}=-5+4 P_{1}+5 P_{2}
\end{aligned}
$$

a. direct calculatign from $S_{1}{ }^{-}=D_{1}$ and $S_{2}-\theta_{2}$

$$
\text { b: identification of } \overrightarrow{\vec{a}}, b, \vec{c}, d \text { and } \frac{3}{\xi} \text { ubstitution in (11a). }
$$

\qquad
9. Equilibrium Supply and Demand in the Two-Product Model

Seęking a complete malogy between. ($3 a, b$) and the two-product modél, we next substitute p* from, (11a) into the equations for \vec{D} and \vec{S} to find $\vec{D}^{*}=\vec{S}^{*}$. We get:
(11b)

$$
\begin{aligned}
& \vec{D}^{*}=\vec{a}+b(d-b)^{-1}(\overrightarrow{a-c}) \\
& \vec{S}^{*}=\stackrel{\rightharpoonup}{c}+d(d-b)^{-1} \frac{\dot{\square}}{(\mathrm{a}-\mathrm{c})}
\end{aligned}
$$

Hmm . . . that doesn't look much like (3b) . . . in fact ${ }^{\circ}$, it's not so obvious. that $\vec{D}^{*}=\vec{S}^{*}$ at all. Has our analogy dieder a*

Exercise 5. Substitute your $\vec{p} \star$ solution from Exercise 4 into the equations to calculate $\vec{D}^{\star}=\vec{S}^{\star}{ }^{*}$,

Of course, \vec{D}^{*} an $ぬ \vec{S}^{*}$ in (1lb) are equal, af we should expect from.the way wertalculated $\overrightarrow{\mathrm{P}}^{*}$, $\overrightarrow{\mathrm{D}}^{*}$ and $\overrightarrow{\mathrm{S}}^{*}$. A little matrix algebra will show this:

$$
\begin{aligned}
& \vec{D}^{\star}=\vec{a}+b(d-b)^{-1}(\overline{a-c}) \\
& =(d-b)(d-b)^{-1 \stackrel{\rightharpoonup}{a}}+b(d-b)^{-1}(\overrightarrow{a-c}) \\
& =d(d-b)^{-1-\stackrel{a}{a}}-b(d-b)^{-1+} \\
& +b^{*}(d-b)^{-1} \stackrel{-}{a}-b(d-b)^{-1} \stackrel{-}{c} .
\end{aligned}
$$

. $]$
After the cangellation:
$(-11 c) \quad \vec{D}^{*}=d(d-b) \stackrel{-1}{a}-b(d-b)^{-1} \vec{c}$

Exercise 6. With this.start

$$
\begin{aligned}
\stackrel{\rightharpoonup}{S}^{*} & =\stackrel{\rightharpoonup}{c}+d(d-b)^{-1}(\overrightarrow{a-c}) \\
& =(d-b)(d-b)^{-1} \stackrel{\rightharpoonup}{c}+d(d-b)^{-1}(\stackrel{\rightharpoonup}{a}-c),
\end{aligned}
$$

show that

$$
\stackrel{S}{*}^{*}=\underset{\sim}{d(d-b)^{-1}} \vec{a}-b(d-b)^{-1+}
$$

aiso.
we discover that the analogy between (3b) and (11b) is not dead at all, but who would ever write (da-bc)/(d-b). in so complicated a way?!: Unfortunately, the liberties we enjoy with scalar arithmetic-me could use any of

$$
\frac{d a-b c}{d-b}=\frac{a d-c b}{d-b}=(d-b)^{-1}(a d-b c)=(d a-b c)(d-b)^{-1}
$$ among for forms - are simply not available when b and d are matrices and pa, c are, vectors, The main problem is that matrix multiplication is not commutative

Exercise 7. Prove that

$$
\begin{aligned}
& \text { Prove that } \\
& d(d-b)^{-1}=(d-b)^{-1} d
\end{aligned}
$$

j°
if and only if $\mathrm{db}=\mathrm{bd} \cdot \mathrm{h}$
Exercise 8. Prove that

$$
\left.b(d-b)^{-1}=(d-b)\right)^{-1} b
$$

if and only, if $d b=b d$.

Ordinarily we must expect that matrices b and d will not commute-commutative matrices are the exception and not the rule in mathematics.
*. If b and a happen to commute, we would have

$$
\begin{aligned}
\dot{\mathrm{D}}^{*}=\overrightarrow{\mathrm{S}}^{*} & =\mathrm{d}(\mathrm{~d}-\mathrm{b})^{-1} a=b(\mathrm{~d}-\mathrm{b})^{-1} \mathrm{c} \\
& ={ }^{*}(\mathrm{~d}-\mathrm{b})^{-1}(\mathrm{da}-\dot{b} \mathrm{c})
\end{aligned}
$$

as in (3b); but we would be wiser to consider the "natural" form of (3a) to be (from (12))

$$
\because D^{*} \Rightarrow S^{*}=d\left(\frac{1}{d-b}\right) a \cdot b\left(\frac{1}{d-b}\right) c .
$$

Only the commutativity ©f multiplication of real numbers allows a simpler form like (3a).
10. Matrix Level vs. Entry Level Calculations

- We used exactly the same steps to calculate p* (see (3a) and (11a)) from the one- and two-product models In the two-product case, all calculations were at matrix level: we thought of $\vec{a}, \vec{c}, \vec{p}, \vec{D}, \vec{S}, b, d, b-d,(b-d)^{-1}$ as, vector and matrix entities; singgle objects, without thinking about the individual numbers $a_{j} ; c_{j}, \ldots, b_{i j}$, $d_{i j}$, etc., that make them up. All the calculations in Sections 8 and 9 abowe were at matrix level.

To actually calculate the components $P_{1}{ }^{*}$ and $P_{2} *$ of $\mathrm{p} *$ in (11a), however, we must calculate the 2×2 matrix inverse of $d-b$ and multiply it by the vector $\overrightarrow{a-c}$. Such calculations are at entry level (they use the entries, the numbers that form the vectors and matrices). This calculation is quite a bit more complicated than the single division needed to compute $p *$ in (3a). The' great beauty and wonder of "linear algebra is the extert to which we can do useful calculations at matrix level, as if we had single "numbers" (the matrices and vectors themselvesp) to work with. Eventually, we must complete our work with grubby arithmetic àt entry level, however.

- It's to our advantage to seek (at matrix level) à form of our expression that is least painful to work with at entry level. For example, we used.

$$
\vec{D}^{*}=\vec{S}^{*}=d(d-b)^{-1} \vec{a}-b(d-b)^{-1} \vec{c}
$$

to show that $\overrightarrow{\mathrm{D}}^{\star}=\overrightarrow{\mathrm{S}}^{\star}$. If we actually use this to calculate $D^{*}=S^{*}$ we will compute one matrix inverse and four matrix multiplications. We don't have to work that hard:

$$
\text { - } \begin{aligned}
\overrightarrow{\mathrm{D}}^{*}=\vec{S}^{*} & =\vec{a}+b(d-b)^{-1}(\overrightarrow{a-c}) \\
& =\vec{c}+d(d-b)^{-1}(\overrightarrow{a-c})
\end{aligned}
$$

each invalve one matrix inversion followed by only twg matrix multiplications.

PART III: GENERALIZATION TO n-PRODUCTS

11. The Model with n-Products

- Why stop with supply and demand functions that interrelate two products? Suppose ą economy is made up of n products, commodities, services, etc., and let
$D_{j}, S_{j}, \dot{P}_{j}=$ demand, supply, price for the \mathfrak{j} th product, for $\mathrm{j}=1,2, \ldots, \mathrm{n}$

We still assume that D_{j} and S_{j} depend finearly on the prices but we permit any and all possible interrelationships by using all the prices in each demand or supply function:

$$
\left\{\begin{array}{l}
D_{1}=a_{1}+b_{11} P_{1}+b_{12} P_{2}+\ldots+b_{1 n} P_{n} \\
b_{2}=a_{2}+b_{21} P_{1}+b_{22} P_{2}+\ldots+b_{2 n} P_{n} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
D_{n}= \\
a_{n}+b_{n 1} P_{1}+b_{n 2} P_{2}+\ldots+b_{n n} P_{n}
\end{array}\right.
$$

(14)

$$
\left\{\begin{array}{l}
s_{1}=c_{1}+d_{11} P_{1}+d_{12} P_{2}+\ldots+d_{1 n} P_{n} \\
\vdots \\
\vdots \\
\vdots \\
S_{n}=c_{n}+d_{n 1} p_{1}+d_{n 2} p_{2}+\ldots+d_{n n} P_{n}
\end{array}\right.
$$

Please compare this to (5) and (2), which are simply the special cases $n=2$ and $n=1$.

For the reasons discughed in Part I, all $a_{i}>0$ and. all $c_{i}<0$. Most of the $b_{i j}$, and $d_{i j}$ will be zero; they will be nonzero only when i and j are competing products. Consider product 1 , which might be large cars, for example. Naturally $b_{11}<0$ and $d_{11}>0$: as their prices rise, demand for largé cars decreases.and supply increases.
\qquad

Now suppose that products 2, 425 and 7514 (small cars motorcycles and rapid transit fares, perhaps) compete with product 1. As their prices rise, product 1 looks Rore attractive to buyers, so $b_{1,2}, b_{1,425}$ and $b_{1,7514}$ are all positive while the other' $b_{1 j}$ are all zeró. A rising price for a competing product tends to increase the supply of product 1, as explained in Part II. Thus $d_{1,2}, d_{1,425}$ and $d_{1,7514}$ will all be positive while the other d_{ij} are zero.

Following the pathway from Equations (5) to (6), we rewrite (14) using matrix products:
$\cdot\left[\begin{array}{c}D_{1} \\ D_{2} \\ \cdot \\ \vdots \\ D_{n}\end{array}\right]=\left[\begin{array}{c}a_{1} \\ a_{2} \\ \cdot \\ \cdot \\ a_{n}\end{array}\right]+\left[\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ b_{21} & b_{22} & \cdots & b_{2 n} \\ \vdots & & & \\ \cdot & & & \\ b_{n 1} & b_{n 2} & \cdots & b_{n n}\end{array}\right]\left[\begin{array}{c}p_{1} \\ p_{2} \\ \cdot \\ \cdot \\ p_{n}\end{array}\right]$

$$
\because\left[\begin{array}{c}
S_{1} \tag{15}\\
S_{2} \\
\cdot \\
\cdot \\
S_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
\vdots \\
c_{n}
\end{array}\right]+\left[\begin{array}{cccc}
d_{11} & d_{12} & \ldots & d_{1 n} \\
d_{21} & d_{22} & \ldots & d_{2 n} \\
\cdot & & & \\
\vdots & & & \\
d_{n 1} & d_{n 2} & \cdots & d_{n n}
\end{array}\right]\left[\begin{array}{c}
p_{1} \\
\hat{c}_{1} \\
p_{2} \\
\cdot \\
\vdots \\
P_{n}
\end{array}\right] .
$$

Naturally we introduce these vectors and matrices:

$$
\vec{D}=\left[\begin{array}{c}
D_{1} \\
D_{2} \\
\cdot \\
\cdot \\
D_{n}
\end{array}\right], \quad \vec{S}=\left[\begin{array}{c}
S_{1} \\
S_{2} \\
\cdot \\
\cdot \\
\cdot \\
S_{n}
\end{array}\right], \quad \stackrel{\rightharpoonup}{P}=\left[\begin{array}{c}
P_{1} \\
P_{2} \\
\cdot \\
\cdot \\
P_{n}
\end{array}\right]
$$

\qquad

$$
\stackrel{\rightharpoonup}{c}\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right], \quad d_{i}=\left[\begin{array}{cccc}
d_{11} & d_{12} & \ldots & d_{1 n} \\
d_{21} & d_{22} & \ldots & d_{2 n} \\
\cdot & & & \\
\vdots & & & \\
d_{n 1} & d_{n 2} & \ldots & d_{n n}
\end{array}\right]
$$

and write (15) compactly:

$$
\stackrel{\rightharpoonup}{\mathrm{D}}=\stackrel{\rightharpoonup}{\mathrm{a}}+\mathrm{b} \overrightarrow{\mathrm{p}}
$$

$$
\begin{equation*}
\cdots \vec{S}=\vec{c}+d \vec{P} \tag{17}
\end{equation*}
$$

This is an exact copy of (8):

12. Solution of the n-Product Model

© \quad The matrix olevel calculations that led us from the two-product model (8) to its solutions (1la, c), are not limited to 2 -vectors and. 2×2 matrices. One of the great advantages of matrix level work is that it applies to n-vectors and $n \times n$ matrices for any n. Exactly the ${ }^{\circ}$ same reasoning and algebraic operations that led us from (8) to (11a, e) work ón (17) to givé us its equilibrium solution:.

$$
\begin{align*}
& \stackrel{\rightharpoonup}{p}^{*}=(d-b)^{-1}(\overrightarrow{a-c}) \\
& \vec{D}^{*}=\vec{S}^{*}=d(d-b)^{-1} \vec{a}-b_{i}(d-b)^{-1} \vec{c} . \tag{18}
\end{align*}
$$

-

 of D^{*} and S^{*} does deperid on the dimension n : the entry
level effort needed to calculabe (d-b) ${ }^{-1}$ increases rapidly as n increases. We would need a computer to. deal with the large n we would want to use in a genuine economic study.

PART IV: HOW DID WE GET THIS FAR?

13. Mak-ing*a Start

Let's take on the role of the applied mathematician who first developed this model. How do we start? What brainstorms along the way lead to progress and why do they occur? What have we learned from earlier modeling work that we put to use here?

- So, we must now imagine that we do not know about this madel. An economist comes to us with a question: "Supply, demand and price have these clear intuitive. relationshíps. Can mathematics help us understand the relationship more accurately? Can we predict the price and supply/demand at which a product will/should sell?" We do some preliminary reading and thinking and țalk, with the economist until we understand the main mechanism: when supply/demand is in excess, this causes a shift in the price downwards/upwards towards a "fair market value price" where the forces of supply and demand are in balance. In that wording, it seems that price is influénced by supply and demand:

$$
\text { price }=f(\text { supply, demand }) .
$$

We also turn around the language, however: as the price increases/decreases, the supply should inorease/decrease while the demand decreases/increases. This wording suggests that supply and demand are infiuenced by price:

$$
\text { supply }=g(\text { price }) \text { and demang }=h(\text { price }) .
$$

As experienced appiied mathe liaticians, we prefer to work with the latter approach: .. we have more equations
and can easily express supply = demand. Thus we make the basic decisions that lead to the model of Part I: We'll think about the simplest conceivable economy (one product) by expressing supply and demand as functions of the price. We hope to writer down conkrete functions:

$$
S=g(P) \text { and } D=h^{\prime}(P)
$$

and to solve $S=D$, a single equation in the one valuable P :

$$
g(P)-h(P)=0
$$

for the equilibrium price $p *$.
The details of part I now follow when we decide to make g and h very simple (Equations (2)) as.a first effort. And we are successful: we predict $\mathrm{P}^{*}, D^{*}, S^{*}$ in $(3 a, b)$.

14. Improving on Our First Effort

The answer to one question leads to the asking of many more: Here are two reasonable ones:
A. Can we choorse functions g. and h more - realistically? How can we know and measure that we achieve better realism?
B. Can we include more of the complexity of a real, interrelated economy in the model?

Both questions have received lots of attention from applied mathematicians. .

Since we can't do many things at once and want to proceed by small steps, we choose arbitrarily to attack (B): What factors of a complex economy should we include? The emotional elements like fads look difficult to get a handle on. We decide to conside ${ }^{\bullet}$ two competing products: Copying as much of our successful model in part I as we can, we decide to make suppply and demand 17
for both products depend on the two prices and we specialize to the easiest concrete functions, in (5).

Aha! A mathematical brainstorm-we can write (5) using matrices as in (6). Our skills with linear algebra take over-we introduce the $\dot{\text { vectors }}$ and matrices of (7), reach the "same" model in (8) that we had in (2), set supply $=$ demand and use matrix algebra to reach P^{*}, D^{*}, S^{*} in (11a, c). Almost nothing is new here: based on our skills with linear algebra we have transformed the success of Par̈t i into results for a more complex economy in Part II.

Now the jump to n-products is easy-we follow the path that 1 inear algebra points out to us, expanding two-vectors and 2×2 matrices to $n-v e c t o r s$ and $n \times n$ matrices. It works again!

15. Hindsight is Perfect

Now that we have the model of Part III and see that the models of Parts I and II are just the special cases. $n=1$ and $n=2$, we know that the, n-product model (17) and its solutions (18) are what we were after when we began! We didn't know then' that matrix inverses would be involved or that we would find, 200 interrelated products just as easy to handle (at matrix level, anyway) as 20 , or 2,000 , but now that all seems clear, natural and inevitable:

PART V: TWO ECONOMIC INSIGHTS FROM THE MODÉL

"
 16nTotal Demand

In the one-product model (2):

$$
D^{\prime}=a+b P \quad S=1 c+d P
$$

* we might call a the total demand because it is the amount
of demand if the product were free. $\left(P^{\prime}=0\right)$ and thus the largest conceivable demand.

Suppose the total demand shifts in olir economy from a to $a+\Delta a$, i.e.; the economy'grows and is able to absorb 'more of our product. The shift in total demand Causes a shift in the equilibrium price' from [see (3a)]
$p^{*}=\frac{a-c}{d \div b} 40 p^{*}+\Delta p^{*}=\frac{(a+\Delta a)-c}{d-b}$. Thus the resuiting
change in equilibrium price is

$$
\Delta P^{*}=\frac{(a+\Delta a)-c}{d-b^{c}},-\frac{a-c}{d-b}=\frac{\Delta a}{d^{2}-b}
$$

This change is positive when $\Delta a>0$, as we should expect:, a larger total demand implies larger demand at ány price level and thus upward pressure on prices. Our model agrees with economic common sense. But it lends quantita-: tive detail to that common sense, too: we have predicted the amount of the price increase. Common sense alone does not do that.

Exercise 9. In the two-product model, let the total demand change from

$$
\vec{a}=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right] \text { to } \quad \stackrel{\rightharpoonup}{a}+\overrightarrow{\Delta a} \cdot\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]+\left[\begin{array}{l}
\Delta a_{1} \\
\Delta a_{2}
\end{array}\right]
$$

causing an equilibrium paice changex rom \vec{P}^{*} to $\vec{P}_{*}^{*}+\Delta \overrightarrow{\mathrm{P}} *$. Calculate $\Delta \stackrel{\rightharpoonup}{\mathrm{P}}$.

Exercise 10. Repeat Exfríise 9 for the n-product model.
Exercise 11. In the one-product model: as the total demand a changes to $a+\Delta a$ there is a change in the equilibrium price, as we've analyzed above. There is also a change in the equilibrium supply $=$ demand level from $9^{*}=D^{*}$ to $S_{\sim}^{*}+\Delta S^{*}=D^{*}+\Delta D^{*}$. -Starting with (3b)

$$
S^{*}=D^{*}=\frac{d a-b c}{d-b}
$$

we have
222

$$
S^{*}+\Delta S^{*}=D^{*}+\Delta D^{*}=\frac{d(a+\Delta a)-b c}{d-b}
$$

Calculate $\Delta S^{*}=\Delta D^{*}$. Explain why its sign is redsonable, based on economic good sense.

Exercise 12. Repeat Exercise 11 for

a. the two-product model
b. the n-product model.

17. Free Supply

Again, in (2),

$$
D=a+b P, \quad S=c+d P
$$

we cann-call c the free supply or suppiy in nature because it is the supply when $P=0$. For most products or commodities, $c>0$ makes no sense because no product can economically be given away for free. However, in many places on the American frontier in the 1800 's, fresh water was a free commodity in 'plenţiful supply; until redently, road maps were given away free by gas station owners.

Suppose a product has a free supply c and this supply changes to $c+\Delta c$. . This causes a change in the equilibrium price of the product from $p *^{*}="(a-c) /(d-b)$ to

$$
i^{6}
$$

The sign of ΔP^{*} again corresponds to economic intuition: as the free supply increases ($\Delta G>0$), the demand, the amount of the product people wilr buy, should decrease (since more of the product is supplied free) and thus ${ }^{\text {(}}$ its'price should decrease: $\Delta \mathrm{P} *<0$. 'As with total demand, we are able to predict the amount of the price drop.

Exercise 13. Repeat the free supply discussion for the two-product model:- what change $\stackrel{\rightharpoonup}{P^{*} *}$ in equilibrium price occurs when the free, supply changes from \vec{c} to $\overrightarrow{c+\Delta c}$?

Exercise 14. Repeat Exercise 13 for the n-product model.
Exercise 15. As the free supply c changes to $c+\Delta c$, the equilibrium price changes by ΔP^{\star} (above) and the equilibrium amount changes from $S^{*}=D^{*}$ to $S^{*}+^{2} \Delta S^{*}=D^{*}+\Delta D^{*}$. Calculate $\Delta S^{*}=\Delta D^{*}$ for
a. the one-product model
b. the two-product model
c. the n -product model.

PART VI: ARE LINEAR FUNCTIQNS CRUCIAL TO THE MODEL?

18. A Jab for Taylor's Theorem

Of course; it is uñrealistic to take supply and demand as linear functions of a product's price and the prices of, its competitors. Yet all our use of linear algebra-our whole ability to calculate equilibrium prices-seems to depend on having such linear functions. How can we resolve this dilemma?

First of all, in the one-product model, how might 'more realistic, functions $D(P)$ and $S(P)$ look? Since the supply increases and demand decreases as prices rise, we take curves with the appropriate monotonicity for $D(P)$ and $S(P)$. When we put such curves (choosing then, as a first example, to be continuous and differentiable) into Figure 2, we arrive at Figure 3. Both curves have [P_{s}, P_{d}] as domain, as in Section 5. From Figure 3 it.. is clear, that there ${ }^{t}$ is still a unque equilibrium price $P * E\left[P_{s}, P_{d}\right]$.

If we needed to know S and $\not D$ for all P in the full price domain $\left[P_{s}, P_{d}\right]$, we would be stuck with these '

Figure 3. Smooth nonlinear supply and demand functions.
nonlinear curves $D(P)$ and $S(P)$. But recall our goál: we want to calculate p^{*}, so we only hage to think äbout values of P close to $P^{*-.}$ Probably we know (or can guess on economic grounds) a' price P_{0} that is fairly close to $p *$. We could replacé $D(P)$ by the tangent line to $D(P)$ at P_{0}, getting

$$
\hat{D}(P) \Rightarrow D\left(P_{0}\right)+D^{\prime}\left(P_{0}\right)\left(P-P_{0}\right)
$$

$$
=\left[D\left(P_{0}^{\prime}\right)=P_{0} D^{\prime}\left(P_{0}\right)\right]+D^{\prime}\left(P_{0}\right) P
$$

We have written $\hat{D}(\dot{P})$ as a $+\forall b P$ aboye, with constantspan and b that we can calculate once we knơ P_{0} and $D(P)$. Recall that $\hat{D}(P)$ is"a close approximation to $D(P)$ for P, close to P_{0} :

We car similarly take the tangentaline at P_{0} to $\hat{S}(P)$,

$$
\begin{align*}
\hat{S}(P) & =S\left(P_{0}\right)+S^{\prime}\left(P_{0}\right)\left(P-P_{0}\right) \\
& =\left[S\left(P_{0}\right),-P_{0} S^{\prime}\left(P_{0}\right)\right]+S^{\prime}\left(P_{0}\right) P \tag{22}
\end{align*}
$$

as a close approximation to $S(P)$ for P near P_{0}. Figure 4 shows these two tangent lines.

Figure 4. Tangefnt lines approximate the supply and demand curves.

Equations (19), (20) are a linearized version of the nonlinear one-product model. These equations are exactly (2), with

$$
\begin{array}{ll}
\bar{a}=D\left(P_{0}\right)-P_{0} D^{\prime}\left(P_{0}\right) & b=D^{\prime}\left(P_{0}\right) \\
c=S\left(P_{0}^{\circ}\right)-P_{0} S^{\prime}\left(P_{0}\right) & d=\dot{S}^{\prime}\left(P_{0}\right)
\end{array}
$$

When we solve for: the price equilibrium of the approximate linearized equations we get.
(21) $\quad P_{1}=P_{0}-\frac{S\left(P_{0}\right)-D\left(P_{0}\right)}{S^{\prime}\left(P_{0}\right)-D^{\prime}\left(P_{0}\right)}$.

This is of course the price where the tarfgent lines cross in Figure 4 , and $P_{1} \neq P^{*}$.

Exercise 16. Substitute a, b, c, d above into (3a) and thus derive (21). Also calculate, from (3b),

$$
\hat{D}\left(P_{1}\right)=\hat{S}\left(P_{1}\right) \notin \frac{S^{\prime}\left(P_{0}\right) D\left(P_{0}\right)-D^{\prime}\left(P_{0}\right) S\left(P_{0}\right)}{S^{\prime}\left(P_{0}\right)-D^{\prime}\left(P_{0}\right)}
$$

Exercise 17. (For readers who know Newton's Method of approximately. solving $f(x)=0$ for a root x given an initial guess x_{0} close to the root.)

Equation, (21) clearly has a relationship to Newton's Method.
What is that relationship? What function f is involved?

Figure 4 suggests that P_{1} is $a \cdot b e t t e r$ approximation of P^{*} than our initial approximation P_{0} was. Theory (we omit it here) proves this true if P_{0} is sufficiently close to $P *$. We can of course repeat the process: taking P_{1} as our new guess, we write down equations of the targent lines to $D(P)$ and $S(P)$ at P_{1} and use them to calculate P_{2}. Aftèr a, few rounds of this, we will get a very good approximation of P^{*}. The method does generalize to multi-product cases.

So, when $D(P)$ and $S(P)$ are smooth functions of the" price, with more work, we can still approximate P^{*} (and thus. $D^{*}=S^{*}$). closely.. The ćrucial assumption about D and S seems now to be that they change smoothly as P changes. It is not crucial that they be linear.
19. Discontinuous Supply and Demand Curves

- And is it realistic to expect that supply and demand curves will be smooth? Unfortunately, no. The supply • curve, especially, may have jump discontinuities, as shown in Figure 5.

For there will be threshold values of P (such as P_{a} and P_{b} shown) where it becomes economical to open a new factory or put another shift on an assembly line, causing

Figure 5. A discontinuous supply curve.

Figure 6. A more difficult case of nansmooth supplyand demand.

r
supply to jump dramatically. However, in this example, the equilibrium we seek happens to fall in a part of the price domain, namely $\left[P_{a}, P_{b}\right]$, where both $S(P)$ and $B(P)$ are smooth; we can apply bur methods after restricting the price domain to $\left[P_{a}, P_{b}\right\}$. We can draw other examples, like Figure. 6, where the method does not apply.

PART VII: SOLUTIONS TO EXERCISES

1. $P^{*}=4$ dollars/item, $S_{0}^{*}=D^{*}=16$ dollars.
2. $P^{*}=3.2$ dollars/item, $S^{*}=D^{*}=17.2$ dollars.
3. a. In a plane, two straight lines with unequal slopes always have exactly one intersection. The slopes here are $b<0$ and $d>0$.
b. Two lines with a $>0, b<0, c<0, d>0$ yet $S *^{\circ}=D *<0$ can be easily drawn:

On economic grounds, if there is any market for a product, its demand must be positive at $\mathrm{P}=\mathrm{P}_{\mathrm{s}}$, the minimal price. In that case.

$$
\begin{aligned}
& D\left(P_{s}\right)=a+b P_{s}>0 \\
& S\left(P_{s}\right)=c+d P_{s}=0 \\
& \Rightarrow P_{s}=-\frac{c}{d}, \Rightarrow a-\frac{b c}{d}>0,2 \Rightarrow a d-b c>0 \\
& 22 G
\end{aligned}
$$

Since $d-b>0$ we have $S^{*}=D^{*}=\frac{a d-b e}{d-b}>0$ from (3b). Since $D^{\prime}>0$ we
have $P^{*} \leq P_{d}$ and $S *>0$ implies $P * \geq P_{s}$.
4,5. $\vec{P}^{*}=\left[\begin{array}{c}5 \\ 2.5\end{array}\right], \quad \mathrm{S}^{\wedge^{\prime}}=\mathrm{D} *=\left[\begin{array}{c}7 \\ 27.5\end{array}\right]$.
6. $\vec{s}^{*}=\vec{c}+\vec{d}(d-b)^{-1} \stackrel{\rightharpoonup}{(a-c)}$
$=(d-b)(d-b)^{-1} \stackrel{\rightharpoonup}{c}+d(d-b)^{-1} \stackrel{\rightharpoonup}{(a-c)}$
$=d(d-b)^{-1 \stackrel{\rightharpoonup}{c}}-b(d-b)^{-1} \stackrel{\rightharpoonup}{c}+d(d-b)^{-1 \stackrel{\rightharpoonup}{a}}-d(d-b)^{-1} \stackrel{\rightharpoonup}{c}$
$=d(d-b)^{-1} \vec{a}-b(d-b)_{c}^{-1} \stackrel{\rightharpoonup}{c}$.
7. $d(d-b)^{-1}=(d-b)^{-1} d$
$\Leftrightarrow(d-b)\left[d(d-b)^{-1}\right](d-b)=(d-b)\left[(d-b)^{-1} \cdot d\right](d-b)$.
$\Leftrightarrow \quad(\mathrm{d}-\mathrm{b}) \mathrm{d}=\mathrm{d}(\mathrm{d}-\mathrm{b})$
$\Leftrightarrow d^{2}-b d=d^{2}-d b$
$\Leftrightarrow \mathrm{bd}=\mathrm{db}$.
8. Handle as in solution to 7, above. .
*9,10. The supply equals demand equation is

$$
\begin{aligned}
& \overrightarrow{a+\Delta a}+b\left(\overrightarrow{P^{*}+, \Delta P *}\right)=c+d(\overline{P+\Delta P *}) \\
& \Rightarrow \overrightarrow{P *+\Delta P *}=(d-b)^{-1}(\overrightarrow{a+\Delta a-c)} .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \overrightarrow{\mathrm{P}^{*}}=(\mathrm{d}-\mathrm{b})^{-1} \stackrel{\rightharpoonup}{(\mathrm{a}-\mathrm{c})}, \\
& \overrightarrow{\Delta \mathrm{P}^{*}}=(\mathrm{d}-\mathrm{b})^{-1} \stackrel{\rightharpoonup}{\Delta \mathrm{a}} .
\end{aligned}
$$

11. $\Delta S^{\star}=\Delta D^{*}=\left(S^{*}+\Delta S^{*}\right)-S^{\star}$
$=\frac{d(a+\Delta a)-b c^{\prime}}{d-b}-\frac{d a-b c}{d-b}=\frac{d \Delta a}{d-b}$.

This has the same sign as Δa, as we should expect: when total demand goes up ($\Delta \mathrm{a}>0$), there is naturally an increased demand at all price levels, including price $P *$.

From (11c) we have
8
is $\quad \vec{S}^{*}+\Delta \stackrel{\rightharpoonup}{S^{*}}=\left(D^{*}+\Delta D^{*}\right)$

$$
=d(d-b)^{-1}\left(\overline{(a+\Delta a)}-b(d-b)^{-i}{ }_{c}^{+}\right.
$$

and $\quad \vec{S}^{\star}=\vec{D}^{*}=d(d-b)^{-1} \vec{a}-b(d-\dot{b})^{-1} c$.
Subtraction gives

$$
\Delta S^{*}=\dot{\Delta} D^{*}=d(d-b)^{-1} \frac{\bar{\rightharpoonup}}{\Delta a}
$$

14, Equating supply and demand we get

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{\dot{a}}+b\left(\overline{P^{*}+\Delta P^{*}}\right)=\stackrel{\rightharpoonup}{\dot{c}+\Delta c}+d\left(\overline{P^{*}+\Delta P^{*}}\right) \\
& \Rightarrow \overline{P^{*}+\Delta P^{*}}=(d-b)^{-1}(\overline{a-c-\Delta c}) .
\end{aligned}
$$

Since $P *=(d-b)^{-1}(\stackrel{a-c}{ })$, subtraction gives

$$
\Delta P *=-(\mathrm{t}-\mathrm{b})^{-1} \stackrel{\rightharpoonup}{\Delta c} .
$$

15. From (11c),

$$
\begin{aligned}
S^{*}+\Delta S^{*} & =D^{*}+\Delta P^{*} \\
& =d(d-b)^{-1} \frac{b}{a}-b(d-b)^{-1}(\overline{c+\Delta c})
\end{aligned}
$$

while

$$
S^{*}=D^{*}=d(d-b)^{-1 \stackrel{\rightharpoonup}{a}}-b(d-b)^{-1 \stackrel{\rightharpoonup}{c}}
$$

Thus

$$
\stackrel{-}{\Delta S^{*}}=\overrightarrow{\Delta D^{*}}=-\mathrm{b},(\mathrm{~d}-\mathrm{b})^{-1} \overrightarrow{\Delta \mathrm{c}} .
$$

This may be applied for 1,2 or n.
17. We really want to solve $S(P)=D(P)$, i.e.,

$$
S(P)-D(P)=0,
$$

for P. Thus f is the supply function minus the demand function and the usual Newton's Method formula

$$
x_{1}=x_{0}-\frac{f(x)}{f^{\prime}(x)}
$$

is exactly (21)."

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.

Your Name

Description of Difficulty: (Please be specific)

Unit No.
Model Exam Problem No. \qquad Text Problem No. \qquad

Instructor: -Please indicate your resolution of the difficulty in this box. Corrected errors in materials. List corrections here:Gave student better explanation, example, or•procedure than in unit. Give brief outline of your addition here:

\bigcirc
Assisted student in acquiring ̈ general learning and problem-solving skills (not using examples from this unit.)
\qquad
\qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closest to your personal opinion.

1. How'useful was the amount of detail in the unit?

Not enough detail to understand the unit
Unit would have been clearer with moredetail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting Too much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them

3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructoc, friends, or other books) in order to understand the unit?
A Lot
Somewhat
A Little
Not at all
4. How long was this unit in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?
Much

Longer \begin{tabular}{l}
Somewhat

Longer

\quad

About

the Same

Somewhat

Shorter

\quad

Much

Shorter
\end{tabular}

5. Were any of the following parts of the unit confusing' or distracting? (Check as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites
Statement of skills and concepts•(objectives)
Examples
Problems
—Paragraph headings
Table of Contents
Special Assistance Supplement (if present)
Other, please explain
Please describe anytining in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.).

umap

OGRAPFB IN

- AND APSICATIONS PROJECT

General equilibrium: A Leontief economic model
fly Philip M. Tuchinsky
"Like Adam Smith and The Wealth of Nations, Marshall and Principles of Economics, and Keynes and The General Theory, Leontief and 'Input-Output' are becoming permanent words in the economics vocabulary.

- Walter Isard and Phyliis Kaniss ir Science. Vol. 182, Nov. 9. 1973. p. 571 .

GENERAL EQUILIBRIUM: A LEOŃTIEF ECONOMIC MODEL

by

Philip ${ }^{(}$M. Tuchinsky
Department of Mathematical Sciences
Ohio Wesleyan University
'Delaware, Ohio 43015

TABLE OF CONTENTS

1. introduction
.

1:2 Onen 1.2
--1.3 The Problem: To Balance Supply and Demand
2. LEONTIEF'S MODEL.
2.1 Notation for Production and Final Demand Levels
2.2 Leontief's Input-Output Coefficients 3
2.3 Concise Summary of the Notation . .
2.4 Equating Supply and Demand
2.5 The Model in Matrix Notation
2.6 Solving for the Production Levels
3. $\mathbf{2 . 7}$ Exercises HOW TO CALCULATE (I-A) ${ }^{-1}$ EASILY7

3.1 An Old Acqua intance Returns

Aids Calculation of $(I-A)^{-1}$

7
3.3 An Exampie .
3.4 Why Geometric Series Extends to Matrix Cases
$3.5(I-A)^{-1}$ Will 3.
3.6 9
3.6 Exercises 10
4. MODELING LABOR IN LEONTIEF'S ECONOMY * 10
4.1 The Value of Labor 10
4.2 Labor's Earnings and Consumption are Equai 11
5. ABOUT THE MODEL AND ITS USES : 12
5.1 Open and Closed Leontief Ec'onomjes 12
5.2 Profit and Savings Have Been Inciuded 13
5.3 Using Linear Algebra in Economics -- Benefits
5.4. The Model is wities 13
5.5 The Modei's Great Impact on Economics 15
6. REFERENCES . 17
7. EXERCISES: THE YUGOSLAVIAN ECONOMY IN 1962 AND 1958 . . . 18
8. ANSWERS TO`SOME EXERCISES 22

Intermodular Description Sheet: UMAP Unit 209

TitTe: GENERAL EQUILIBRIUM: A LEONTIEF ECONOMIC MODEL

Author: Philip M. Tuchinsky
Department of Mathematical sciences
Ohio Wesleyan University
Delaware, Ohio 43015
Review Stage/Dáte: 111 (péer reviewed ε revised) 12/28/77 Classification: . ECONOMICS/ELEM LIN ALG ! /
Computer Projects are natural to this application but not essential. Realistic data for Yugoslavian economy is included.
Estimated Teaching Time: A total*of 1 hour including discussion of computer project output.
Prerequisites: Solution of a nonsingular system of linear equations; matrix multiplication; matrix inverse. No économic preparation is assumet.
Output Skills:

1. Define/explain the one-product company as an input-output process unit.
2. Define meaning of entry $a_{i j}$ of Leontief matrix.
3. Discuss an application leading to large sets of linear simultaneous equations.
4. Calculate, equilibrium production, levels for a multi-sector Leontief economy.
5. Calculate $(I-A)^{-1}$ approximately using geometric series for matrices.
6. Explain why $(I-A)^{-1}$. will have entries ≥ 0 if matrix A has entries ≥ 0
Distuss money as simply one more product in an economy.
7. Discuss "economics of scale" vs. "constant returns to scale" and inevitability of latter in a linear model.
Convert real economic data (input-output flow by sectors) into Leontief matrix entries.

- Structure of the Module:- Sections. 1;2 and 5 form a satisfactory - "applied unit about the basic. Leontief open model. Section 3 is optional; jt discussés use of geometric séries to approximate (I-A) ${ }^{-1}$, which arose in Section 2 . Section 4 can foljow Section 2 or 3 and extends the model so that iabor costs are included, it can be omitted also.
UMAP’ éditor for this module: Solomon Gartunkel *
Other Related Units:
so that the input products are not really consumed but are "replaced" on the market by the output products). and the public, considered as the "final consumers" of
; finished goods. The amount of a.product demanded by the public is the "final demand" for that product; suppliers (companies) must satisfy, that final demand in addition to providing input materials to other companies. For some products (like steel), final demand is almost zero, while for others (like blenders), final demand is a very - large fraction of the total demand.
1.3 The Problem: To Balanc Supply and Demand

A sensible economic qưestion: how much of each pro* duct should be produced to closely satisfy the total demand for the product by all users? That is, how can we match outputs to inputs throughout an elaborately interconnected : economy? To answer this question is'to find a "genergl equilibrium" (as economis pay); that is, we seek the - production amount for eacegood that will simultaneously make supply equal demand for them all.

Leontief applied linear algebra to this problem. We'll look at his simplest model in this paper. From a knowledge of the final demand fori each product (that is, the market basket of all goods thqt the public is to buy), we can calculate the production amounts that will supply. that final demand. Some restrict ive economic assumptions are involved.
2. LEONTIEF'S MODEL

211 Notation for Production and. Final Demand Levels
We wilí look at an economy made up of in companies, eách creating one product, commodity or service from a fixed recipe of input "ingfedients.." We assume that prices are constant and known for each product; we will Say that the $i^{\text {th }}$ company makes x_{i} dollars worth of . its product. Let d_{i} dollars of this be the "final demand"
(sales to households) of product i while the rest of x_{i} is used as inputs by other companies. We take the d_{i}, as known (thus assuming that there is some known mix of products that the public is ready to buy) and hope to calculate the x_{i} values needed to produce a "final demand vector" ($d_{1}, d_{2}, \ldots, d_{n}$) containing the desired final amounts of all the products. This vector is really just the total public "market basket" of all products consumed, in dollar amounts.

2.2 Leontief's Input-Output Coefficients

Next, we need to express the recipe that the $i^{\text {th }}$ company converts into one dollar's worth of its output. '(That recipe, multiplied through by x_{i}, will yield x_{i} dollars of output for the $i^{\text {th }}$ company. This is an assumption called "constant returns to scale;" more about it later.) Let $a_{i j}$ be the dollar amount of product i that is used to make one dollar's worth of product j. Thus $a_{47}=.23$ would mean that, to make a dollar's worth of product 7, we use 23 w worth of product 4. The full mix of products $1,2,3, \ldots, n$ used to make one dollar's worth of product j is $a_{i j}$ dillars of product $1, a_{2 j}$ of product $2, a_{3 j}, \ldots, a_{n j}$. These numbers form the $j^{\text {th }}$ column of the matrix $A=\left(a_{i j}\right)$. Since less than a dollar's worth of inputs are used in making a dollar's worth of the output (or company 5 would be out of business), we know that

$$
\sum_{i=1}^{n} a_{i j}<1 \text { and of course } a_{i j} \geq 0
$$

Thus. the columns of A have sums of less than one. (The rows of A have no comparable economic interpretation.)

2.3 Concise Summary of the Notation

For i and j, each running $1,2,3, \ldots, n$,
$x_{i}=$ total dollars produced of product i.
$d_{i}=$ totar dollars worth of product i that is consumed by households = "final demand".
$a_{i j}=\begin{gathered}\text { amount } \text { in dollars of product } i \text { used in making one } \\ \text { dollar' } s \text { worth of product } j \text {, }\end{gathered}$

2.4 Equating Supply and Demand

The supply of product i will be x_{i} dollars. The demand for product i will be'd ${ }_{i}$ dollars of final demand, plus $a_{i 1} x_{1}$ dollars (of product i) used in making the x_{1} dollars of product 1 , plus $a_{i 2} x_{2}$ doliars (of product i) used in making x_{2} dollars of product 2 , and so on. The "supply equals demand" equation for product i is.

$$
\begin{equation*}
x_{i}=a_{i 1} x_{1}+a_{12} x_{2}+\ldots+a_{i n} x_{n}+d_{1} . \tag{2}
\end{equation*}
$$

We have such an equation for each $i=1,2, \ldots, n$, thus n equations in all. Our goal, once again, is to calculate all the x_{i} from given d_{i} and known technological constants ${ }^{a}{ }_{i j}$. The model provides for the use of each product as an input to every other product including sitself; of course, many of the $a_{i j}$ will be zero.

2.5 The Model In Matrix Notation .

We are ready to switch to matrix notation: put

Then the n equations of (2) may be compactly written

$$
\text { (4) } \vec{x}=A \vec{x}+\frac{c}{d}
$$

(5) $(1-A) \vec{x}=\vec{d}$.

The problem is now almost solved. In (5), we know the $n \times n$ matrix I - A and the n-vector ${ }^{\top} .{ }^{\text {. }}$ Then (5) is simply a set of n non-homogenous linear, equations with the wanted x_{i} as the unknowns.

2.6 Solving for the Production Levels,

have no solution, exactly one solution, or infinitely many solutions. In our case; although we will not prove it, there must be exactly one solution. In fact (I M) A) must exist for our given matrix A. (This is true for any matrix where $a_{i j} \geq 0$ and the column sums satisfy $\left.\Sigma_{i} a_{i j}<1.\right)$ We may use the inverse, to solve for \vec{x} in (5): (6) ${ }^{\circ} \quad \vec{x}=(I-A)^{-1} \stackrel{\rightharpoonup}{d} \hat{f}$

We have achieved our goal: to produce a market basket $\begin{gathered}\text { d }\end{gathered}$ of final conisumer goods, we should produce the amodints \vec{x} given in (6).

Two questions arise at once. One is ecoñomic: cand the consumer afford to pay for the market basket d ? Con'sumers u\{ually pay for goods and services by exchanging. their labor. Can we fit the cost of lator into the model, wherè it has not been mentioned so far? He'll disciuss thisin Section 4°.

The other question is mathematical: in (6) we are asked to calculate (I - A) for a matrix that may well be $50 \dot{0} \times 50 \dot{0}$ or eveṇ $10,000 \times 10,000$: we must \$nciude many companies to treat the economy with any realism. Is there some way to calculate ($\mathrm{I}, \mathrm{A})^{-1}$ easily? See Section 3.

- \quad 2.7 Exercises
i. Although we have considered individual companies "شaking specific products like stoves; the model can be applied to broadly-drawn sectors of an economy. This "two-company" fictional example. is 0 taken from [8], page 61: in hundreds of billions of dollars; let the flow be:

> CONSUMPTION

243

This array should be read as follows: there is a total flọw of 70 (hundred-billion dollars) among two "companies," agriculture and manufacturing, and one "open sector," households. Agriculture uses, 4 units of its own production, 8 units of manufacturing production (fertilizer, machines, etc.) and $8^{\text {* }}$ units of household production (labor), 20 units in all, to produce 20 units which are distributed as follows: 4 to agriculture, 6to manufactufing, 10 to households. The input of , 6 units of household production (labor) to household consumption is domestic labor - the labor of housewives, for example.
The data above is not the Leontief input "output array we have studied, but Me can calculate the Leontief matrix from it easily. . The recipe of inputs to agriculture is $4 / 20$ from agriculture and $8 / 20$ from manufacturing. The recipe of inputs. to the manufacturing sector is $6 / 30$ from_agriculture and $18 / 30$ from manufacturing. Thus the technical matrix and final demand vector are

$$
A=\left(\begin{array}{lr}
4 / 20 & 6 / 30 \\
8 / 20 & -18 / 30
\end{array}\right) \doteq\left(\begin{array}{ll}
.2 & .2 \\
.4 & .6
\end{array}\right) \text { and } \vec{d}=\binom{10}{4}
$$

a. Hsing the A and \vec{d} just above, hand-calculate the solution \vec{x} of the set of linear equations.

$$
\cdot \quad \cdot \quad(I-A) \vec{x}=\vec{d}
$$

b. Calculate $(I-A)^{-1}$ and then find \vec{x} again from $\vec{x}=(I-A)^{-1} \vec{d}$.
c. How could you have predicted your answer to a. afid b. from the table in the exerçise?
(Çontinued in Exercise 5.)
2.: In this exercise, we alter Exercise 1 . so that agrlculture, .manufacturing and households are the three sectors or "companies" involved, while savings is the open sector. Each "company" produces its product (which is still labor in the case of the households) so as to supply the other two companies and create a final product called investment, while invested funds, called savings, are inmeyted only to the household sector (say, to build houses. This example, again in hundreds of billions of dollars, is "from \{8\}, page 182:

CONSUMPTION

a. Convert this data into a 3-company Leontief model by finding A and \vec{d} by the method explained in Exercise 1.
b. Predict \vec{x} from the tablie ${ }^{\circ}$ above withoúti any use of the Leontief model.
c. Solve $(I-A) \vec{x}=\vec{d}$ for \vec{x} : Show your calcutations in detail.
d.-Gatcutate $(I-A)^{-1}$ and then get $\bar{x}-$ from $_{x}^{x}=(I-A)^{-1} \vec{d}$. Show your.calculations. ?
Answers to b, c, d should all bẹ the same. This exercise is cqntinued in Exercise 6.

$\frac{\text { 3. HŌW TO CALCULATE }}{}(\mathrm{I} \cdot-\mathrm{A})^{-1}$ EASILY

3.1 An 01d Acquaintance Returns

There is an elegant way to calculate (I-A) ${ }^{-1}$. In the back of your mind, you should think of the matrix A as though it were a single number (say a) and of I as though iéwere 1 . Then $(I-A)^{-1}$ becomes analogous to

$$
\frac{1}{\sqrt{-a}} \text { and } \frac{1}{1-a}
$$

should make you think of … geometric series ! $\frac{1}{5}$ You recall the geometric series formula
(7)
$1+a+a^{2}+a^{3}+\cdots$
$=\frac{1}{1-a}$
(if $|a|<1)$.

For our, matrix A, the conditions, ${ }_{i j} \geq 0$ and "column sums $\Sigma_{i}{ }^{i}{ }_{i j}<1 "$ take the place of $|a|<1$ and it.is true that (8). $I+A+A^{2}+A^{3}+\ldots=(I-A)^{-1}$,
a complete analogy to (7)
3,2 How the Sèries Aids Calculation of (I A A) ${ }^{-1}$
We'll consider a plausibility argument for (8)
(3) shortty (an ironclad proof-is.just a fittle beyond the
intended level of this paper because it requires "matrix norms"), but first let's see the usefulness of (8). If A^{4}, A^{5}, A^{6} and all the higher power terms are "negiligibly small," then the 4 -term partial sum $I+A^{-}+A^{2}+A^{3}$ is a good approximation of the hard-to-compute matrix inverse $(I-A)^{-1}$ needed for (6): (The inverse is nasty to compute: think of the methods of matrix-inversion you know and consider applying them țo a 30×30 or $20000_{0} x 2000$, matrix I-A.) In fact, a partial sum of quite a few terms
from (8) is cheap and convenient to compute by comparison to direct computation of (I-A) ${ }^{-1}$.

3.3. An Example*

> Just to see how the calculation goes, put
> $\checkmark A=\left(\begin{array}{rrr}.1 & .2 & .1 \\ 0 & .2 & 0 \\ .2 & 0 & .1\end{array}\right)$ so that $I-A=\left(\begin{array}{rrr}.9 & -.2 & -.1 \\ 0 & .8 & 0 \\ -.2 & 0 & .9\end{array}\right)$.
and, to four decimal places,

$$
(I-A)^{-1}=\left(\begin{array}{ccc}
1.1392 & .2848 & .1266 \\
0 & 1.25 & 0 \\
.2532 & .0633 & 1.1392
\end{array}\right)
$$

You should check all the calculations here. Use an electronic calculator. Let's look at some partial sums of the geometric series:

$$
\begin{aligned}
& I+A=\left(\begin{array}{rrr}
1.1 & .2 & .1 \\
0 & 1.2 & 0 \\
.2 & 0 & 1.1
\end{array}\right) \\
& A^{2}=\left(\begin{array}{ccc}
.03 & .06 & .02 \\
0 & .04 & 0 \\
.04 & .04 & .03
\end{array}\right), \text { thus } I+A+A^{2}=\left(\begin{array}{ccc}
1.13 & .26 & .12 \\
0 & 1.24 & 0 \\
.24 & .04 & 1.13
\end{array}\right) \\
& A^{3}=\left(\begin{array}{rrr}
.007 & .018 & \\
0 & .008 & 0 \\
.010 & .016 & .007
\end{array}\right), \text { thus } I+A+A^{2}+A^{3}=\left(\begin{array}{rrr}
1.137 & .278 & .125 \\
0 & 1.248 & 0 \\
.25 & .056 & 1.137
\end{array}\right) \\
& A^{4}=\left(\begin{array}{rrr}
.0017 & .005 & .0012 \\
0 & .0016 & 0 \\
.0024 & .0052 & .0017
\end{array}\right) \text {, thus } \\
& I+A+A^{2}+A^{3}+A^{4}=\left(\begin{array}{rrr}
1.1387 & .283 & .1262 \\
0 & \cdot & 1.2496 \\
.2524 & .0612 & 1.1387
\end{array}\right)
\end{aligned}
$$

This five-term partial sum is convincingly close to $(I-A)^{-1}$. Tbis example was fabricated so that the infinite / series would converge within a few terms; entrics like : . 1 and .2 besome rapidly smaller when multiplied by one . anothet in matrix products. However, in a large matrix A the enfries would mostly be small and many would be zero. Remember, all $a_{i j}$ are ≥ 0 and the column sums are less than one. The geometric series is a practical way to approximate (I-A) ${ }^{-1}$.

3. Why Geometric Series Extends to Matrix Cases

A plausibility argument for the truth of (8) was. . promised. This matrix calculation closely mimics the dsual proof of the scalar case (7°) : notice that. for , any finite partial sum,

$$
\begin{equation*}
\left(I+A+A^{2}+\cdots+A^{k-1}\right)(I-A)=I-A^{k} \tag{9}
\end{equation*}
$$

AIl other terms cancel out. For matrices liké. our A with small' positive entries, the powers A^{k} approach the zero $n \times n$ matrix 0 as k increases, because products . of small, positive numbers get smaller. To say

$$
\lim _{k \rightarrow \infty} A^{k}=0
$$

- means that all n^{2} of the matrix entries approach zero" ás k increases, and this is true for the matrices we are studying. Now let $k \rightarrow \infty$ in (9):

$$
\left(I+A+A^{2}+A^{3}+\ldots\right)(I-A)=I-0=1
$$

But this exactly says that $(I-A)^{-1}=I+A+A^{2}+A^{3}+=$ - $3.5(I-A)^{-1}$ Will Have Nonnegative Entries

From (8) we can conclude that all the entries of (I-A) ${ }^{-1}$ will be ≥ 0. (This means that negative production levels x_{j}, cannot arise in (6), which is comforting: we would throw away a model that failed to yield all the $\left.x_{j} \geq 0.\right)$ To see that ($\left.I-A\right)^{-1}$ cannot have negative entries, simply recall that $a_{i j} \geq 0$ for all i, j. Thus I, A, A^{2}, $A^{3}, A^{4} \ldots$ all contain entries that are $\geq 0^{\circ}$ (think about
the multiplication $A^{0} \cdot A=A^{2}$, and so on.) Then their sum $I+A+A^{2}+\ldots=(I-A)^{-1}$ al so has non-nega,tive entries.

3. 6 Exercises

3. Using $A=\left(\begin{array}{ll}.6 & .4 \\ .3 & .4\end{array}\right)$;
a. show that $(I-A)^{-1}=\left(\begin{array}{cc}5 & 10 / 3 \\ 5 / 2 & 10 / 3\end{array}\right)$. ,
b. Write and run a•short computer program that calculates and printsI $+A, I+A+A^{2}, I+A+A^{2}+A^{3}, I+A+A^{2}+A^{3}+A^{4}$, etc. Print partjal sums unfil you have $\left(1^{\prime}-A\right)^{-1}$ well approximated. This will take quite a, few terms.
c. How many terms must you include in the partial sum in b.

- before you have approximated (I-A) within .5 in each . entry? Within . 05? Within . 005?

4. Verify the matrix calculation in (9). State each law of matrix Glgebra you use (e.g., the "left distributive law").
5. (Exercise 1, continued) for the matrix A and demand vector d' of Exercise 1, calculate by computer successive approximate solutions

$$
\begin{aligned}
& (I+A) \vec{d} \\
& \left(I+A+A^{2}\right) \vec{d} \\
& \left(I+A+A^{2}+A^{3}\right) \vec{d}
\end{aligned}
$$

etc.

- These will converge slowly to your solution $\dot{\vec{x}}$ in Exercise 1 .

6. (Exercise 2, continued) for the matrix A and demand vector \vec{d} of Exercise 2, cंalculate successive approximations of \vec{x} by using partial sums of the series for $(I-A)^{-1}$.

4. MODELING LABOR IN LEONTIEF'S ECONOMY
 4.7 The Value of Labor

Now let's turn to the economic question we raised in Section 2.6: can the public contribute enough labor to the economy to pay for the.final-demand market basket $\overrightarrow{\mathrm{d}}$ it has ordered? It'is easy to calculate the yalue of
labor in our economic model. To make one dollar's worth of the $j^{\text {th }}$ product, we recall, involves $a_{1 j}$ dollars of product $1, a_{2 j}$ dollars of product $2, \ldots$, and $a_{n j}$ dollars of product. n; in all the dollar's worth of product j contains

$$
a_{1 j}+a_{2 j}+\ldots+a_{n j}<1
$$

dollars worth of input materials made by the n companies. The maximum amount that can be paid for labor is

$$
a_{0 j}=1-\sum_{i=1}^{n} a_{i j}
$$

dollars per dollar's worth of product j that is manufactured. The new constant $a_{0 j}$ (for $j \neq 1,2,3, \ldots, n$) are labor's maximal slice of the pie. When x_{j} dollars of product j are made, labor receives $a_{0 j} x_{j}$ dollars in pay. Thus the total economy-wide earnings of labor are at most

$$
\begin{aligned}
\sum_{j=1}^{n}, a_{0 j} x_{j} & =\left(a_{01}, a_{02}, a_{03}, \ldots, a_{0 n}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =\vec{a}_{0} \cdot \vec{x}_{1} .
\end{aligned}
$$

Here \vec{a}_{0} denotes the row-vector $\left(a_{01}, a_{02}, \ldots, a_{0 n}\right)$.

4.2 Labor's Earnings and Consumption are Equal

The total worth of the final demand lector \vec{d} is $d_{1}+d_{2}+\ldots+d_{n}$ dollars. Thus the final demand vector d is feasible (can be paid for by the public) if.

$$
\begin{equation*}
\vec{a}_{0} \cdot \vec{x} \geq d_{1}+d_{2}+\ldots+d_{n} \tag{12}
\end{equation*}
$$

We will now prove that equality must hold in (12), $\vec{a}_{0} \cdot \vec{x}=d_{1}+d_{2}+\ldots+d_{n}$ if we use production levels $\stackrel{\rightharpoonup}{x}$ calculated from the Leontief model, from (6), and pay labor its. maximal earnings, the $a_{0 j}$ from (10). We will be proving that labor's earnings exactly pay for the "market basket" that households consume. This turns out to be true because we have build "conservation of value" into the model: the value of output is equal to ie value of input products and labor if we use (10).

The proof involves more matrix algebra, First, notics that, by introducing an n-vector contain eng all, ones,

$$
u=(1,1,1, \ldots, 1)
$$

we can write the right side as a matrix product:

$$
\begin{array}{r}
\left.d_{1}+d_{2}+\ldots d_{n}=(1,1, \ldots, 1)\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right)=\cdots: \begin{array}{l}
i \\
\vdots
\end{array}\right] \tag{0}\\
\vdots
\end{array}
$$

氺: :

Now we can write the n equations of (10) compactly as
(13) $\left(a_{01}, a_{02}, \ldots, a_{0 n}\right)=(1,1 \ldots, 1)-(1,1,1, \ldots, 1) A=u \cdot(I-A)$
The $(1,1, \ldots, 1)$ A term here gives the column sums that rapper in (10). Now.
$\cdots(14) \quad a_{0} \cdot \vec{x}=$
 5. ABOUT THE MODEL AND ETS USES

- 5.1 Open and Closed Leontief Economies.

. . The model we have. looked at is known as Leontíef's open model because of the separate treatment of companies and public. In a closed model, the public (or labor force or households) is treated as one more company to which the input recipe is the market -basket ${ }^{\prime}$ diwhile the output is the labor ingredient in the input recipe of more traditional companies. As we have just seen, the dollarworth of inputs to the household sector fill equal the dollar-worth of its output (labor) in the same way that the inputs of goods and labor to manufacturer equal. the value of its output. The open and closed models are equivalent. The distinction between "final consumption goods" in our open model and inputs that the household

$$
250
$$

sector "processes" into an output product called labor. in a closed'fiodel' is of economic.interest, but makes no .mathematical aifference:

5. 2 Profit and Savings Have Been Inc luded

We have emphasized so strongly the equal value of the inputs and outputs of each company that you may wonder how a company cån make any profit. In fact, profit is one of the input ingredients to each company. One of the products or commodities that flows through the economy we have modeled is money! The paper manufacturer mentioned at the beginning of this paper really receives a few pennies of money along with the physical inputs (like wood fiber) and labor-time in exchange for the dollar's worth of outpui (paper) made from these inputs. The public receives some money as part of its market basket -- this is savings. Money is simply one of the n products "manufactured" by n companies: one company in this economy is a, commercial bank. Certainly the role played by money is unrealistically. simplified... we have not built an investment or credit structure into the model. That can be done, however. This model is only concerned with the compiex flof of goods among the companies and consumerliabor sectot of the economy. No risk is modeled .- each compan knows how much of its product, it çan sell to the public; prices do not change. We are modeling the distribution process of the economy, notits other aspects.

5. 3 Using Linear Aligebra in Economics .- Benefits and Difficilities

\cdots Leontief hás chosen linear algebra as his mathematical tool. He benefits from that .. to find \vec{x} in terms of $\overrightarrow{\mathrm{d}}$ we-simply solve a (large) set of Iinear equations, which we know how to do. The great contribution of
Leontief's models is that they permit actual calculation of general equilibria in terms of input data (the techmological constants $a_{i j}$ and final demands d_{j}) which we.
can hope to actually know. Other models that attempt to equate supply and demand (i.e., to study general equilibrium) tend to pe so theoretical that no useful numbers _ can be calculated from them; once can instead use themeto prove that one or more general equilibria must exist! In fact, several Leontief model.s have been fully researched and are in use as planning deyices.

But there is a price paid for the use of linear al.'gebra; the models are subject to a key ctiticism. We have assumed "constant returns to scale," as ecoñomists say. This means that, if a specific recipe of inputs makes one dollar's worth of output for a given company, then N copies of that recipe will make exactly"N dollar's worth of output. In reality, companies can reduce the cost-per-unit-produced by enlarging their production. For example, once an assembly line has been purchased and installed, it can be used for one, two or three eight-hour shifts daily. When used for three shifts, the capital investment in the machinery is spread over three times more output than is the case if pne shift is used. The input of capital to any one, unit of production is much less when the machines are used to capacity. (There are extra expenses involved in running machinery around the clock -- repair and maintenance expenses, extra pay for wo'rk done on night shift, etc. - but these expenses are easily overcome by the three-to-bne savings.) It is. generally less costly (per unit of production), to massproduce more of any product than less; that is, there are "economies of scale." This phenomenon is an important reason for the clear tendency toward large corporations in our economy.

- Linear equations like (5) cannot deál with economies of scale. Indeed, doubling \vec{d} in (5) leads to a new solu-. tion \vec{x} that is double the old $\vec{x} .0$ "Constant returns to. scale" is. an inevitable assumption if linear algebra's calculation advantages are to be exploited.

The use of constant technological data, the $a_{i j}$, has also been widely criticized. The input-output process in each company is excessively rigid in the model. In reality, a furniture manufacturer might very casually switch from one upholstery cloth to another. However, that amounts to creating a whole new economy in our model! The recipe for the furnitur maker must be altered". (changing a column of A) and new production levels must be calculated for all companies. This is another price for the use of linear algebra - all the companies are rigidly interconnected.

5.4 The Model is Widely Used as a Planning Aid

When a nation, a region or a city needs to know the impact that alternative development projects -- a steel.mill, a cultural center, an auto assembly line, a food processing plant - will have if built, input-output ánalysis is of great help. The model can predict the flow of goods and services, including transportation needs, new employment and pollution problems (such factors may be added to the model we haye discussed) and point to serious shortfalls or oversupplies in the current economy. Its answers are only approximate, of course, but thergive crucial insight into a very complex problem.

The United Nations and fe World Bank use Leontief models. The Bureau of Labor Stistics of the U.S. federal government has been a major sponsor of Leontief's research and employs a massive/model of the U.S. economy. Government agencies of mop than fifty other countries, including the Scandinalan nations, Western Europe, Eastern Europe, the USSR and many developing nations use such models. .

5.5 The Model's Great Impact on Economics

In Science magazine, Walter Isard and Phyllis Kaniss (10) reviewed Leontief's contributions at the time of his winning the Nobel Prize. They highlight the power of input output analysis for planning, but concede that the model's predictions have contained large errors when

WASSILY W. LEONTIEF was born in Leningrad in 1906. He fled Communist rule in Russia in the early 1920 s with his family. At the age of 22° he completed a doctorate at the University of Berlin. From 1929 to 1931 he was economic advişor to the Chinese government; in 1931 he joined the National Bureau of Economic Research in New York. His pain inputoutput methodology matured during the ' 30 s . He was chief of the Russian Economic Subdivision of the Office of Strategic Services dưring World War II. Leontief has been a professor at Harvard since 1946. Sources (9) and (10).
the method has been used by inexperienced planṇers. ${ }^{\text {bu }}$ Such errors can arise, they point out, in these key ways:
-- constant coefficients in the matrix A make the "recipes" of inputs used by companies inflexible;
-- the effects of inevitable changes in technology are s not included;

- the extensive and precise data needed for the model is often unavailable, "borrowed" from another region or nation, etc. This has been a problem in developing nations, especially.
-- one product can sometimes be substituted for another in our economy; Leontief does not include this possibil. ity in his models.

Aside from planning and predictive uses, Isard and Kaniss report a major impact upon economics. Since the fordel requires complete, consistent data, it has forced many nations to take economic data gathering more seriously. Uniform definitions of products and sectors of an economy and uniform accounting procedures have been needed; thus planning and data collection agencies in many nations have coordinated their programs. Much easier comparative *study of related national economies has resulted.

Writing in Newsweek [9], Paúl Samuelson (himself a famous doctoral student of Leontief's at Harvard) mentioned 254
these uses of input-output analysis:
-- As the Vietnam War wound down, Leontief predicted the results of the shift of a billion dollars in gross national product from war to peacetime production. He concluded that there would be an expansion in employment.

- Leontief discovered that exports from the United States are more labor intensive than our imports, confounding those who decry the use of "cheap foreign labor" as a source of unemployment here. His conclu. sion is that the net result of importation and export tation is to indrease use of U.S. labor.
.- The U.S. Congress discovered the great, impact of steel-price raises on inflation in the United States.

6. REFERENCES

Advanced References:

1. R.G.D. Allen, Mathematical Economics, 2nd ed., St. Martin's Press, New York, 1959.
2. David Gale, Theory of Linear Economic :lodels, Prentice-Hall, Englewood Cliffs, N.J., 1961.
3. Kassily W. Leontief, The Structure of the American

- Economy, 1919-1929, Harvard University Press, Cambridge, Mass., 1941.

4. Wassily W. Leontief, The Structure of the American Economy, 1919-1929, 2nd ed., Oxford University Press, Fairlawn, N*J., 1951.
5. Wassidy W. Leoñtief, Input-Output Economics, Oxford University Press; Fairlawn, N.J., 1966.
6. Ben Noble, "Application of Matrices to Economic Models and Social Science Relationships," a lecture in . Proceedings, Summer Conference for College Teachers on Applied Mathematics, University of Missouri - Rolla, 1971, published by C.U.P.M., Berkeley, 1973, pp. 111-117.
Among many elementary presentations of Leontief models the author's favorite is:
7. A.C. Chiang, Fundamental Methods of Mathematical Economics, McGraw Hill, New York, 1967.

The author wishes to thank Holden-Day, Inc., for permission to draw exercises and data from this source:
8. Andrei Rogers, Matrix Methods in Urban and Regional Analysis, Holden-Day, San Francisco, 1971, pp. 59-77.
I found the three magazine articles listed below to be particularly understandable and worthwhile. (There are many articles by and about, Leontief in periodicals that almost all college librarics will-have. Look up "Leonticf"
in the Reader's Guide to Periodical Literature.)
9. "Nobel Laureate Leontief," Paul Samuelson, Newsweek, Vol. 82, Nov. 5, 1973, p. 94.
10. "The 1973 Nobel Prize for Economic Science," Walter Isard and Phyllis_Kaniss, Science, Vol. 182, Nov. 9, 1973, pp. 568-591.
11. "Input-Output Economics/" Wassily W. Leontief, Scientific American, October, 1951.

$$
\frac{\text { 7. Exércises: ThéYugoslavian Economy }}{6} \text { in } 1962 \text { and } 1958^{\circ}
$$

7. In [8] page $69 \mathrm{ff} \%$, there is given an eight-"company" model of the Yugoslavian economy as of 1962 . The data is reproduced, by permission of Holden-Day, Inc. - The closed sectors or "companies" are given in rows/columns numbered 1 through 8. A variety of open sectors are given in columns io-14; use the total in column 16 to represent a single open sector. The input-output matrix A is given also. You will have to construct \vec{d} as in Exercise 1.

Your assignment, should you choose to acćept it:
a. Use a standard linear-equations solving program, arready available for your computer, to find the production vector $\stackrel{\rightharpoonup}{x}$ for this model.
b.' Write a linear-equations solving progräm that, say, uses Gauss-ellmination, to solve the equat \bar{j} ons ($(I-A) \vec{x}=\vec{d}$ for this model. (This is a fairly large project.)
, ct. Have the computer priṇt out successive approximate solutions
for this model, as required in problem 6. Convergence will not be immediate but will occur by about the twentifth round.
8. Consolidate the data in the tables used in Exericise 7 so that the - production and consumption "industries", are.

- 1. "manufacturing," made up of old manufacturing (1) and construction (4);

2. 'agriculture," qade up' of the old agriculture (2) and forestry'. 7 (3);
3. serijices, made up of the 81 d sectors $(5),(6) ;(7),(8)$ The open sector is the subtotal row/column-16 used in

- Exercise 7, Repegrt Exercise 7 for this consolidated model. Comparesto the results of Exercise 7.

9. Comparable data (to that of 1962 used in Exercises 7 and 8) for 1958 appear on p.21. You should regard rows/columns 1-8 as the "companiés" and subtotals in column 16 as"bthe single open sector, as in Exercise 7:
a. "Calculate the appropriate matrix A and final demand vector す。
b. Solve the linear equations (I-A) $\vec{x}=\vec{d}$.
c. Approximate \vec{x} by using successive partial sumg of the series for $(I-A)^{-1}$, as. required in Exercise 5. ${ }^{\prime}$.

257

Tables for Exercises 7 and 8, reproduced'from" [8], by permission, of Holden-Day, "Inc.

03420	0 0sio	00383	$0: 2926$	0.2340	00688	0.3262	0
0.0418	0. 3277	0.0298	0 .	0.0502	$0.07 i 1$	00003	0
00168	00003	00048	00077	0.0004	0.0024	0.0028	0.0010
0 OH 4	00008	0.0103.	0.is86	0.0527	0 008	0.0030	0.0030
0 023s	0 c071.	$00.20{ }^{\circ}$	0.0461	0.0662	0.0219	0.0094	0.0110
0 015:-	00050	0.006?	00237	0.0129	0.0101	0,0x00	0.0114
0 axi	$00057-$	0.0080	00103	0.0172	-0.012	0.0120	0.0078
0 0083	00001	00011	00024	0.0021	0.0052	0.0028	0 003s

Trogrammed by Ervin Eet1

Technisal Cooficiont Marinx for she 'Yugetarwn Ecomomy 196 ? 1

The 1958 Yugoslayian Economy

3. b. About 50 iterations are needed to get noticeable convergence. Results:
$\begin{array}{r}\text { THE } \begin{array}{r}\text { 5 TERM APPROXIMATION } \\ 2.838399 \\ 1.091999\end{array} \quad 1.455999 \\ \hline\end{array}$

THE 10 TERM	APPROXIMATION IS
3.979849	2.447314
1.835486	2.756191

THE 15 TERM APPROXIMATION IS
4.518542 .2 .915179
$2.186384 \quad 3.060952$

THE 20 TERM APPROXIMATION IS
$4.772777^{\circ} 3.135986$
$\begin{array}{ll}2.351990 & 3.204784\end{array}$
THE 25° TERM APPROXIMATION IS $4.892762 \quad 3.240196$ $2.430147 \quad 3.272664$
$\begin{array}{cc}\text { THE } 30 \text { TERM APPROXIMATION IS } \\ 4.949389 & 3.289377 \\ 2.467033 & 3.304700\end{array}$
THE 35 TERM APPROXIMATION IS $4.976114 \quad \because 3.312588$ $2.484441 \quad 3.319820$

THE 40 TERM APPROXIMATION IS

$4.988 / 27$
$2.492657: \quad 3.323542$

$\begin{array}{rc} \\ \text {-THE } 45 \text { TERM APPROXIMATION IS } \\ .4 .994679 & 3.328712 \\ 2.496534 & 3.330323\end{array}$
$\begin{array}{rr}\cdot 4.994679 & 3.328712 \\ \cdot 2.496534 & 3.330323\end{array}$
THE 50 TERM APPROXIMATION IS
$4.997489 \quad 3.331152$
$2.498364-3.331912$
5. Reproduction of computer results are just below, giving the matrix. sums änd results after multiplication by \vec{d} :

262
6. Reproduction of computer printouts of successive matrix - approximations and the \vec{x} they yield from multiplication by \vec{d} :
THE TERM APPROXIMATION IS
$\left(\begin{array}{lll}1.633799 & 0.690499 & 0.309799 \\ 1.266199 & 2.699099 & 0.323299 \\ 0.979199 & 0.833999 & 1.432899\end{array}\right.$

THE 10 TERM APPROXIMATION	IS	
1.959441	1.084958	0.420515
1.952976	3.532773	0.555972
1.410627	1.356132	1.579797

THE 15 TERM APPROXIMATION IS

2.080723	1.232059	0.461666
2.209013	3.843307	0.642840
1.571250	1.550941	1.634293

THE 20 TERM APPROXIMATION IS

2.125927	1.286879	0.477001
2.304429	3.959032	0.675213.
1.631108	1.623539	1.654602

THE 25 TERM APPROXIMATION IS

2.142771	1.307308	0.482716
2.339987	4.002158	0.687277
1.653415	1.650594	1.662170

THE 30 TERM APPROXIMATION IS

2.149048	1.314921	0.484845
2.353239	4.018230	0.691773
1.661728	1.660677	.1 .664991

THE 35 TERM APPROXIMATION IS

2.151388	1.317759	0.485639
2.358177	4.024219	0.693449
1.664826.	1.664434	1.666042

THE 40 TERM APPROXIMATION IS

2.152259	1.318816	0.485935
2.360017	4.026451	0.694073
1.665980	1.665834	1.666433

- THE 45 TERM APPROXIMATION IS

.2 .152584	1.319210	0.486045
2.360703	4.027283	0.694306
1.666411	1.666356	1.666579

ANO LEADS TO OUTPUTS
19.997815
19.997815
29.995388
19.997107

THE 50 TERM APPROXIMATION IS
$\left(\begin{array}{lll}2.152705 & 1.319357 & 0.486086 \\ 2.360959 & 4.027593 & 0.694392 \\ 1.666571 & 1.666551 & 1.666634\end{array}\right)$

AND LEADS TO OUTPUTS
$\vec{x}=\left(\begin{array}{l}19.999185 \\ 29.998281 \\ 19.998921\end{array}\right)$

ANO LEAOS TO OUTPUTS

$$
\overrightarrow{\dot{x}}=\left(\begin{array}{l}
14.127699 \\
17.607299 \\
12.222199
\end{array}\right)
$$

ANO LEAOS TO OUTPUTS
17.811995
25.381104
. 17.102386
ANO LEAOS TO OUTPUTS
19.184608
28.278700
18.920162

ANO LEAOS TO OUTPUTS
19.696132
29.358532
10.597582

ANO LEAOS TO OUTPUTS
19.886759

29:760947
19.850033

ANO LEAOS TO OUTPUTS
19.957799.
29.910913
19.944112

ANO LEADS TO OUTPUTS

> 19.984272
> 29.966800 19.979172

ANO LEADS TO OUTPUTS

- 19.994138
29.987627
19.992238
9.995388
9.997107
19.998921

7. Rogers, in [3], page :'2, gives these results which i have not
confirmed. Only $\overrightarrow{\mathbf{d}}$ and five $\overrightarrow{\mathbf{x}}$ vectors are given. vecto

Programmed by Ervin Bell
(Reproduced by permission of Holden-Oay, Inc.

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.
Your Name

Page
O Upper
OMiddle
O Lower

Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution of the difficulty in this box. \bigcirc Corrected. errors in materials. List corrections here:

\bigcirc
Gave student better explanation, example, or procedure than in unit. Give brief outline of your addition here:

Assisted student in acquiring general learning ànd problem-solving skills (not using examples from this, unit.)
a

Instructor's Signature \qquad

STUDENT FORM 2

Unit Questionnaire
Newton, MA 02160
\qquad 'Unit No. \qquad .

Institution

\qquad Course No.
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit -
Unit would have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting Too much detail; I was of ten distracted
2. How helpful were the problem answers? \because.

Sample solutions were too brief; I could not do the intermediate steps
___Sufficient information was given to solve the problems Sample solutions were too detailed; I-didn't need them.
3. Except for fulfilling the prerequisites, how much did'you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
\qquad A Lot
Somewhat
A Little
Not at all
4. How long was this unit in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?
Mucn
Longer Somewhat
About , , Somewhat
Much Shorter ${ }^{\text {• }}$
Longer Longer the Same ' ___Shorter
5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)

Prerequisites
Statement of skills and concepts (objectives)
-Paragraph headings
Examples
___Special Assistance Supplement (if present)
___Other, please explain.
6. Were any of the followilg parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites
___ Statement of skills and concepts (objectives)
Examples
Problems
-Paragraph headings
Table of Contents
___Special Assistance Supplement (if present)
_O_OTher, please explain
Please describe anything in the unit that you did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)
ump

VISCOUS FLUID FLOW AND THE INTEGRAL CALCULUS

Cole and monographs in undergraduate MATHEMATICS AND ITS APPLICATIONS PROJECT

- VISCOUS FLUID FLOW AND THE INTEGRAL CALCULUS
by Philip Tuchinsky
1

Philip Tuchinsky

TABLE OF CONTENTS

1. Laminar flow

1
2. POISEUILLE'S LAW2
3. WHEN OOES THIS LAW HOLO?
4. the velocity of flow and the amount of flow
5. THE TOTAL FLOW THROUGH A PIPE OF RAAOIUS R
6. the riemann integral

7.* the riemann-stieltjes integral
10
8.' DIscrete summation 11
9. integration: local data yields global results. 13
10. CALCULATION OF VISCOSity 14
11. EXERCISES15

12. REFERENCE 16
13. SOLUTIONS OR HINTS TEEEXEREISES 17
*This section may be omitted without affecting the readability
of later sections.

268

APPLIAATIONS OF CALCULUS to ENGINEERING edc/umap / 55 chapel st./ newton, mass. 02160
$28:$

Intermodular Description Sheet: UMAP Unit 210
Titie: VISCOUS FLUID FLOW AND The integral CabcUlus
Author: Philip Tuchinsky
7623 Charlesworth
Dearborn Heights, MI 48127
Dr. Tuchinsky is a member of the Computer Science Department of Ford Motor Company's Research and Engineering Center. He formerly taught in the Mathematical Sciences Department at ohio Wesleyan University (where earlier editions of this paper were written).
Review Stage/Date: $\quad 111$ 9/1/78
Classification: APPL CALC/ËNGINEERING *
Suggested Support Materials: None are essential. A lab set up like that shown in Section 10 would make an interesting display. Exercise 4 calls for use of a computer or programmable calculator.
Approximate Class Time Needed: One 50 minute class.
Intended Audience: Calculus students learning how to integrate polynomials. The paper is suitable for independent reading and seminar presentation by more advanced students as well
References: See Section 12 of the paper.
Prerequisite skills:

1. Calculation of the integrals $\int x d x$ and $\int x^{3} d x$.
2. Knowledge that $\int c f(x) d x=c \int f(x) d x$.
3. Recognition of an integral as a limit of Riemann sums.
. Comfort with summation results like $1+2+3+\ldots .++n=$ $n(n+1) / 2$.
4. Elementary computer programming (for Exercise 4 only).

Output Skills:

1. Replace'a simple integral by a discrete sum, calculate both and compare results.
2. Average a function over an interval.
3. Reduce simple Riemann-Stieltjes integrals to Riemann integrals and calculate the latter (if the optional Section 7 in included).
Discuss how well Poiseuille's Law models a specified viscous fluid flow situation.
4. Describe a laboratory procedure for finding the coefficient of viscosity of a fluid.
5. Identify local vs. global information.

UMAP Editor for this module: Solomon Garfunkel

Other Related Units:

The Human Cough (forthcoming as UMAP Unit 211) Starts with the

- result of this paper that total flow is proportional to R^{4} and goe on to disciss maximizing the speed. of air flow during a cough. Differential calculus is its method.
. modules and monographs in undergraduate. mATHEHATICS AND ITS APPLICATIONS PROJECT (UMAP)

The goal of UMAP is to develop, through a community of users and developers, a system of instructional modules in undergraduat mathematics and its applications which may be used to supplement existing courses and from whict complete coursest eventually be built.

The Project is guided by a National Steering Committe of mathematicians, scientists and educators. UMAP is funded by a grant from the National Science Foundation to Education Development Center, Inc., a publicly supported, nonprofit corporation engaged in educational research in the U.S. and abroad.
PROJECT STAF،

Ross L. Finney Solomon Garfunkel

Fellicia Weitzal ${ }^{*}$
Barbara Kelczewsk
Dianne Lally
Paula M. Santillo

Director
Associate Director/Consortium. Coordinator
Assóciate Director for Administration, Coordinator for Materials Production Project Secretary
Financial Assistant/Secretary
national steering committee
W.T. Martin

Steven J. Brams
Llayron Clarkson
Ernest J. Henley
Donald A. Larson
William F. Lucas
Frederick Mostellér
Walter E. Sears
George Springer
Arnold A. Strassenburg
Alfred B. Willcox

MIT (Chairman)
New York University
Texas Southern University
University of Houston
SUNY at Buffalo
Cornell Univelsity
Harvard University
University of Michigan Press
Indiana University
SUNY at Stony Brook
Mathematical Association of Ameri

The Project would like to thank Melvin A. Nyman, Peter signell and L.M. Larsen for their reviews and all others who assisted in the production of this unit.

This material was prepared with the suppgrt of National a Science Foundation Grant No. SED76-19615. Recommendetions expressed are'those of the author and do not necessarily refiéct the views of the NSF nor of the National Steeringo Committee.

VIṠCOUS © Fluid flô' and the integral calculus

$\cdot 1 . \quad$ LAMINAR FLONY

- When a thick, sticky (viscous) fluid a pipe, it does riof all flow at the same"
 the fluid ćlosest to the wall of the pipe, suffers much friction with the wall that it hardly moves, at all, while fluid closer to the central -axis of the pipe moves more rapidiy. The fiuid's speed increases steadily as . the distance from the wall increases. Because of circular symmetry, the effecticis that, of concentric ${ }^{\circ}$) tųbes of fluid sliding over one another (see Figure 1).

Figúre r. Laminar flow in a Cylindrical pipe.

We call this Zaminar flow: each lamina or layèr of fluid moves at its own speed. Different laminae move at different speeds.

The exact way in which laminar flow happens was found by a French scientist, named Poiseuille more than a ceñ́tury ago. He was studying blood pressure, whiç had just been accurately measured for the first time. He wanted to know how much blood flows through a blood vessel in a given time. From that information and analysis of blood samples one can sayo how much oxygen. and nutrients are peing delivered to the cells serviced' by that blood, vessel. 'Knowledge, of blood flow is a basic part of understanding the body as a‘physical

Poiseuille's result about viscous fluid $f 1 \mathrm{~g} w$ has many other applications. We can use it to study the flow of air in the, windpipe, oi,l in a pipeline, water in a pipe system, grain flowing by pipe, into the hold. of a ship, etc. The assumptions invoived cin the result make it more applicable to some of these problems than others (see Sèction : 3), ${ }^{\text {b }}$ but it provides a good first approximation to them all.

Another imporrtant use of \triangleleft Poiseuille 's 'Law "is to measure the relative viscrosity, of: fluids. More about * this fater, in Section $10:$

We will use Poiseuille's Law to carculate total flow through a pipe using arfinite sum and the "continuous summation" proces̀s called integration. The two results ;will deserve comparison.

2. POISEUILLE'S LAW

Poiseuille discovered and others "ater deduced from theory (see Section 12) that the veloeity of the particles of flyid at a distance rentimeters out from. the center axis of. the pipe is
$2(1)$

$$
v(r)=\frac{p}{4 k L}\left(R^{2}, r^{2}\right) \quad\left(c m / \sec _{0}\right)^{*}
$$

where (refer to Figure 2)
$R=$ radius of the piper in cm . (Thus $0 \leq r \leq R$)
L $\stackrel{*}{ }$ length of the pipe (im.)
$P=$ pressure change $\mathrm{P}_{1}-\dot{\mathrm{p}}_{2}$ down the length of
'the pipe', (dyne/cm²)
${ }^{*}{ }^{\prime}{ }^{\prime}=$. coefficient of viscosity (poise)

[^12](Let me remind you that pressure is force per unit cross sectional area.) One can prove that the pressure will decrease.stadily [as a straight line (linear) function] as the fluid moves through the pipe. It, is the difference in final vs. initial pressure that enters the equation. The cgs unit of viscosity, the poise, is named after Poiscuille.

The major assumptions that must be true to have equation (1) valid are these:
a). There must be no turbidity in the fluid. This, means that there is no swirling; particles of fuidemove-in straight lines down the pipe.
b) The speed of flow v is assumed to depend on. or onjy. Thus v.does not change as fluid
Moves down the length of the Ripe; and it does not. change with time; the flow isn peither, speeding up nor slowing down, it is siteady. s tate.
c) 'The fluid'is incompressable, i.e., made up of particles that cannot be crushed or packed. in closer thether, (by thé forces present):

JEAN LEONARD MARIE POISEUILLE (1797-1869) was a well-known physiologist and physicist. He. invented the mercury manometer to measure blood pressure, improving the pioneering work of Stephan hales. The law considered here appeared in a paper of 1840 and was found through fabora. tory experiments with distilled water, éther and mercury. The mathematical derivation was first found in 1860 by F. Néumann and J. E. Hágenbach, who named the result Poiseuille's Law. But the name is disputed: G. H. L. Hagen found the same. law independently in 1839; his work ${ }^{\text {l }}$ went unnoticed for decades. Referencè: Dictionary of Scientific Biography, 1975 edition, vol.II,
p. 62 .
d) Fluid is conserved, i.e. neither creăted nor - lost, in the pipe. Thus no fluid is leaking out thrơugh the pipe wall and no feeder-.. . pipes are pouring fluid in or out.
e) The tube is horizontal and the (very slight) downward pulling effects of gravity are ignored. For a vertical tube this minor variation on (l^{\prime}) is true:
$=$

$$
v_{0}(r)=\frac{p+g \rho L}{4 k L}\left(R^{2} \cdot r^{2}\right)
$$

where g ${ }^{\text {al }} 980 \mathrm{~cm} / \mathrm{sec} / \mathrm{sec}$ is the gravitational constant and ρ is.. the density of the fluid, \because , i.e., its mass per unit volume. . For a slanţed pipe, these?hori ${ }^{\prime}$ ontal and vertical velocities must bè vector-added. For simplìicity we will . use (1). The pipe is a right-circular cylinder with
4 constant dimensions L tand R.

1. fluid there does not move at all. (Notice that $r=R$ leads to $v(R)=0$.)
${ }^{\text {h }} \mathrm{h}$) One assumption that is not, present: in other classes you may study so-called "ideal fluids" in which particles slip frictionlessly by each othér. We are - assuming that each layer exerts a drag on the layer next-further-in. Our's is ${ }^{\prime}$ not an ideal fluid.

These assumptions are satisfied to various degrees by the applications mentioned earlier. Swirling, turbid effects are bound to occur in any large diameter pipe. 'This 'limit's the usefulness of our' law in studying wąter pipes; oil pipelines, grain chutes, eţc. Blood vessels £léx: their dimensions change a little. Blood surges because of the heart's pumping. action; thus the flow is not steady-state. Oxygen and nutrients leave a blood vessel by osmosis through the pipe's wall and wastes are added to thé blood flow, so that fluid is only approximately conserved.

Despite these and other practical short-comings, Poiseuille's Law is a valid simplification of viscous fluid flow. It is the right sort of law: $v(r)$ is 'zero at the pipe wall and increases steadily as r decreases and we approach the pipe's center. It has a solid, well-understood theoretical basis. We can really calculate with if, as we shall shortly see. And in the laboratory, the assumed conditions cian be made almost true, giving a practical way to measure the viscosity coefficient k for any fluid. This coefficient is a* fundamental property of the fluid, important in deṣign and enganeer-ing work.
: We Nant to use Poistuille's Law to calculate the total f fow through a pipe of radius R. The filow F is the total volume of 'fluid passing through the pipe each second; in units of (cm$)^{3} / \mathrm{sec}$.
${ }^{*}$ First, we need a preliminary result. Consider, in Figure 3, any typical small piece of cross-sectional areat of the pipe, consistiong of $\triangle A$ square centimeters, located $r \mathrm{~cm}$ out from the center. How much fluid will leave the pipe'through this bit of area in one fecond? The fluid moves $(\mathrm{r}) \mathrm{cm}$ in the one second; thus a stack of fluid $y(r) \mathrm{cm}$ long f fonstant cross section $\Delta A(\mathrm{~cm})^{2}$ (shorin) will flow out of the pipe through ΔA. in the, one second. "This stack has volume $v(r) \cdot(\Delta A)$.
$\xrightarrow{\text { flow }}$
${ }^{4}$.
4

Figure 3.

Thus fluid leaves ΔA, at ạ steady rate of $v(r) \cdot \Delta A(c m)^{3} / \mathrm{sec}$.

$$
\begin{align*}
& \text { Summary: If } \Delta A \text { is any area through which } \\
& \text { fluid flows. at a'constant velocity } v, \tag{2}\\
& \text { then } v \Delta A \text { is the total flow through the } \\
& \text { area } \Delta A \text {, per second. }
\end{align*}
$$

5. THE TOIAL FLOW THROUGH A PIPE OF RADIUS R

- In the pipe's cross-sectional circle of radiufs R, 'the $\dot{\text { velocity }} v(r)$ given by Poiseuible's Law is the same, at all points located $r \mathrm{~cm}$ fron the center. If we
consider concentric $\dot{\text { rings }}$ of area (Figure 4), fthe fluid's velocity*will be approximately constant in.o each ring. We can then use (2) to calculate, the total flow through'each ring; the sum of these ring-by-ring flows will be the total flow through the pipe, which we set out to find.
*. To clearly identify these rings, partition the interval

$$
(0 \leq r \leq R)
$$

into n pieces using pártition points
0

$$
0=r_{0}<r_{1}<r_{2}<\ldots<r_{n-1}<r_{n}=R
$$

(perkaps not equal 11 y spaced)

The first, second, :.. regions are then chosen as sketched. For $j=1\} ;, \ldots, n$, the $j^{\text {th }}$, region is a ring with inner and outer radii r_{j-1}, and r_{j}, and-thus has area

$$
\left.\pi\left(r_{j}\right)^{2}+k_{j<1}^{2}\right)^{2}
$$

If we take n large and the $r_{j}{ }^{\text {i }} \mathrm{s}$ close to each other, the velocity of fluid flowing through any one region will be almost constant, although different from ring to ring, What value will approximate the constant velocity in the $\mathrm{f}^{\text {th. ring? Pick any point in that ring; }}$ say, pick a point that is t_{j} mplts out from the center
 for the $\mathrm{J}^{\text {th }}$ ring and (2) says that.
the flow through the $j^{\text {th }}$ ring $z v\left(t_{j}\right) \cdot\left[\dot{\pi} r_{j}{ }^{2} \dot{\pi} r_{j-1}{ }^{2}\right]$ We callot ${ }_{j}$ an evaruation point for the $j^{\text {th }}$ subinterval $\left[r_{j}{ }^{*}-1, r_{j}\right]$. .

Thus the totai flow through all n rings i's

$$
\begin{equation*}
F=\sum_{j=1}^{n} v\left(t_{j}\right)\left[\pi r_{j}^{2} \pi r_{j-1}^{2}\right] \tag{3}
\end{equation*}
$$

We write "approximately" instead of equality because we have replaced afl the various values of $v(r)$ in the $j^{\text {th }}$ ring by the single value $v\left(t_{j}\right)$. In fact, we have a vast family of approximations of F in " Equation (3). For any choice of a partition r_{0}, r_{1},' \cdots, r_{n} and any choice of evaluation points t_{1}, t_{2}, $\ldots . t_{n}$ (such that $r_{j-1} \leq t_{j} \leq r_{j}$ for each j) we get - an approximation of F. As we take larger values of n and more closely spaced r_{j} 's and t_{j} 's, the theory of integration tells us that such sums approach a limiting value more and morerclosely, and that limit is an integral.

6. THE RIEMANN INTEGRȦL

We must do a bit more work on Equation (3) before it is recognizable as a Riemann sum. Let the width of the $\mathrm{j}^{\text {th }}$ subjinterval be

$$
\Delta r_{j}=r_{j} \cdot r_{j-1}
$$

$$
\begin{aligned}
\pi r_{j}{ }^{2}-\pi r_{j-1}{ }^{2} & =\pi\left(r_{j-1}+\Delta r_{j}\right)^{\dot{2}}-\pi r_{j-1} \\
& =2 \pi r_{j}{ }^{2}\left(\Delta \dot{r}_{j}\right)_{-}+\pi\left(\Delta r_{j}\right) 0^{2}
\end{aligned}
$$

As, n increases, r_{j} and r_{j-i} approach each other and - Δr_{j} becomes small. The the $\left(\Delta r_{j}\right)^{2}$.term above i.s negligibly small by comparison to the first term and becomes more negligible as n grows larger. Thus, from" (3),

$$
\mathcal{F} \approx \sum_{j=1}^{n} v\left(\dot{t}_{j}\right)\left[2 \pi r_{j-1} \Delta r_{j}\right]
$$

As_n $\rightarrow \infty$, and all subinterval widths ${ }^{\circ} \Delta r_{j}$ shrink to zero', .this Riemann sum becomes

$$
\begin{aligned}
\vec{F} & =\int_{0}^{R} v(r)(2 \pi r) d r \\
& =\int_{0}^{R} \frac{P}{4 k L}\left(R^{2}-r^{2}\right) 2 \pi r d r=\frac{\pi R^{4} P}{8 k L}
\end{aligned}
$$

You are asked to calculate the Another conversion of (3) into a Riemann sum: Since

$$
\pi r_{j}^{2}: \pi r_{j-1}^{2}=\pi\left(r_{j}+r_{j-1}\right)\left(r_{j} \because r_{j-1}\right)
$$

we have from (3)
(4)

$$
F=\sum_{j=1}^{n} v\left(t_{j}\right) \pi\left(r_{j}+r_{j-1}\right)\left(r_{j}-r_{j-1}\right)
$$

As $. n \rightarrow \infty, t_{j}, r_{j}$, and r_{j-1} all approach each' other and
we get

$$
\begin{aligned}
& \therefore \quad-\int_{0}^{R} v(r) \pi(r+r) d r \\
& \\
& \quad \quad \therefore \int_{0}^{R} v(r)(2 \pi r) d r \text { as before. }
\end{aligned}
$$

The integral usually studied by calculus students is the Riemann integral

$$
\text { so } \int_{a}^{b} f(x) d x \text {. }
$$

An important generalization if the Riemann-Stieltjes integral where the " $d x$ " representing change in x can be replaced by "d $g(x)$ ", the change in a function of x between one partition point and the next. That is, the Rieman ${ }^{2}$ 象ums and the limits they approach have the forms

r

$$
\sum_{j=1}^{n} f\left(t_{j}\right)\left[x_{j}-x_{j-1}\right] \rightarrow \cdots \int_{a}^{b} f(x) d x
$$

while the comparable Riemann-Stielties forms are

$$
\sum_{j=1}^{n} f\left(t_{j}\right)\left[g\left(x_{j}\right)-g\left(x_{j-1}\right)\right] \rightarrow \int_{a}^{b} f(x) d g(x)
$$

In each case $a=x_{0}<x_{1}<\ldots<x_{n}=b$ is a partition of $[a, b]$ and t_{j}^{\prime} is an evaluation point in the $j{ }^{\text {th }}$ subinterval: $x_{j-1} \leq t_{j} \leq x_{j}$.

We can now recognize (3) as a Riemann-Stieltjes sum with this integral as its limit
$\therefore \quad \therefore \quad F=\cdot \int_{0}^{R} v(r) d\left(\pi r^{2}\right)$
$=\int_{0}^{\pi} \frac{p}{4 k L}\left(R^{2}-r^{2}\right) d\left(\pi r^{2}\right)$.

* This section can be omitted without affecting readability of later , sectipons.

We can convert this integral to a Riemann integral by using this theorem:

$$
\left[\begin{array}{l}
\text { If } f \text { is continuous and } g \text { has a continuous } \\
\text { first derivative for } a \leq x^{\prime} \leq b \text {, then } \\
\int_{a}^{b} f(x) d g(x)=\int_{a}^{b} f(x) g^{\prime}(x) d x .
\end{array}\right]
$$

We get isince $g(r) \neq \pi r_{r}^{2}$ has derivative $g^{\prime}(r)=2 \pi r$]

$$
F=\int_{0}^{R} \frac{p}{4 k L}\left(R^{2}-r^{2}\right) 2 \pi r d r
$$

the same Riemanh integral as in Section 6.
Why should we be interested in the RiemannStieltjes inte̊gral if it simply leads us baç to the Riemann integral we derived twice in Section $6 \stackrel{?}{?}$ The Stieltjes case beeomes interesting when g is not a smooth function, when g ' (x) does not exist. Then Riemąñ-Stieltjes theory must be used directly; we cannot escape to the easier Riemann case. There are important applieations, especially in theoretical economics; where g must' be taken as a step function, - for examplé:

- 8. DASCRETE SUMMATION
- Is it valid tio let $t^{\circ} \rightarrow \infty$, taking rings of arbitrarily smaller and smaller width? That is, should we convert (3) into an-integrai?. The fact that you are learning calculus is not sufficient to make the answer "yes"! In fac't, we ofter should. not take the limit. After all, blood'is made up of red blood cells and other particles. They have a certain non-zero. thickness Δr and nó layer ${ }^{\prime} \mathrm{of}^{\prime}$ blood can bé thinner than that thickness. The same, is true of all fiuids, in fact'.

To devel op this idea, we should let all the rings have that fixed finite thickness Δr. Thus $r_{0} \equiv 0=0 \cdot \Delta r$, $r_{1}=1 \cdot \Delta r, r_{2}=r_{1}+\Delta r=2 \Delta r$, etc.; the $n+1$ partition points are $r_{j}=j \cdot \Delta r, j=0,1,2, \ldots, n$. Let's simplify by taking the evaluation points to be $\mathrm{t}_{\mathrm{j}}=\mathrm{j} \cdot \Delta \mathrm{r}$ also. Then, from (4),

$$
\begin{align*}
F & =\sum_{j=1}^{n} \frac{P}{4 k L}\left(R^{2}-(j \Delta r)^{2}\right) \pi[j \Delta r+(j-1) \Delta r][\Delta r] \tag{5}\\
& =\frac{P \pi}{4 k L} \sum_{j=1}^{n}\left(R^{2}-j^{2}(\Delta r)^{2}\right)(2 j-1)(\Delta r)^{2}
\end{align*}
$$

Plug in $R=n \cdot \Delta r$ and simplify to:

$$
\begin{aligned}
& =\frac{P \pi(\Delta r)^{4}}{4 k!} \sum_{j=1}^{n}\left(n^{2}-j^{2}\right)(2 j-1) \\
& =\frac{P \pi(\Delta r)^{4}}{4 k L} \cdot\left[-2 \Sigma^{2}\left(j^{3}\right)+\Sigma\left(j^{2}\right)\right.
\end{aligned}
$$

We can prove by mathematical induction that

$$
\begin{aligned}
& \sum_{j=1^{-}}^{n}\left(j^{3}\right)=1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{-4} \\
& \sum_{j=1}^{n}\left(j^{2}\right)=1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

$$
\sum_{j=1}^{\dot{n}} j=1+2+3+\ldots+n=\frac{n(n+1)}{2}
$$

$$
\begin{aligned}
& \sum_{j=1}^{n} 1=\underbrace{1+1+\ldots e s}_{\sum_{n^{\prime}}^{n^{\prime}} 1+1+\ldots+1}=n . \\
& \text { in and do the algebrá to reac }
\end{aligned}
$$

Plug these in and do the algebra to reach

$$
\begin{align*}
F & =\frac{p \pi(\Delta r)^{4}}{8 k L} n^{2}(n+1)(n-1) \\
& =\frac{p \pi(n \cdot \Delta r)^{4}}{8 k L} \frac{n+1}{n} \cdot \frac{n-1}{n} \tag{6.}\\
& =\frac{p \pi R^{4}}{8 k L}\left(1-\frac{1}{n^{2}}\right) .
\end{align*}
$$

As, $n \rightarrow \infty, \left.-\frac{1}{n^{2}} \right\rvert\, \rightarrow 0$ and this does approach the integral's
value, as i^{t} should.
When we want to compute a sum, we often use the one) very where $n \rightarrow \infty$ does not make sense. If n is in fact very large, only a smabl error is made. "To do the" actual sum for lárge n would be cumbersome; by letting $n \rightarrow \infty$ wé gain all thel calcuzational power of the integral calculus and save the algebra, that led to (6).

There are other problems in which it is an integral we want but we are forced to use a sum. (Many integrals can't be calculated by anti-differentiation). By taking n sufficiently large, a high accuracy approximation of the. integral can be gotten with the help of a computer.

Integration and discrete summation are associates. Each can help as a replacement for the other, in appropriate circumstances.

9. INTEGRATION: LOCAL DATA YIELDS GLOBAL RESULTS

Poiseuille's Law contains'local information; the speed of fluid flow at a specific spot in the pipe is $v(r)$. Our result (2) that $v: \Delta A$ is the total flow through a bit of area ΔA where v is the (almost) constant sped of flow is still local information.

When we sum that local data over, all parts of the pipe's cross-sectional circile, we gather the local data into a("global" result, referring to the
pipe's total'flow, to the pipe as an entity in itself Integration (or discrete summation, which is used less), converts, locally varying information into the global. We are reasoning from the morg detailed to the less detalled when we integrate.

Do Ne lose information through that process? Can we reason back to the local. if we know the global resfit? You might immediately answer "no" or "sure, Just differentiate." Can you Juṣtify either answer carefully? My question is

I leave it unanswered here.

> 10. CALCULATION PF VISCOSITY

- To calculate k for a specific liquid, set up a. tank and pipe in the laboratory as in Figure, $5 .($ Get a steady flow going, then collect (say) ten seconds flow in 'a beaker. Measure, that wolume of fluid.

According to our integration, in ten seconds the volume of fluid flowing out should be \therefore

$$
10 \mathrm{~F}=10 \cdot \frac{\pi \mathrm{R}^{4} \mathrm{P}}{8 \mathrm{~kL}}
$$

In this equation we know every constant except k, which we calculate. We know R and L by measurement. To find P we take the-difference between the pressures, P_{1} and P_{2}^{\prime}, at the beginning and end of the flowpipe. The outlet pressure P_{2} is simply atmospheric pressure.

\therefore Figuré 5.
If the fluid has weight density (weight.per unit volume)o and the fluid depth is h as shown, the inlet pressure P_{1} is $\rho g h$, where g is the gravitational constant.

$$
\therefore 11 \text { EXERCISES }
$$

1. Show thàt $\int_{0}^{R} \frac{p}{4 k L}\left(R^{2}-\dot{r}^{2}\right) 2 \pi r d r=\frac{\pi R^{4} P}{8 k L}$

Notice that. P, k, L and R are simply constants.
2. We have assumed that the fluid's velocity at the pipe wall is zero. There's na need to do that: Thegiadvanced derivation (see Section 12) that we have omitted in thisf paper in fact shows that the veločity is
$\because v(x)=\frac{-p}{4 k L} r^{2}+b$
where b is̀ a constant we may choose.
a). Show that $v(R)=0$ leads to the formula (1) we have used.
b) :Suppose the velocity at the wall is one-balf" of the velocity at the center $(r=0)$. Find the function $v(r)$ for ithis case.
c) Use $v(r)$ fromr (b) to find the total flow, through the pipe of radius R.
3. The velocity $v(r)$ varies from place to place in the pipe's cross-section, but has some averdge value \bar{v}.
a) Explain how to find $\overline{\mathrm{v}}$ from the total flow F and the principle in (2)..
b) The definition of the average value of the function $v(r)$ is

$$
\Rightarrow \bar{v}=\frac{\int_{0}^{R} v(r) 2 \pi r d r}{\int_{0}^{R} 1.2 \pi r d r} .
$$

Calculate this and check against your work in (a). The two answers should agree.
c) The largest velocity is V and occurs at $r=0$. Check "that $V \neq 2 \bar{v}$
4. a) Use a computer program to calculate the sum (5) for reasonable values of n, R, L, etc. Check the computer results against the. algebraic result (6). Repeat with larger values of n.
b) How large must n be to have the discrete sum within 1% of the integral result?

12. REFERENCE

If you knớw multivariable calculus and a little mathematical physics, you can read a clear derivation of Poiseuille's Law from basic ideas in elasticity and fluid flow:

Sịater, J.C. and Frank N. H. Introduction to
Theoretical Physics; McGraw-Hili, 1933. Or
more' recent books with similar titles.

285
i. First convert to $\frac{2 \pi \mathrm{PR}^{2}}{4 \mathrm{~kL}} \int_{0}^{\mathrm{R}} \mathrm{r} \mathrm{dr}-\frac{2 \pi \mathrm{P}}{4 \mathrm{~kL}} \cdot \int_{0}^{\mathrm{R}} \mathrm{r}^{3} \mathrm{dr}$.
2. b) $v(r)=\frac{2 P R R^{2}-\mathrm{Pr}^{2}}{4 k L}$.
c) $\int_{0}^{\mathrm{R}} \frac{2 \mathrm{PR}^{2}-\mathrm{PR}^{2}}{4 \mathrm{~kL}} 2 \pi \mathrm{r} \mathrm{dr}=\frac{3 \pi \mathrm{PR}^{4}}{8 \mathrm{~kL}}$.
-3. a) If the fard were moving at the same speed at ail points in the cross-sectional circle of radius R, that constant. speed would of course be the average of the Poiseuille's Law speeds: From (2), using $\Delta A=\pi R^{2}$, the full-circular area,

$$
\begin{aligned}
\text { Total flow } & =\bar{v} \cdot\left(\pi R^{2}\right)=\frac{\pi R^{4} P}{8 k L} \\
: \Rightarrow \bar{v} & =\frac{R^{2} p}{8 k L}
\end{aligned}
$$

c) At $r=0, v(0)=V=\frac{p}{4 k L} R^{2}=2 \bar{v}$.

Request for Help
Return to:
EDC/UMAP
55 Chapel st.
Newton; MA 02160
Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author, to revise the unit.
Your Name \qquad

Page
O Upper
OMiddle
O Lower

Unit No.

Description of Difficulty: (Please be specific)

Instructor: Please indicate your resolution of the difficulty in this dow.
 Corrected errors in materials. List corrections here:

$$
1^{\circ}
$$

1
Gave student better explanation, example, or, procedure than in unit. Give brief outline of your addition here:

Assisted student in acquiring general learning and problem-solving skills (not using examples from this unit.). .
'Instructor's Signature

STUDENT FORM 2

\qquad Unit No. \qquad Date \qquad
Institution \qquad Course No.
Check the choice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit?
\star Not enough detail to understand the unit
Unit would have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed; but this was not distracting Too much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I -could not do the intermediate steps

- .——Sufficient Information was given to solve the problems

K Sample solutions were too detailed; I didn't need -them
3. Except for fulfilling the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit? A Lot ; Somewhat . A Little. . \quad. \quad Not at all
4. How long wats this unit. in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?
Much
Longer
, Somewhat
Longer About
5. Were any of the following parts of the unit confusing or distracting? (Check as many ass /apply.)

Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examples
Special Assistance Supplement (if present)
Other, please explain
6. Were any of the following parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites
Statement of pills and concepts (objectives).
Examples
Problems
Paragraph headings Table of Contents
FSpecial Assistance Supplement (if present)
other, please explain
Please describe anything in the unit that you ${ }^{\circ}$ did not particularly like.

Please describe anything that you found particularly helpful. (Please use the back of this shégt if you need, more space.)

UMAP

MODULE ${ }^{\text {？}} 1$

0
MODULES AND

MONOGRAPHS IN UNDERGRADUATE MATHEMATIES AND ITS APPLICATIONS $\therefore>0>0>$	∞	
$\dot{2}$	∞	
∞	∞	
∞	∞	

＊のコロコのコ

－NoNoN

シ．ーシーロー

4.

U
Appications of Calculus to Physics，
Biological and Medical Sciences

IntermoduZar Description Sheet: , UMAP Unit 211
Title: THE HUMAN COUGH
Author: Philip Tuchinsky 7623 Gharlesworth
入. Dearbort Heights, MI 48127
$\mathrm{D} \dot{\mathrm{r}}$. Tuchinsky is a computer scientist and mathematician at Ford Motor Company's Research and Engineering Center. He formerly taught in the Mathematical Sciences Department at Ohio Wesleyan University (where earlier editions of this paper were written).
Review Stage/Date: IV 7/30/80
Classification: APPL CALC/PHYSICS, BIO \& MED SCI
Approximate Class Time: Less than one 50 -minute class.
Intended Audience: Calculus students learning to use the derivative to compute extreme values of functions. The paper is suitable for independent reading or seminar presentation by more advanced students as well.

Prerequisite Skills:

1. . Differentiation of polynomials.

2:- Interpretation of $\mathrm{dy} / \mathrm{dx}=0$ and the Second Derivative Test for identifying maxıma and minima.
3. Operations on inequalities.
4. Basic curve sketching as taught in calculus.

Educational Objectives:

1. To see how a physical assumption may lead to a. choice of domain for a function.
2. To see an application of maximization of a function on a closed interval domain.
3. To interrelate biology, physics, and calculus.

Related Units:
Viscouso Fluid Flow and the Integral Calculus (Unit 210)

* UMAP Editor for this Module: Solomon Garfunkel

The Project would like to thank L.M. Larsen of Kearney State College for his review, and all others who assisted in the production of this unit.

This material was field-tested and/or student reviewed in class by Simon Cohen of New Jersey Institute of Technology, and T.R. Hamlet ${ }^{\circ} t$ of Arkansas Tech University, and hasibeen revised on the basis of data received from these sites.

This material was prepared with the partial support of National Science Foundation Grant No. SED76-19615 A02. Recommendations expressed are those of the author and do not necessarily reflect the views of the NSF or the copyright holder.

> 1980 EDC/Project UMAP All rights reserved.

by

Philip Tuchinsky 7623 Charlesworth Dearborn Heights, MI 48127

3

TABLE OF CONTENTS

11. ' When you couch1
12. NOTATİION FOR a CALCULUS MODEL OE COUGHing i
13. LAMINAR FLOW 2
14. average velocity and total flow 4
15. perfect élaśticity 4
16. WIAT RADIUS R MARES V the Largest? 7
17. ACKNOWLEDGEMEIT 8
8., SOLUTIONS TO EXERCISES 8

THE HUMAN COUGH

\qquad
.1. WHEN YOU COUG̉'H . . .

When a foreign object in your trachea (windpipe) leads you' to cough, your diaphragm thrusts sharply upward; As a result, the air in your lungs is suddenly compressed to a higher pressure than the, air outside your body. A high-speed stream of air shoots upward through the trachea equalizing these pressures and, it is to be hoped, clearing the passage.

By Newton's law, the force exerted on the object to be cleared is due to the sudden acceleration of the air flowing through the trachea. The greater the velocity of the airstream during the cough, the greater the force on the foreigner and the more effective the cough. To increase the speed of the airflow, your body also contracts the. windpipe during a cough, making a narrower channel for the air to flow through. For a given amount of air to escape in a fixed amount of time, it must move faster through a narrower channel than a wider one, just as \backslash a river flows rapidly where it is narrow but placidly where it is wide. In fact, x-rays show that the radius of the tracheal tube reduces to about two-thirds its usual radius during a cough.

- 2. NOTATION FOR A CALCULUS MODEL OF COUGHING

We can relate the speed of the airflow during a cough to the body's contraction of the trachea amazingly well by studying a simple mathematical model of the \Rightarrow situation. We think of the trachea as a pipe with a circular cross section, and apply. the differential calculet, using the following notation:

$$
293 .
$$

$R_{0}=$ the "rest radius": of the trachea (its usual radius when you are relaxed and not coughing) in' centimeters';
$k=$ the contracted radius of the trachea during a cough (thus $R<R_{0}$);
$V=$ the average velocity of the air in the trachea when it is contracted to R cm . This depends on R and we wish to calculate R such that $V(R)$ is maximal;
$P=$ the $\oint x t r a$ pressure in the lungs during a cough, i.e., the difference $P_{1}-P_{2}$ between the pressure P_{1} in your lungs and the atmospheric pressure P_{2} outside your mouth, measured in dyne. cm^{2}.
$F=$ the total volume of air flowing through the trachea per second, in $\mathrm{cm}^{3} / \mathrm{sec}$.
We will make two physical assumptions, one about the airflow, the other about the flexibility of the trachea's wall.

3. LAMINAR FLOW

First, we assume thàt the airflow is laminàr. This means that layers of air move at different speeds in the trachea. The thin layer of air right next to the pipe, wall hardly moves at all because of friction-with the wall. The layer, "or lamina, just inside that one moves a little faster, and so on until the fastest airflow is found along the central axis of the trachea. It is as if the airstream were made of thin concentric tubes of air sliding ger one another. See Figure 1.

Laminar flow is an appropriate model for the motion of any fluid through a confining pipe. In 1840, French physioologist Jean Poiseulle* established that the speed of the

[^13])

Figure 1. The air in the trachea is assumed to flow in thin concentric cylindrical layers called lominae. Inner layers move faster than outer ones, which are slowed by friction with the tracheal wall.
fluid (of air in the trachea in our case) at a point x chn out from the center axis of the pipe of radius $R \mathrm{~cm}$ is

$$
\begin{equation*}
v(x)=k^{\prime} P\left(R^{2}-x^{2}\right) \text { sem for } 0 \leq x \leq R . \tag{1}
\end{equation*}
$$

Here k is constant depending on the 1 ength of the pipe and-the particular fluid involved. We defined P and R earliér. The average speed V, is the average of these $v(x)$ values over all points in the pipe.

Formula (1) is usually called Poiseuilize's Law. of viscous fluid flow. By using integral calculus, it is easy to deduce from (1) that the total flow per second 'through the trachea (when it'is contracted to a radius of $R \mathrm{~cm}$) is
(2)

$$
F=\mathrm{cPR}^{4} \mathrm{~cm}^{3} / \mathrm{sec}
$$

The constant c again depends on the length of the pipe and the fluid involved. Formula (2) is derived from (1) in several ways in a companion paper to this one, Viscous Fluid Flow and the Integral CaZculus, UMAP Unit 210. Laminar flów is discussed in more detail there, toó.

4. AVERAGE VELOCITY AND TOTAL FLOW

We men'tioned above that we could compute the average airspeed V in the, trachea by using integral calculus to average the speeds $v(x)$. However, we can relate V to the total flow, per second F in a much simpler way.

* Imagine air flowing through the trachea at a steady velocity of $\dot{V} \mathrm{~cm} / \mathrm{set}$. In t setonds, each particle of air would travel $V \hat{t} \mathrm{~cm}$. Now, the cross-sectional, area of the contracted tracheal tube is $\pi R^{2} \mathrm{~cm}^{2}$. "Therefore, a cyilinder of air Vt cm long by $\pi \mathrm{R}^{2} \mathrm{~cm}^{2}$ would leaver the tube during those t seconds. The flow of air through the tube, measured in volumefper second, would be

$$
\begin{equation*}
{ }_{P}=\frac{(V t)\left(\pi R^{2}\right)}{t}=\pi R^{2} V \quad \mathrm{~cm}^{3} / \mathrm{sec} \tag{3}
\end{equation*}
$$

We can now write V in terms of P and the contracted radius R by using. (2) and (3):

$$
\begin{equation*}
V=\frac{F}{\pi R^{2}}=\frac{\varepsilon^{\prime} P R^{4}}{\pi R^{2}}=c_{1} P R^{2}, \tag{4}
\end{equation*}
$$

where $c_{1}=c / \pi$.

5. PERFECT ELASTICITY

The second assumption, about the flexibility: or elasticity of the trachea's wall-tissue, is needed next; We assume that these tissués are "perfectly elastic." . This means that the tissues contrat so as to reduce the radius. of the windpipe in proportion to the pressurechange P between the two ends of the pipe. That is,

$$
\begin{equation*}
\mathrm{R}_{\sigma}-\mathrm{R}=\mathrm{aP}, \tag{5}
\end{equation*}
$$

for some constant $a>0$ a This•is valid for fairly small pressure. changes P, in fact for

296

$$
\begin{equation*}
0 \leq P \leq \frac{R_{0}}{2 a} . \tag{6}
\end{equation*}
$$

If larger values of P occur, the tracheal wall stiffens and the contracted radius R would be larger than the value predicted by (5). (This is fortunate -if the trachea were to contract too much, we would suffocate.)

Exercise l.- Use (5) to prove that the inequality

- $0 \leq \mathrm{P} \leq \frac{\mathrm{R}_{0}}{2 \mathrm{a}}$
is equivalent to the inequality

$$
\frac{R_{0}}{2} \leq R \leq R_{0}^{\prime} .
$$

Thus, by assuming perfect elasticity, we are also assuming that the contracted radius R is at least 50 percent of the rest radius R_{0}.

You may be familiar with Hooke's Law, which says that the change $x-x_{0}$ in a spring's length when a pull, or force, . of magnitude f is applied is proportional to f.

Figure 2. A spring stretched beyond its natural (unstressed) length by a force of magnitude f.

That is,

$$
f=k\left(x-x_{0}\right)
$$

for some constant k. This is really the principle behind perfect elasticity. The pressure change sucks in the tracheal wall with pressure P and the wall behaves as though it were made up of small springs, which. stretch (Figure 3).

Figure, 3. The tracheal wall is assumed to behave elastically as though it were made up of small springs which stretch as the trachea contracts.

As (5) says, the amount of stretch, $\mathrm{R}_{0}-\mathrm{R}$, is proportional to the magnitude of the force. Although this is a rather simplified explanation, it leads to a good working model, as you will see in the next section.

Inserting this in (4) gives us V in terms of ${ }^{\prime} \mathrm{R}^{\prime}$ alone: :
(た $\quad V_{-}=c_{1}\left(\frac{R_{0}-R}{a}\right) R^{2}=c_{2}\left(R_{0}-R\right) R^{2}, c m / \sec ^{\prime}$.
Here $c_{2}=c_{1} / a$ and R_{0} are constants. Equation (7) tells us that airspeed V is produced when the trachea contracts from R_{0} to R_{cm}.

Our original goal was to discover what value of R gives the largest value of le Since V is a differentiable. function of R, for R in the domain $\left[\frac{1}{2} R_{0}, R_{0}\right], V$ must assume its maximum at one of the endpoints $\frac{1}{2}_{2} R_{0}$ or R_{0}, or at an interior point where $d V / d R=0$.

Exercise 2.

a. Show that $V=c_{2}\left(R_{0}-R\right) R^{2}$ satisfies $d V / d R=0$ (has horizontal , tangents) for $R=2 R_{0} / 3$ and $R=0$ but no other values.
B. Show that $R=2 R_{0} / 3$ leads to $d^{2} V / d R^{2}<0$. Interpret this result: what sort of horizontal tangent is $R=2 R_{0} / 3$? .
c. Carefully explain how you know that V has'its absolute maximum at $R=2 R_{0} / 3$ when R is restricted to the domain $\left[1_{2} R_{0}, R_{0}\right]$.

As Exercise Lc shows, our model leads us' to predict that our body can maximize the cough.'s effectiveness by contracting about 33 percent, from R_{0} to $2 / 3 R_{0}$. This agrees with experimental evidence as to how the body actually behaves! It is as though "Mother Nature" Used calculus in designing the complex miscle-actions of coughing to maximize the airflow speed produced!

Exercise 3. Sketch the. graph of $f(R)=\left(R_{0}-R\right) R^{2}$
a. for $0 \leq R \leq R_{0}$
b. for all real R.

Results from Exercise 2 will help, because V is just a constant multiple' of the funtion f here.

7. ACKNOWLEDGEMENT

I first learned of this application from Alfred B. Willcox, Executive Director of the Mathematical Association of America, whom I wish to ackirowledge and thank.
Dr. Willcox presented most of this materiai under the title "Coughing with Calculus" as part of a talk at the Spring 1975 meeting of the Ohio Section of, the MAA at Bowling Green State University.

8. SOLUTIONS TO EXERCISĖS

1. $0 \leq P \leq \frac{R_{0}}{2 a} \Leftrightarrow 0 \leq a P \leq \frac{R_{0}}{2}$ (multiplication by a)

$$
\leftrightarrow 0 \leq R_{0} ; R \leq \frac{R_{0}}{2} \text { (substitution from (5)). }
$$

The left half, $0 \leq R_{0}-R$, is equivalent to $R \leq R_{0}$ and the right 'half, $R_{0_{0}} \cdot R^{\prime} \leq \frac{R_{0}}{2}$, is equivalent to $\frac{R_{0}}{2} \leq R$. Together they give

$$
\frac{R_{0}}{2} \leq R \leq R_{0} .
$$

2. a. By the product rule. (there are 8 ther ways)

$$
\left.\left.\frac{d V}{d R}=C_{2}(-1) R^{2}+R_{0}-R\right) 2 R\right]=c_{2} R\left(2 R_{0}-3 R\right)
$$

b. $\frac{d V}{d R}=0$ and $\frac{d^{2} V}{\mathrm{dR}^{2}}<0$ at a particular R indicates a local maximum.
c. The absolute maximum needed here must occur ant an endpoint of the domain or at an interior point where $d V / d R=0$. Thus the candidates are

We ignore the horizontal tangent at $\mathrm{R}=0$ because it is outside the domain of our function.
3. 'The polynomial $f(R)=\left(R_{0}-R\right) R^{2}$ has a double root at $R=0$, and a single root at $R=R_{0}$:

UMAP

MODULES AND MONOGRAPHS IN UNDERGRADUATE MATHEMATICS AND ITS APPLICATIONS

- NONON

$$
>0 \times 0 \times 0
$$

$$
=-E-E=
$$

$$
{ }_{m} \gamma_{m}^{E} x_{m} \gg
$$

$$
0>0>0>
$$

$$
\Rightarrow 3: 3
$$

a 7.sa 7 a z

$$
{ }^{-4}[1]^{+1}[1]^{-1}[1]
$$

$$
\therefore \quad 0 \ddot{6}
$$

$$
\begin{array}{lll}
* & \varepsilon & \varepsilon \\
\varepsilon & \varepsilon & \theta
\end{array}
$$

$$
\begin{array}{lll}
\varepsilon \\
Q
\end{array} M_{\Omega}^{\varepsilon} M_{Q}^{\prime \varepsilon}
$$

$$
\omega_{0} \oplus \infty \in \omega_{1}
$$

Birkhăuser Boston Inc. 380 Green Street
Cambridge, MA 02139

MODULE ${ }^{25}$

Zipf's Law and His Efforts to Use Infinite Series in Linguistics
by Philip Tuchinsky
The terms of the series $\left.\sum_{i}^{\infty} \frac{1}{k(k+2)}\right)^{2} 1$. split up 1 in just about the way that the numbers of words appearing once, twice, thrıce, etc., in James Joyce's Ulysses split up the total number of ' words in that novel!!

Applications öf Calculus to Sociàl Science

1

Intermodulas Description Sheet: UMAP Unit 215
IItle: ZIPF'S LAW AND HIS EFFORTS TO*USE INFINITE SERIES IN LINGUISTICS
Author:: Philip Tuchinsky
7623 Charlesworth
Dearborn Heights, MI 48127
Dr. Tuchinsky is a'member, of Engineering Computer Systems at Ford motor Company's Research and Engineering Center. He formerly taught in the Mathematical Sciences Department at Ohio Wesleyan University (where earlier editions of this paper were wriften).
Review Stage/Date: IV $2 / 4 / 80$

Classification: APPL CALC/SOCIAL SCIENCE

Suggested Support Material: Add one or more selections of English on which to do word-count experiments.

Approximate Class Time Needed: One 50 minute lecture plus out-of-class time for word-count experimentation and exercises.
Intended Audience: Calculus students studying series. By ignoring
Exercises 4-7, the paper could be used at an intuitive level in precalculus or finite math or liberal arts mathematics courses. The unit .is appropriate for independent study or seminar presentation by more advanced students.

Prerequisite Skills:

1. Definition of infinite series, and its sum.
2. Partial sums.
3. Geometric series sutmation.
4. Algebra on inequal'ties (for Exercises 1,2,3,5).
5. For Exercise 4 only: comparison, ratio and integral tests of convergence of series.
6. Algebra related to the logarithm function.
7. Log-log graph paper and its uses.
(You can use this paper as a context in which to teactryour students ${ }^{\text {c }}$
that $y=A x^{B}$ will appear as a straight line on log-log paper, with A and 8 predictable geometrically or mathematically from the graph, and $y=A \cdot B^{x}$ will graph as astraight line on log-ordinary (semilog) paper. If my experience, many students are using these facts in science lab work without understanding why they work. They are delighted to have this enlightenment; their mistaken feeling that ${ }^{*}$ "none of this calculus is really useful for much" will be substantlally reduced.)
Output Skjlls:
8. Use partial fractions to explain the summation of $\Sigma 1 / k(k+1)$.
9. Calculate relative errors to measure quality of match-up between two sets of data.
10. Carry out a word-count study on any lengthy text in any language.
11. Convert item-count study data into rank-frequency data.?
12. Use log-log paper to graphicaliy test whether rank-frequency data obeys Zipf's Law.,
13. Give an example of pure, apparently Impractical research that has practical implications for a sophisticated system like human language.
UMAP Editor for this module: Solomon Garfunkel
(C) 1980 EDC/Project UMAP All rights reserved.

ZIPF'S, LAW AND HIS EFFORTS TO USE INFINITE SERIES IN LINGUISTICS

by

Philip Tuchinsky

TABLE OF CONTENTS

1. PARTIAL SUMS CAN HELP US ADD UP A SERIES 1
2. SUMMING THE SERIES ZIPF USED 2
3. WORD COUNTS IN• JOY'CE'S ULYSSES 3
4. HOW GOOD IS THIS SERIES MODEL? 4
5. THE EXTENSIVE RESEARCH INTO WORD-COUNTS AND related language patterns 5
6. ZIPF'S LAW (THE RANK-FREQUENCY LAW) 7
7. A LOG-LOG GRAPH REVEALS OBEDIENCE TO ZIPF'S LAW 8
8. EXERCISES; DERIVING A NUMBER-OF-WDRDS LAW. 10
9. MÁNDELBROT'S EXPLANATION OF THE LANGUAGE PATTERNS 15
10. SOURCES 17
ㅊ1. ANSWERS TO EXERCISES 19
*This section is included in the instructional unit but omitted in the UMAP Journal version for the sake of brevity.

ZIPF'S LAW AND HIS EFFORTS TO USE infinite series in linguistics

1. - partial" sums can help us add up a " SERIES

The partial sums of the series

$$
\sum_{j=1}^{\infty} a_{j}
$$

are, of course,

$$
s_{n}=\sum_{j=1}^{n} a_{j}
$$

for $n=1,2,3, \ldots$ The sum of the series is defined to be the limit of these partial sums as $n \rightarrow \infty$. Although that's a sound definition, it's almost useless when we want to calcuiate the sum of a series, because it is impossible to simplify the partial sums of most series into a form where the limit can be obtained. A classic exception to this rule is geometric series. The n-term partial sum $a+a r^{+}+a r^{2}+\ldots+a r^{n-1}$ simplifies to

$$
a \frac{1-r^{n}}{1}-r
$$

(as you should be able to prove). In this simplified form, we can see what happens as $n \rightarrow \infty$ for r such that $|r|<1$, we have $r^{n}+.0$ and the series converges to

$$
\text { a } \frac{1-0}{1-r}=\frac{a}{1-r},
$$

while $|r|>1 \Rightarrow r^{n}+ \pm \infty$ and the series diverges. (What happens when $r= \pm 1 ?$)

Thisapaper is "about another exception, another series who'se partial sums can be directly analyzed.

This series is not as important as geometric series (which has dozens of significant applications). . However, our series played an interesting role. in the linguistics. 'research of George Kingsley Zipf in the 1920's and 1930's. We will examine that application and the later research about artificial languages that has made Zipf's work obsolete. A surprising interplay between the study of human languages and engineering research into communications networks and computer languages will be discussed.

We will see that the seriesv we study is not completely successful as a mathematipal model in'zipf's work. Several efforts to vary and improve the model will all lead to difficulties-no single accepted model will emerge. That sort. of partial success is common when applied mathemati, cians work on actual complex problems; this deserves contrast against the experience of most students, who see one successful theorem proven after another as they study the established "branches of mathematics.

2. SUMMING THE SERIES" ZIPF USED

The series we consider here is

$$
\sum_{k=1}^{\infty} \frac{1}{k(k+1)}=\frac{1}{1 \cdot 2},+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots
$$

The key is to use partial fractions. 'Please check that

$$
\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1} .
$$

Now the partial sum through n terms is

$$
\begin{aligned}
\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{1}{\mathrm{k}(\mathrm{k}+1)} & =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots \pm \frac{1}{(n-1) n}+\frac{1}{\mathrm{n}(\mathrm{n}+1)} \\
& =\left(\frac{1}{1} \cdot \frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\ldots+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& \therefore \underbrace{+}_{\text {cancels }} \underbrace{}_{\text {cancels cancels }} \\
& =1-\frac{1}{\mathrm{n}+1} .
\end{aligned}
$$

306

This partial sum is now so nicely simplified that we can see what happens as $n+\infty$. Of'course

$$
\frac{1}{n+1}+0
$$

and thus

$$
\sum_{1}^{\infty} \frac{1}{k(k+1)}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)=1
$$

The original series ards up to $\overline{1}$.

3. WORD COUNTS IN JOYCE'S ULYSSES

This series gives a mathematical model of the occurrance of rare words in James Joyce's novel Ulysses. Among the 260,430 words in Ulysses there $\mathrm{a}^{7} \mathrm{re}^{7} \mathrm{~N}=29,899$ different words.. Many are "rare" words appearing only once or twice. A few are common words that appear a thousand times pr more. We'll study "the rarely appearing words here. There'are 16,432 words that appear exactly once each in Ulysses (about half of N); 4,776 words that appear exactly twice

$$
-\quad\left(\text { about } \frac{1}{6} N=\frac{1}{2 \cdot 3} \mathrm{~N}\right)
$$

2,194 words that appear exactly 3 times each.

$$
\text { (about } \frac{1}{12} N=\frac{1}{3 \cdot 4} N \text {) }
$$

and, so on;
In fact, $i^{4} f n_{j}$ is the number of words 獏at ${ }^{-}$appear exactly \mathbf{j} times in Ulysses $(j=1,2,3, \ldots)$, these n_{j} words make up a fraction $n_{j} / N_{\text {(}}$ (of the total N words) that is rather closely given by

$$
\frac{1}{j(j+1)}
$$

the $j^{\text {th }}$ tern of our series.
Thus we use the series to model n_{j} as
($\left.1^{s t} \operatorname{model}\right) \quad n_{j}=\frac{N}{j(j+1)}$:

This says that the terms of the series (which, you recall, add up to 1) split up 1 in just about the way that the words appearing once, twice, thrice, etc. in Ulysses split up the total of different words appearing in that novel.

4. HOW GOOD IS THIS SERIES MODEL?

The actual number of words appearing once, twice,, ten times in Ulysses is listed in Table 1 along with the number predicted by the series-model.

TABLE 1

j	$\mathrm{n}_{\mathrm{j}}=$ actua words appe exactly j	\# of aring times
1	16,432	
2	4,776.	
3	- 2,194	
4	1,285	
5	906	
6	637	
7	483	
8	371	
9	298	
10	2.22	

Source: típf, Human Behavior and the Principle of
Least Effort.
The last column provides a simplè measurement of the extent to which predicted and actual values agree.' The relative error is defined to be

$$
R E=\left|\frac{\text { predicted value - actual valuè }}{\text { actual value }}\right|
$$

As an example, for $j=7$, the $\mathbb{R E}$ is

$$
\frac{|534-483|}{483}=\frac{51}{483}=.10559=10.6 \% .
$$

The predicted yalues are obtained from our series model as in this example: for $j=3$, the model predicts that

$$
n_{3}=\frac{N}{3 \cdot 4}=\frac{29899}{12}=2491.58
$$

which we round to 2,492 .

The predicted values given by the terms of our series do follow the trend of the actual data quite well, but you - may feel that the specific numbers (483 vs . 534 for $j=7$, for example) are not as close as you might prefer. Shouldr't the model match reality better than that? The RE's in the last column average 12.5%. For most research. in the natural sciences such relative errors would be considered large-repeated experiments done with laboratory equipment, for example; usually yield much more consistent results. Errors above even 5% make us wonder about the experimenter's measuring abilities or the design ' of the experiment, But we should not expect such hard- . science accuracy in a "law" or model that concerns so complicated a social-science process as the choice of words by one human in Creating one novel. Instead, we ask: Is this pattern obeyed by a wide range of language samples?
5. THE EXTENSIVE RESEARCH INTO WORD-COUNTS- AND RELATED LANGUAGE PATTERNS

During the 1920 's and i $930^{\circ} \mathrm{s}$, many word- $-\overline{\text { count }}$ experiments were performed by psychologists and linguists, led by Professor George Kingsley Zip. of Harvard and his students. They found striking patterns in the frequency of occurrence of: rarely appearing words, the number of *pages between appearances of a word, the number of and spacing between uses of individual letters, syllables, prefixes, suffixes, meanings, etc. Some of the language texts studied (not all for rare-word frequencies) were:

- - Ulysses by Joyce
--- Stretches of English language newspaper text
-- the plays of Plautus in Latin
-- the Iliad in Homeric Greek
-- wonks in, Old English, and other, medieval languages
-. part of a Bible in Gothic German
-.- traditional oral legends in. Dakota and Plains Cree (American Indian languages) and Nootka (an Eskimo language)
... works in modern languages from German to Hebrew to Chinese
-- the speech of children at various ages
-- some schizophrenic speech.
This exceptionally broad selection of language samples all yielded jery regular patterns that astonished the researchers. A few studies failed to support the patterns* but the evidence suggested that important cross-cultural properties of language were being found.

Linguists pursued this research in the search for . fundamental structural properties of language. Psychologists hoped to explain just what process goes on in a human mind as it calls on íts whole history of language experiences when crafting*new sentences, paragraphs, or books. One of Zipf's books (see Section 10) contains a readable survey of these experiments. It also contains. the extensive consequences for human behavior that $Z i p f$ put forward as implications. of the research. A too-brief review of his logic: Zipf cilaimed that different amounts of mental effort are exerted by a speaker or writer in choosing words. Common words, very fequently encountered in the writeres past experiences, "come to mind" with little effort while words met less often in the past require more effort far their use. A human selects words to express an idea using the "principle of least effort. ${ }^{\text {. }}$ Zipf hoped to derive the specific quantitative patterns he had found from sŭch a basic principle (in the same way that Newton, starting from a few basic assumptions such as "the law of gravity, could derive the motion of the planets and many other results). Zipf offered situations analogous to writing or language usage where beha母ior obeying a law of least effort did lead to the patterns found, but he-did not succeed in deriving the surprising patterns from language structure itself.

[^14]
6. ZIPF'S LAW (THE RANK-FREQUENCY LAW)

A central result of this research'is "Zipf's Law" also called the "rank-frequency law." We have looked at the number n_{j} of rarely appearing words that appear with frequency (number of occurxénces) j for $\mathrm{j}=1,2,3, \ldots$. In a rank-frequency study, one looks instead at the, rank. of a word ($1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$: etc.) when the words of a book are listed in order of decreasing frequency. Thus the most-repeated word has rank 1 and frequency f_{1}, the second-most-repeated word has rank 2 and appears ' f_{2}^{\prime} times, and so on. Zipf's Law, also found empirically, is that

$$
\mathbf{r} \cdot \mathbf{f}=\text { constan't }
$$

i.e., that the rank and corresponding frequency are inversely related. As an example, Table 2 gives various ranks, frequencies, and r.f products for Ulysses.

TAB番 2
Actual Rank-Frequency Data from Ulysses

Source: Zipfy Hùman Behavior and the Principle of Least Effort.

The approximate constancy of this third column is striking and intuitively unexpected. And the constant value obtained is roughly $\mathrm{N}=29,899$, the number of distinct words being ranked, or perhaps it is a bit less than N. This is discussed in comments following Exercise 1 in Section 8.*

7. A LOG-LOG GRAPH REVEALS OBEDIENCE TO ZIPF'S LAW

There is an easy way to graph the (r, f) pairs from Ulysses for $r=1,2,3, \ldots, 29,899$ so that the closeness of fiteto $r \cdot f=k$ becomes visible. On ordinary graph paper, $r . f=k$ appears as a hyperbola; it is hard to look at the graph and determine that we have $f=k / r$ as opposed to some other similar curve, like $f=k / r^{2}$ or $f=k / r^{1.2}$. But these curves are easy to tell apart when graphed on $\log -\log$ graph paper. Notice that r.f. $=k$ implies $\log r+$ $\log f=\log k$. Thus the points (r, f) fall on the curve $\mathrm{r} \cdot \mathrm{f}=\mathrm{k}$ if and only if the points $(\mathrm{x}, \mathrm{y})=(\log \mathrm{r}, \log \mathrm{f})$ fall on the straight line with slope $-1 \mathrm{x}+\mathrm{y}=10 \mathrm{k} \mathrm{k}$. On log-log graph paper (see Figure 1), the axes are labeled with values of r and f but, because of the special spacing of points along these axes, we are really plotting $y=1 \rho g f$ vs. $x=\log r$. We will have a good fit to $r \cdot f=k$ if the data fall along a straight line with slope -1 , cutting both axes at 45°.

In Figure 1, the tendency of both curves A and B to follow the straight line C is very striking. (The "steps" at the bottom-right of both curves occur because, for high

[^15]ranks there are many ties, many occurrences of the rare frequencies 1, 2, 3,)

Researchers up to this point had not explayned Zipf's Law, or the series model that we began with in this paper or other patterns.

\Rightarrow
Figure 1.0- Data that precisely obeys Zipf's Law would graph like C, having slope -1 , to which curves A and B should be compareds Curve A consists of all the (r, f) data pairs for Ulysses, not just the few given in Table 2, connected together into a curve. Curve B is a similar rank-frequency graph for a sample of 43,989 running words of American newspaper text, studied by R.C. Eldridge. (The Ulysses data was created by Hanley and Joos, but first graphed by Zipf. Source: Zipf, Human'Behavior and the Principle of Least.Effort.)

8. EXERCISES: DERIVING A NUMBER-OF-WORDS LAW

We have studied two parts of Zipf's research, which we summarize as follows:
(A) The rank-frequency law $f_{r}=k / r$ gives the approximate frequency (number of appearances) f_{r} of the . $r^{\text {th }}$-most-commonly-appearing word in the language sample, for $r=1,2,3, \ldots, N$.
(B) The number-of-words law $n_{j}=N / j(j+1)$ tells how many words (among the N different words of the language sample) appear exactly j times, for $j=1$, 2, 3,
Both are empirical laws-*they work quite well for a wide variety of language samples. So far we have no derivation of these laws from obvious or widely accepted facts, no clear explanation as to why they should be true.
\These two laws are related to each other and that is worth our study--if one follows from the other, they are more believable together than either is by itself.

Therefore, let's assume that (A) is true and'try to (deduce a number-of-words law from it. Specifically, let's" try to calculate n_{1}, the number of words that appear exactly once (i.e., that have $f=1$).

The rank-frequency law predicts frequencies f_{r} between 1 and 2 for all words with ranks $k / 2+1$ up to k :

$$
\begin{aligned}
\quad-\quad 1 \leq f<2 & \leftrightarrow 1 \leq \frac{k}{r}<2 \\
& \leftrightarrow \frac{k}{2}<r \leq k .
\end{aligned}
$$

Thus, a total of $k / 2$ words have theoretical frequencies f in the interval [1, 2).

However, frequencies must be integers; fractional frequencies do not make sense. Let's decide that we will always round f downward to the next lower integer. Then
$f \in(1,2)$ becomes $f_{i}=1$, and n_{1}, the number of words with $\mathrm{f}=1$, is
*

$$
n_{1}=\frac{k}{2}=\frac{k}{1 \cdot 2}
$$

This looks promising--if we are going tooderive $n_{j}=$ $N / j(j+1)$ from (A), we need that denominator $1 \cdot 2$ in n_{1}. Bu't that k in the numerator? Maybe the correct constant k in the rank-frequency law is N ? We'll have to test that idea later. First, extend our result for n_{1} by doing Exercise 1.

Exercise 1^{-}

Assume that $f=k / r$ for $r=1,2,3, \ldots$
a) Show that $f \varepsilon[j, j+1$) occurs exactly for ranks

$$
r \varepsilon\left(\frac{k}{j+1}, \frac{k}{j}\right]
$$

b) If we round $f \varepsilon f j, j+1$) downward to the integer value $f=j$, show that

$$
n_{j}=\frac{k}{j(j+1)}
$$

for any j.

Thus we can deduce (B) from (A) if we agree te round f downwârds and if $\dot{k}=N$.

We should test whether $k=N$ empirically by trying it on mañy language samples. We can start.here with Ulysses, which contains $N=29,899$ different words. The r and f data in Table 2 can be used to get a comparable value of k. Let's exclude the data for $r=10,000,20,000$, and $29,899^{\circ}$ because these (r, f) pairs are located in the "steps" of the (r, f) graph where r changes while f does not. and those $r \cdot f$ products are not very constant. When we average the r.f products in Table 2 for $10 \leq r \leq 5,000$, we get $k=25,874$. Thus $k \neq N$. We have k about $1 \overline{3} .5 \%$ smaller than N^{*} in this one example.

Wait. This is no time to quit on the problem-the values $\mathrm{N} / \mathrm{j}(\mathrm{j}+1)$ are also $10-15 \%$ tod large for the actual n_{j} of Ulysses in Table 1 (except for $j=1,2$). We could correct that by decreasing $\mathrm{N} / \mathrm{j}(\mathrm{j}+1)$ to $\mathrm{k} / \mathrm{j}(\mathrm{j}+1)$. . Thus we propọse / •
$\left(2^{\text {nd }}\right.$, mode 1$) \times n_{j}=\frac{k}{j(j+1)}$
for all but the smallest j. We cannot apply this model for all j because ${ }^{*}$

$$
N=\sum_{j} n_{j}
$$

however,

$$
\sum_{j} \frac{k}{j(j+1)}=k \sum_{j} \frac{1}{j(j+1)}=k .
$$

But the $2^{\text {nd }}$ model may work well for all but the smallest few values of j, which are special cases requiring their own formula. Ulysses data comparable to that in Table 1 appears in Table 3. We must be cautious in concluding that the $2^{\text {nd }}$ model will do this well for $j>10$ or for language samples other than Ulysses. The second model does not seem to appgar in the psychological literatire, probably because Zipf deduced yet another number-of-words formula from the rank-frequency law.

TABLE 3
Additional Number-of-Words Predictions vs. Ulyssés Data.

i	$\begin{gathered} \text { true } \\ \mathrm{n}_{\mathrm{j}} \\ \hline \end{gathered}$	$2^{\text {nd }}$ model*		$3^{\text {rd }}$ model ${ }^{\text {* }}$	
		$\begin{gathered} \hline \text { predicted } \\ n_{j} \\ \hline \end{gathered}$	RE	$\begin{gathered} \text { predicted }_{n_{n}} \\ \hline \end{gathered}$	RE
1	16,432:	12,937	21.38	34,499	109.9\%
2	4,776	- 4,312	9.7\%	6,900	44.48
3.	2,194	2,156.	1.7\%	2,957	34.8\%
4	1,285	1,294	1.0\%.	1,643	27.9\%
5	906	862	4.9%	1,045	15.38
6	637,	616	3.3%	724	13.7\%
7	483	462	4.3%	531	9.9%
	3/1	359	3.2\%	406	9.48
	298	287	3.78	320	7.48
10	- 222	- 235	5.9\%	259	16.7\%

*All calculations are based on $k=25,874$.

Surely you wanted to object to the "rounding" of $f \varepsilon[j, j+1)$ to $f=j!$ After all, would you round 3.01, $3.3,3.49,3.51,3.99$ all to ' 3 ? It would also mean that $f \in(0,1)$, which is predicted by $f=k / r$ for ranks $k<\gamma$ $\leq N$, is rounded to $f=0$, although each of the words with these ranks appears in the language sample at least once. Zfpf proposed instead to round $f \varepsilon[1 / 2,3 / 2)$ to $f=1, f \varepsilon(3 / 2,5 / 2)$ to $f=2$, etc.

Exercise 2.

Assume that $f=k / r$ for $r=1,2,3 ; \ldots$
a) Show that $f \varepsilon[j-1 / 2, j+1 / 2\}$ occurs exactly for words. with ranks

$$
\frac{k}{j+1 / 2}<r \leq \frac{k}{j-1 / 2 k} .
$$

b) If we round $f \varepsilon[j-1 / 2, j+1 / 2)$ to $f=j$, show that ($3^{\text {rd }}$ model $) \quad n_{j}=\frac{k}{(j-1 / 2)(j+1 / 2)}$ for any j.

This third model is the one given by $2 i p f$. It leads us to ask:

4
Exercise 3.

$$
\sum_{j=1}^{\infty} n_{j}
$$

should equal N, the total of differentmeros in the book' under study. Sum the series suggesteg in Exercise 2, formula,
$\sum_{j=1}^{\infty} \frac{1}{(j-1 / 2)(j+1 / 2)}$.
by simplifying the partial sums in much the way $\Sigma 1 / j(j+1)$ was summed early in this paper.

Since Exercise, ${ }^{3}$ tells us that $\Sigma n_{j}=2 k-\neq N$, we know we cannot use the $3^{\text {rd }}$ model for all j, based on k and N from Ulysses. 'As with the $2^{\text {nd }}$ model, for low j the predicted values are far too large: Table 3 shows a very por fit
between this model and the Ulysses data; for much larger, values of j the fit may be much better.

So it goes!• In three tries, we have not áchieved a trouble-free model.

Exercise 4.

Without finding the sum, give more than one, proof that

$$
\sum_{j=1}^{\infty} \frac{1}{(j-1 / 2)(j+1 / 2)}
$$

is a convenient series. Mention the convergence tests you use. .

Exercise' 5.

Suppose we decide to round upward: Assume $r \cdot f=k$ and decide to replace $f \varepsilon(j-1, j)$ by $f=j$. What rule for n_{j} follows? is it a better model than the ones we have discussed? Preparig the equivalent of Table i for this $4^{\text {th }}$ model. How did you decide whether or not it is better than the first 3 ?

The series result

$$
\sum_{1}^{\infty} \frac{1}{k(k+1)}=1
$$

can be used to find the sums of other series. Two examples appear as Exercises 6 and 7 .*

Exertise 6.

${ }^{1}$ first show that

$$
\begin{aligned}
\sum_{1}^{\infty} \frac{1}{k(k+1)} & =\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots \\
& =\frac{1}{2}\left(\frac{1}{1}+\frac{1}{3}\right)+\frac{1}{4}\left(\frac{1}{3}+\frac{1}{5}\right)+\ldots \\
& =\sum_{n=1}^{\infty} \frac{2}{(2 n-1)(2 n+1)}
\end{aligned}
$$

Use this result to show

$$
\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots=\sum_{n=1}^{\infty} \frac{.1}{(2 n-1)(2 n+1)}=\frac{1}{2} .
$$

[^16]Exercise 7.
If we 'start with the result in Exercise 6:

$$
\frac{1}{2}=\frac{.1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+.
$$

and use the same "sum up two terms at a time" method (as displayed in Exercise 6) on it, show that we get

$$
\frac{1}{4}=\sum_{0}^{\infty} \frac{1}{(4 n+1)(4 n+5)}=\frac{1}{1 \cdot 5}+\frac{1}{5 \cdot 9}+\frac{1}{9 \cdot 13}+\ldots .
$$

9. MANDELBROT'S EXPLANATION OF THE LANGUAGE PAT'TERNS

Zipf's Law and other striking patterns found through word-count sorts of experiments on natural (i.e., human) languages were finally explained by scientists working on very different problems, problems related to artificial languages. Zipf and his colleagues had examined. the structure of language and the process of writing or speaking; now Norbert Weiner and Claude Shannon. led the study of communications channels. Human speech and writings, electronic signals sent over telephone lines, messages sent in Morse code, radar signals sent out and received after bouncing back, coded data moving/from IBM cards into a computer's electronic memory, all are examples of information being coded and sent by a transmitter (speaker, writer, telegraph key user, etc.) then received, decoded, and interpreted by a receiver (listener, reader, etc:'). The researcher's asked: How counformation be most efficiently coded and sent so that it would be received at lowest cost and with high accuracy? How much repetition ("redundancy") should be included as- a check on the accuracy of the message received? Their main goals were the efficient design of high speed, high volume, high. accuracy man-made data channels for use imcomputers, International telephone and microwave systems and military applications, but the linguists and psychologists noticed at once that this research was relevant to the study of human language communications, too

This, research led to an anticlimatic completion of - the project begun by Zipf and his team. In 1953-54, Benoit Mandelbrot showed that the number-frequency, rankfrequency and other patterns found by Z ipf will always '. arise in any language satisfying these two assumptions:

1. The language is made up of words--small units of information separated by spaces.
-2. The transmitter encodes and the receiver, decodes word by word--that is, the speaker (or writer) formulates and speaks one word at a time and the listener.(reader) listens' and interprets one word at a time.

The main point is the presence of a space between units of information. By random processes this spacing, and the word by word handing of messages, accounts for the patterns , There is no need, in explaining' the patterns, to claim that James Joyee, while writing Ulysses, was choosing words using unknown "universal laws" of language structure at some deep almost-unconscious level of thought. Instead, we simply claim that Joyce was choosing his words one at a time to convey his meanings. The space-betweenwords structure of English then suffices to produce the. patterns. Mandelbrot showed this by.using a lot of advanced mathematical statistics.

Zipf's ideas persisted for a while. The applicability of Shannon's work to human 1 anguages was challenged and. some of Mandelbrot's assumptions were questioned, by H.S. Simon and others. Simon, in 1955, published alternative explanations of Zipf's Law and other patterns, using the idea that the more prior usage a word has had, the more, likely it is to recur.

Mandlebrot has won the day, however. My most. recent reference, in Mathematics and Psychology, edited by George A. Miller, John Wiley and Sons, 'New York, 1964, includes thfis quote from Bärbel Infrelder ànd Jean Piaget on page 249:
> ... during the 1930's G.K. Zipf stirred up conşiderable intérest in various statistical regularities that he uncovered in his, analysis of word fréquencies. Twenty years later the mathematician Benoft Mandelbrot was able to demonstrate that. Zipf's laws were attributable to random processes and implied no deep linguistic or psychological consequences.

10. SOURCES

I first met this application in the essay "The Sizes of Things" by'H.A. Simon in Statistics: A Guide to the Unknown ed. Judith Tanur, Holden-Day, 1972, pp 195-202. This paperback contains many short essays that how the applicability and practical uses of star tis fics, especially the difficulties of statistical experiment design, Most are only modestly mathematical.

The work of $2 i p f$ and his colleagues is well summarized in G.K. Zipf, Human Behavior and the Principle of Least Effort, Addison-Wesley, Cambridge, Mass., 1949,. Chapters 2, 3, and 4.

The original Ulysses data, complete, appears in M.L. Hanley et al, Word Index to James Joyce's Ưy ysees, Madison, Wisćonsin, 1937.

The mathematics used by $2 i p f$ to relate his rankfrequency law to the number-frequency law for rare words, presented in Exercise 2, was presented in G.K., Zipf,. "Homogeneity and heterogeneity in language", psychological Record, $2 \div(1938)$, pp. 347-367. A more general argument for Martin Joos appears in a "book'review of Zipf's The PsychoBiology of Langulage, Houghton Mifflin, Boston, 1935 in Language; 12 (1936) pp-196-210. Joos, while contributing to Zipf's rigor, is not uncritical.

A good summary of Mandelbrot's results and their' meaning may be found on pp 60-69 of R.D. Luce, ed!,

Developments in Mathematical Psychology: Information,

Learning and Tracking, Free Press of Glencoe, Illinois, 1960. Part I (by Luce) is "The Theory of Seleçtive Information and Some of Its Biolagical Impliçations" and covers Shannon's work and some brief mention of Zipf. I did not obtain the papers of Mandelbrot; Miller and Simon referenced there but relied on Luce's rendition of their, work, which I hope I have not misrepresented. The bibliography on 'pp 110-119 of Luce (above) will direct you to the original literature.

The Project would like to thank William Glessner of. Central Washington University, Ellensburg, Washington, and Mitchell Lazarus of Edycation Development Center, Inc., Newton, Massachusetts for their reviews, and all others who assisted in the production of this unit.

This material was class-tested and/or student reviewed in preliminary form by: Stephen Corder, Southern Baptist College, Walnut Ridge, Arkansas; Paul Nugent, Franklin College, Franklin, Indiana, and George C.T. Kung, University of Wisconsin, Stevens Point, Wisconsin, and has been revised on the basis of data received from these sltes.
"This materlal was prepared wlth the support of National Science Foundation Grant No. SED76-19615 A02. . Recommendations expressed are those of the author and do not necessarily reflect the views of the NSF, or the copyright holder.
11. ANSWERS TO EXERCISES

1. $\hat{r}+f=k$ and $j \leq i f<j+1 \Rightarrow j \leq \frac{k}{r}<j+1 \Rightarrow \frac{k}{j+1}<r \leq \frac{k}{j}$.

Thus a total of

$$
n_{j}=\frac{k}{j}-\frac{k}{j+1}=\frac{k}{j(j+1)}
$$

ranks r^{\prime} have associated $f \varepsilon[j, j+1)$.
2. Similarly j- $\frac{1}{2} \leq f<j+\frac{1}{2} \Rightarrow \frac{k}{j+\frac{1}{2}}<r \leq \frac{k}{j-\frac{1}{2}}$
and

$$
n_{j}=\frac{k}{j-\frac{1}{2}}-\frac{k}{j+\frac{1}{2}}=\frac{k}{\left(j-\frac{1}{2}\right)\left(j+\frac{1}{2}\right)}
$$

5
3. Using partial fractions

$$
\frac{1}{\left(j-\frac{1}{2}\right)\left(j+\frac{1}{2} j\right.}=\frac{\hat{1}}{j-\frac{1}{2}} \cdot \frac{1}{j+\frac{1}{2}},
$$

the partial sum is

$$
\begin{aligned}
& s_{n}^{<}=\left(\frac{1}{1 / 2}-\frac{1}{3 / 2}\right)+\left(\frac{1}{3 / 2}-\frac{1}{5 / 2}\right)+: L \\
& \quad+\left(\frac{1}{(2 n-1) / 2}-\frac{1}{(2 n+1) / 2}\right)=\frac{1}{1 / 2}-\frac{1}{(2 n+1) / 2}
\end{aligned}
$$

Thus the series, sums to 2. But $\Sigma n_{j}=2 k \gg N$ makes Zipf's model also only partially useful.
4. Comparison and integral tests are easy enough.
5. The rule is $f=j+1$ for theoretical $f \varepsilon(j, j+1]$, i.e., for ranks

$$
\frac{k}{j+1} \leq r<\frac{k}{j}
$$

(using the solution method of Exercise 1). Then

$$
n_{j+1}=\frac{k}{j} \cdot \frac{k}{j+1}=\frac{k}{j(j+1)}
$$

for $\mathrm{j}=1,2,3, \ldots$ Thus n_{1} is excluded, which makes no sense, and the split-upof k totals

$$
\sum_{2}^{\infty} \frac{1}{j(j+1)}=\frac{1}{2}
$$

also not nicely interpretable. Shifting the terms $\stackrel{n}{j}_{j}+n_{j+1}$ does not help us fit the Ulysses better, as an eyeballing of Table 1 will. show.
6. All that's missing is

$$
\begin{aligned}
1 & =\sum_{1}^{\infty} \frac{1}{k(k+1)} \\
& =\frac{1}{2}\left(\frac{1}{1}+\frac{1}{3}\right)+\frac{1}{4}\left(\frac{1}{3}+\frac{1}{5}\right)+\frac{1}{6}\left(\frac{1}{5}+\frac{1}{1}\right)+\ldots \\
& =\sum_{n=1}^{\infty} \frac{1}{2 n}\left(\frac{1}{2 n-1}+\frac{41}{2 n^{\prime}+1}\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{2 n}\left(\frac{4 n}{(2 n-1)(2 n+1)}\right)=\sum_{n=1}^{\infty} \frac{2}{(2 n-1)(2 n+1)} .
\end{aligned}
$$

7. First we show

$$
\begin{aligned}
\frac{1}{2} & =\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots \\
& =\frac{1}{3}\left(\frac{1}{1}+\frac{1}{5}\right)+\frac{1}{7}\left(\frac{1}{5}+\frac{1}{9}\right)+\frac{1}{11}\left(\frac{1}{9}+\frac{1}{13}\right)+\ldots \\
& =\sum_{n=0}^{\infty} \frac{1}{4 n+3}\left(\frac{1}{(4 n+1)}+\frac{1}{(4 n+5)}\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{4 n+3} \frac{8 n+6}{(4 n+1)(4 n+5)}=\sum_{n=0}^{\infty} \frac{2}{(4 n+1)(4 n+5)}
\end{aligned}
$$

3

The result then follows at once.

UMAP

MODULES AND MONOGRAPHS IN UNDERGRADUATE MATHEMATICS AND ITS
APPLICATIONS
$\therefore>\rho>\rho>$
${ }^{\infty} \infty^{\infty} \infty^{\infty}$

$\Rightarrow \mathrm{B}$ コ
－NON ON

$>\Phi>\infty>0$
Eーシージロ

$0>0 \geqslant 0>$

a \％a \％a \％
${ }^{-4} \|^{-4}\left[\begin{array}{ll}-4\end{array}\right.$
${ }_{6}{ }_{6} \sigma_{6}^{e} o_{6}^{e} 0$
メコメコメコ

Birkhäuser Boston inc． 380 Green Street
Cambridge，MA 02139

MODULE ${ }^{216}$

Curves and their Parametrization

by Nelson L．Max

Introductory Topology．

Intermodular Description Sheet: UMAP Unit 216

Title: CURVES ANO THEIR PARAMETRIZATION

Author: | Nelson L. Max |
| :--- |
| Qepartment of Mathematics and Statistics |
| Case Western Reserve University |
| Cleveland, Ohio $441: 06$ |

Review Stage/Oate: IV $6 / 30 / 80$
Classification: INTRO TOPOLOGY
Prerequisite Skills:

1. Understand the representation of points in the plane by
2. Understand the trigonometric functions of sine and cosine, and
3. Understand the natural logarithm function.
4. Sum the geometric and harmonic infinite series.

Output Skills:

1. Oefine a parametrized curve, Image of a curve, orientation of a curve.
2. Given the image of a curve, write the equation of one or more parametrized curves which trace the image with a given orientation.
3. Given the image of a curve, describe all its possible orientations.

Other Related Units:
The Alexander Horned Sphere (Unit.231)
The Project would like to thank Joseph Malkevitch of York College of CUNY and Anthony Phillips of SUNY at Stony Brook for their reviews, and all others who assisted in the production of this unit.

This unit was field-tested and/or student reviewed in preliminary form by W. Hugh Haynsworth of The College of Charleston, Charleston, South Carolina; C. Wagner of Pennsylvania State University, Middletown, Pennsylvania; Tom Haighof Saint John's University, Collegeviile, Minnesota; and Phililip Lestmann of Bryan College, Dayton, Tennessee, and has been revised on the basis of data received from these sites.

This material was preparied with the partial support of National Sciegce Foundation Grant No. SE076-19615 A02: Recommendations expressed are those of the author and do hot necessarily reflect the vjews of the NSF or the copyright holder.

- 1980 EOC/Project UMAP

All rights reserved.

CURVES AND THEIR PARAMETRIZATION

by
Nelson L. Max
Department of Mathematics and Statistics

- Case Western Reserve University Cleveland, Ohio 44106

TABLE OF CONTENTS

1. THE DEFINITION OF "CURVE" 1
2. PARAMETRIZATIONS OF THE UNIT CIRCLE 2
3. OTHER PARAMETRIZED CURVES 5
4. CONTINUOUS CURVES 7
5. CURVES WITH UNUSUAL PROPERTIES' 9
6. EXERCISES 13
7. MODEL EXAM, 15
8:- ANSWERS TO QUESTIONS IN TEXT 17
8. ANSWERS TO EXERCISES 17
9. ANSWERS TO MODEL EXAM 18

1. THE DEFINITION OF "ĆURVE"

Webster's Dictionary defines a curve as "the path of a moving point." If the moving point were the point of a pencil, it could trace out the curve on paper.

For example, the point of the pencil on a compass might trace out a circle.

Webster gives another more technical definition of a curve: "A line that may bee precisely defined by. an"• equation in such a way that its points are functions of a single independent varíable or parameter." We can think of the variable or parameter time and call it t., Then the coordinates of the moving point, $x(t)$ and $y(t)$, are the functions of time.

If we imagine the pencil as making dot on the curve every second, these dots will show How the curve has been traced. In particular, their' spacing will indicate the speed of the moving point. Here the point is speeding up as it moves to the right.

2. PARAMETRIZATIONS OF THE UNIT CIRCLE

: Below is a circle which is traced counter-clockwise at a uniform speed of 15°, or $\frac{\pi}{12}$ radians, every second. When it. is' finished in 24 seconds, it will have 24 evenly spaced dots. The coordinates of the moving point are given by the equations

$$
\begin{aligned}
& x(t)=\cos \left(\frac{\pi}{12} t\right) \\
& y(t)=\sin \left(\frac{\pi}{12} t\right)
\end{aligned}
$$

There are many other ways to trace the same circle.
In the figure below we see only twelve evenly spaced dots, so the equations might be

$$
\begin{aligned}
& x(t)=\cos \left(\frac{\pi}{6} t\right) \\
& y(t)=\sin \left(\frac{\pi}{6} t\right),
\end{aligned}
$$

However, they might also be

$$
\left\{\begin{array}{l}
x(t)=\cos \left(\frac{\pi}{6} t\right) \\
y(t)=-\sin \left(\frac{\pi}{6} t\right)
\end{array}\right.
$$

which would trace the circle with the same constant speed in the opposite direction.

330

We might also trace the circle by having the x coordinate move at a uniform speed from 1 to - 1 , for example,

$$
\begin{aligned}
& x(\dot{t})=1-\frac{1}{3} t \quad, \quad 0 \leq t \leq 6 \\
& \cdot y(t)=\sqrt{1-x^{2}}=\frac{1}{3} \sqrt{6 t_{1}-t^{2}}
\end{aligned}
$$

These equations work only to trace out a semicircle.

Here the dots are not evenly spaced. They are closest together at the top and bottom, indicating that the curve is traced most slowly there. The tracing point actually moves infinitely fast at the left and right sides.

QUESTION A: Can you find similar equations to trace out the bottom semicircle, for $6 \leq t \leq 12$?

331

All these different functions define different parametrization s of the circle. We say that they define different parametrized curves. The set of points which a curve passes through is called its image. All the different parametrization of the circle have the same image.

In addition to defining the speed, a parametrization also defines the order in which the points in the image are traced. Thus, a point tracing a clockwise circle moves in the opposite direction from a point tracing a counter clockwise circle, so it passes through the points in the image in the opposite order. Thus there are two orientations to the circle, clockwise and counter clockwise.

3. OTHER PARAMETRIZED CURVES

The situation becomes more complicated if the curve is not one-to-one, ie., if it passes through 'some points more than once. Here is a curve which crosses itself, passing through the point B twice. One orientation would be to pass through the points on the image in the order. ABCDBE.

03

- Another method of tracing the same image, shown partly, completed here, would pass through the points in the order ABDCBE, making two corners at B. Two more .
orientations would start at. E and end at A. QUESTION B: • What are they?

Although a curve can pass through certain points on its image more than once, it should not cover whole sections more than once. Thus, ABCDBDCBE would not give al ail orientation for the curve.

There is/nothing wrong with a corner in a curve. A mathematical is not necessarily a smoothly curving line, but may have corners, and can even consist entirely of straight lines. För example, a square is a curve. Gan you find a set of equations which describe this curve?

The trick is to find separate formulas for the different 'side's of the square, just as separate formulas could be used for the two semicircles making up a circle.

\geqslant
333

FFulleat Provided ty ERIC

The functions below define two sides of the square.

$$
\begin{aligned}
x(t) & = \begin{cases}t, & 0 \leq t \leq 1 \\
1, & 1 \leq t \leq 2\end{cases} \\
\cdot y(t) & = \begin{cases}0, & 0 \leq t \leq 1 \\
t-1, & 1 \leq t \leq 2\end{cases}
\end{aligned}
$$

QUESTION C: Can you continue these functions for $n^{-} \quad 2 \leq t \leq 4$ to define the other two sides?
4. CONTINUOUS CURVES

A natural subcollection of the class of parametrized 'curves are ones for which the tracing point moves dontinuously, without jumping. This condition is equivalent to requiring that the curve can be drawn without lifting the pencil from the paper. ${ }^{\circ}$.

2

It is also equivalent to requiring that the two coordinates $x(t)$ and $y(t)$ be continuous, functions of the time parameter t.

If one of the coordinate functions is discontinuous, for example,

$$
\begin{aligned}
& x(t)= \begin{cases}t, & 0 \leq t \leq 1 \\
t+1, & 1 \leq t \leq 2\end{cases} \\
& y(t)=\frac{1}{2} t^{2}
\end{aligned}
$$

the resulting image, shown below, may have a gap in it. If both $x(t)$ and $y(t)$ are continuous, the result will be a continuous parametrized curve, called simply a curve for short \curvearrowleft

335

5. CURVES WITH UNUSUAL PROPERTIES

There are many strange examples which satisfy this definition of curve.

Example 1

For example, if $1 n x$ denotes the natural logarithm of x^{\prime}, then the equations

$$
\begin{aligned}
& x=t \cos (2 \pi \ln t) \\
& y=t \sin (2 \pi \ln t)
\end{aligned}
$$

which make sense on the interval $0 \leq t \leq 1$, can be ex tended to a continuous function on $0 \leq t \leq 1$ by defining $x(0)=y(0)=0$. This gives a curve, called the logarithmic spiral, which has infinitely many (similar) turns near $t=0$. Nevertheless we will prove that it has finite length.

Consider the first turn of the spiral, from $t=1$ to $t=e^{-1}$. Suppose it has length L.

The next turn of the spiral, from $t=e^{-1}$ to $t=e^{-2}$ looks exactly similar, but e^{-1} is large, so its length is Le ${ }^{-1}$. Similarly the length of the next turn is Le^{-2}. Thus the length of the whole spiral is $\mathrm{L}+\mathrm{Le}^{-1}+\mathrm{Le}^{-2}$ $+L e^{-3} \ldots$, a geometric series which converges to $\mathrm{L} /\left(1-\mathrm{e}^{-1}\right)$, a finite length.

Problem

Verify that the turn of the spiral from $t=e^{-1}$ to $t=e^{-2}$ is similar to the tum from $t=1$ to $t=e^{-1}$ with constant of proportionality $\frac{1}{e}$.

Example 2

There is also a spiral which winds toward the origin in such a way that it has infinite length. It is the hyperbolic spiral

$$
\begin{aligned}
x & =t \cos \left(\frac{\pi}{t}\right) \\
y & =t \sin \left(\frac{\pi}{t}\right)
\end{aligned}
$$

which can again be defined for $0 \leq t \leq 1$ by letting $x(0)$ $=y(0)=0$. The length of the spiral must be at least - as long as the length of the inscribed polygon ABCDE... which we will show is infinite. If 0 is the origin, then $A B$ and $B C$, are both longer than $O B$, while $C D$ and $D E$ are both longer than $O D . .$. and so forth. So the length of the spiral is greater than twice the sum of the lengths of
the line segments from the origin to the "y crossings," the points where the curve crosses the y-axis, the first three of which are ${ }^{-B}, D, F$.

How long is $O B$? Consider the intersections of the spiral with the y-axis $(x=0)$. Since ' $t \neq 0$, we have

$$
\cos \left(\frac{\pi}{t}\right)=0
$$

sot that,

$$
\frac{\pi}{\tau_{s}}=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \ldots
$$

i.e.,

$$
\mathrm{t}=2, \frac{2}{3}, \frac{2}{5},-\frac{2}{7}, \ldots
$$

Since $t \leq 1$, the acceptable values for $\frac{\pi}{t}$:are $\frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$ The length of $O B$ is the y value when

$$
\frac{\pi}{t}=\frac{3 \pi}{2}\left(t=\frac{2}{3}\right): y\left(\frac{2}{3}\right)=-\frac{2}{3}, \text { so } \cdot O B=\frac{2}{3}
$$

Below is the graph of $y=t \sin \left(\frac{\pi}{t}\right)$, with the point $B^{\prime}=\left(\begin{array}{c}2^{x}, \\ 3\end{array} \frac{2}{3}\right)$ giving the y coordinate of the point B, i.e., the length of $O B$. Similarly $D^{\prime}=\left(\frac{2}{5}, \frac{2}{5}\right)$ gives the y coordinate for the point D. The length of the spiral, which is greater than the length of the polygon, is thus greater than the series

$$
2\left(\frac{2}{3}\right)^{0}+2\left(\frac{2}{5}\right)+2\left(\frac{2}{7}\right)+\cdots \cdots=4\left(\frac{1}{3}+\cdots+\frac{1}{7}+\ldots\right)
$$

which diverges. So, the length is infinite.

Example 3

The infinitely wiggly graph of $y=t \sin \left(\frac{\pi}{t}\right)$ also has infinite length by a similar argument.

Other Examples
There are functions whose graphs have infinitely many wiggles, and infinite length, between any, two points.

8

334

The snowflake curve also has infinite length between any two of its points.

Among the strangest examples of curves, are the "space filling curves," which pass through every point in an area such as a square.

1. How many different parameterized curves have the image shown below?

2. How many different oriented curves have this image?
3. "Find two different parametrized curves, defined for $0 \leq t \leq 1$, which have this piece of a parabola as an image?

4. Find the equations for the parametrized curve which traces this equilateral triangle at uniform speed in a° counter-clockwise direction, starting at the vertex $(0,0)$, 'in the time interval $0 \leq \mathrm{t} \leq$. $^{\circ}$

**
5.

7. MODEL EXAM

;1. State whether eaph of the curves described below is an oriented curve, a parametrized Gurve, or the image of a curve.
a) The contrail left by a jet plane.
b) The script letter m, drawn from left to fight.
c) A marathon course.
d) The straight path of an automobile, accelerating uniformly from 0 to 60 miles per hour in ten seconds.
e) A figure eight.
f) The path of the tip of a second hand on a wall clock.
2. If $A B C D$ is the curve defined by tracing the first three sidès of the hexagon below, with constant speed in the time interval $0 \leq t \leq 3$, find the formulas for $x(t)$ and $y(t)$.

3. Describe all possible orientations of the figure 8, starting fat the top point P.
\qquad
\cdots.

4. What is meant by the image of a parametrized curve?
5. Give a parametrized curve whose image iss $\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1, x^{2}=y^{3}\right\}$.

343
A. $x(t)=\frac{1}{3} t-3$.

$$
y(t)=-\sqrt{1-x^{2}}=-\sqrt{1-\frac{1}{3}(t-3)^{2}}=-\frac{1}{3} \sqrt{18 t,-t^{2}-72} .
$$

B. The order EBDCBA and the order EBCDBA.
C. A set of the equations for all four sides of the square are:

$$
\begin{aligned}
x(t)= & =\left\{\begin{array}{ll}
t, & 0 \leq t \leq 1 \\
1, & 1 \leq t \leq 2 \\
3-t, & 2 \leq t \leq 3 \\
0 & 3 \leq t \leq 4
\end{array} \quad y(t)= \begin{cases}0, & 0 \leq t \leq 1 \\
t-1, & 1 \leq t \leq 2 \\
1, & 2 \leq t \leq 3 \\
4-t, & 3 \leq t \leq 4\end{cases} \right. \\
&
\end{aligned}
$$

F. Infinitely many.
2. Sixteen.
3. (Possible answers)

$$
\begin{aligned}
& x(t)=1-t, \quad y(t)=(1-t)^{2} ; \\
& x(t)=t, \quad y(t)=t^{2} \text {; } \\
& x(t)=t^{2} \quad, \quad y(t)=t^{4} ; \\
& x(t)=\sqrt{t}, \quad y^{\prime}(t)=t . \\
& 4^{=} x(t)=\left\{\begin{array}{ll}
2 t, & 0 \leq t \leq 1 \\
3-t, & 1 \leq t \leq 3
\end{array} \quad y(t)= \begin{cases}0 & 0 \leq t \leq i \\
\sqrt{3}(t-1), & 1 \leq t \leq 2 \\
\sqrt{3}(3-t), & 2 \leq t \leq 3\end{cases} \right.
\end{aligned}
$$

1. a) image b) oriented curve c) oriented curve
d) parametrized curve e) image f) parametrized curve
2.

$$
\dot{x}(t)=\left\{\begin{array}{ll}
1+2 t, & 0 \leq t \leq 1 \\
2+t, & 1 \leq t \leq 2 \\
6-t, & 2 \leq t \leq 3
\end{array} \quad y(t)=\left\{\begin{array}{cc}
0 . & 0 \leq t \leq 1 \\
\sqrt{3}(t-1) & 1 \leq t \leq 3
\end{array}\right.\right.
$$

3.. PABCDEBFP, PABEDCBFP? PFBEDCBAP, and PFBCDEBAP.
5. Possible answers

$$
\begin{array}{ll}
x(t)=t, y(t)=t^{2 / 3} & 0 \leq t \leq 1 \\
x(t)=t^{3} ; y(t)=t^{2} & 0 \leq t \leq 1
\end{array}
$$

Inteimodular Description Sheet: UMAP linit 231
Title: the alexanoer horneo sphere
Author: Nelson L. Max
Oepartment of Mathematics and Statistics
Case Western Reserve University
Cleveland, Ohio 44106
Review Stage/Oate: 111 6/20/77
Classification: INTRO TOPOLOGY.
Suggested Support Material:
Films:
The Alexander Horned Sphere, $2 \frac{1}{2}$ minutes, sifient, color: ${ }^{5}$. 2ooms, 7 m
Available, from:

Isternational film Bureau
332 South Michigan Avenue
Chicago, lllinois 60604

Prerequisite Skikls:

1.. Parametrization of simple closed curves
2. Topological* defingtions of connecłedness, open a and closed.,
sets, continuous functions, homemorphisms.
Output Skills:
. Understand the construction of the Alexander hoined sohere.
2. Oiscover properties of the horned sphére as a counterexample
to Shoenfliess Theorem for the standard sphere $s{ }^{1}$.
Other Related Units:
Curves and Their Parametrizations (Unit 216)
Turning a Sphere Inside Out (Unit 289)

Curves and Their Parametrizations (Unit 216)
Turning a Sphere Inside Out (Unit 289)

- mOOULES ANO MONOGRAPHS in UNOERGRAOUATE
 MATHEMATICS ANO ITS APPLICATIONS PROJECT (UMAP)

 commubity of users mathémelopers, a system of instructional modules in undergraduate ex matics and its applications which may be used to supplement existing courses and from which complete courses may eventually be built. ?The Project is guided by a National Steering Committee of mathematicians, scientists and educators. UMAP is funded by a grant from the National Science Foundation to Education Oevelopment Center, Inc., a publicly supported, nonprofit corporation engaged in education research in the.U.S. and abroad: PROJECT STAFF

- Ross L. Finney

Solomon Garfunkél ,

> Felicia Weitzel Bartara Kelczewski

Dianne Lally
Pśula M. Santíllo
Jack Alexander:
Edwina Michener
Louise Raphael:

Oirector

Associate 0 irector/Consortium - Coordinator

Associate Oirector for. Administration Coordinator for Materials Production
Project Sécretary
Financial/Administrative Secretary
Editoríal Consultant

- Editorial Consultant Editorial Consultant
NATIONAL STEERING COMMITTEE
a荡W.T. Mantim
Steven w H Brams
Llayron ot barkson
James 0.'Forman.
- Ernest J. Henley

Donald A. Larson
§ William F. Luçãs
Frederick Mostelyer
Walter E. Sears
George Springer
Arnold A. Strassenburg
Alfred B. Willcox

MIT (Chairman)
New York University
Texas Southern University
Bochester Institute of Technology s
University of Houston rechnology
SUNY, at Buffalo
Cornell University
Harvard University
University of Michigan Press
Indiana University
SUNY at Stony Brook
Mathematical Association of America

The Project would like to thank Joseph Malkevitch and Solomon Garfunkel for their reviews and all others who assisted in the production of this unit.

This material was prepared with the support of Nation Science Foundation Grant No. SE076-19615. Recommendations expressed ars those of the author and do not necessarily reflect the views of the NSF nor of the National Steering Committee.

In this unit we will describe the image of a homemorphism from the standard sphere into three dimensional space, whose exterior is not homeomorphic toe the exterior of a standard sphere. It.is called the Alexander horned sphere because it was discovered by J.W. Alexander in 1924, and looks as if it has grown horns. We will start by discussing the situation for simple closed curves in the plane. Then we will describe the horned sphere, and suggest the idea behind the proof that it has a nonstandard exterior.

2. THE JORDAN CURVE AND SHOENFLIESS THOEREMS

A simple closed curve is a closed curve which does Hot cross itself. If it is parametrized by a continuous function f from the interval $[0,1]$ to the plane R^{2}, then $f(a)=f(b)$; for $a<b$, if and only if $a=0$ and $b=1$. (See Fig̣uré 1.)

If S^{1} stands for the unit circle, $\left\{(x, y) \in R^{2}\left\{x^{2}+y^{2}=1\right\}\right.$, we may also think of our curve as a homeomorphism g of S^{1} into the plane. This means that g is a homeomorphism of S^{1} onto its image $g\left(S^{1}\right)$, although $g\left(S^{1}\right)$ is not nieces. sarily the whole plane.

Suppose we have such a. simple closed curve g. The Jordan curve theorem states that $g\left(S^{1}\right)$ separates the plane into the union of two nonempty connected open sets A and B. That is, $R^{2}-g\left(S^{1}\right)=A U B, A$ and Bo are both nonempty, and open, and in particular, $g\left(S^{1}\right)$ is the complate frontier of both A and B. The previous set, A, is called the interior of the curve, and the unbounded one, B, is called the exterior. (See Figure 2.)

$\int \frac{\text { Figure } 2}{}$
The Shoenfliess Theorem states in addition that the homeomorphism g, which is defined only on the unit. circle S^{1}, can be extended to the whole plane, so that it takes the interior of S^{1}.to A and the exterior to B. Thus A and B are homeomorphic to the standard "round" regions.

We will not prove either of these theorems here.

3. THE HORNED SPHERE

Let R^{3} denote the three dimensional space. of triples of real numbers (x, y, z), let $S^{2}=\left\{(x, y, z,) \in R^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ be the surface of standard round sphere in R^{3}, and let g be a homeomof ism of S^{2} into R^{3}. Then the generalization of the Jordan Curve Theorem, sometimes called the Jordan Separation Theorem, states that $R^{3}-g\left(S^{2}\right)=A U B$, the union of two non-empty connected open sets, and $g\left(S^{2}\right)$ is the
complete frontier of each. Again, A represents the inv terior of the distorted sphere $g\left(S^{2}\right)$ and \dot{B} represents the exterior. (See Figure 3.)

. The analogous generalization is actually true in any number of dimensions.

However, the generalization of the Shoenfliess | Theorem is not true in the case of $g\left(S^{2}\right)$ and the Alexander Horned Sphere is atcounterexample. In this section, we 'will construct a homeomorphism g of S^{2} into R^{3}, such that the exterior B° of $g\left(S^{2}\right)$ is not homeomorphic to the exteribr of the standard sphere s^{2} : In particylar, then, it will not be possible to extend g to a homeomorphism of the exterior of s^{2} onto B .

To construct the horned sphere, we start with a 'round sphere as the first approximation and push out a pair of horns to make the second approximation, We can do this by taking two pairs of cóncentríf discs on the sphere, $D_{0} C^{\prime} C_{0}$; and $D_{1} \subset C_{1}$. Then we keep $S^{2 C}-\left(C_{0} \cup C_{1}\right)$ fixed, push $C_{0}-D_{0}$ and $C_{1}-D_{1}$ to the tubular sides of the horns, leaving circulär caps made from ${ }^{6} D_{0}$ and. D_{j}, as shown in Figure 4.

From the flat ends of these horns, we push out two new branches in the same way to get' the third 'approximation: Jit looks like a pair of crab's elaws pariaply intertocked but not closed or touching. To do this, we

need only move points which lye inside the four discs C_{00}, C_{01}, C_{10}, and C_{11}. (Figure 5.)

. Figure 5
We repeat again and again, growing new branches on the tops of each of the old branches. Since each. new pair of claws is a reduced version of the previous pair, the total amount any point moves is dominated by a., geometric progression. oTherefore, the approximations $=1$
converge uniformly to a continuous limit function g from ${ }^{\infty}$ S^{2} to R^{3}. By the way the construction is arranged, g is also one-to-one, so it can be proyed that g is a homeomorphism. (Figure 6.).

Figuré 6
We can roand' the corners of our surface to make a new function g which is smooth (Figure 7), except at the points which belong to an infinite number of the piscs C_{i}. These exceptional points are called wity points. If we take any infinite binary expansion, say . $01100110 . .$. , we can get a. corresponding contracting sequence of discs $C_{0} \supset C_{01} \supset C_{011} \supset C_{0110} \supset \ldots$ which contains a wild point P in common. Thus there is at ${ }_{\text {loast }}$ one wild point for every real number between 0 and 1 , so that the collection of wild points is uncountable.

$$
\text { Let } C=\left\{(x, y, z) \in R^{3}\left|x^{2}+y^{2}+z^{2}\right|<1\right\} \text { be the interior }
$$ of the unit sphere S^{2}. Then we could pull C along as we puish, out S^{2}, so the function g can be extended to C,

giviñg a homeomorphism of the closed ball $S^{2} U C$ into R^{3}.
Thẹrefore the interior A of ${ }^{\prime}\left(S^{\circ}{ }^{2}\right)$ is homeqmoे ${ }^{2}$ hic to the round ball C :

Figure 8

curve $f_{t}(s)$, which is also closed and continuous, and these intermediate curve depend continuously on \ddot{t}. The intermediate curve, must agree with $f(s)$, when $t=0$,
4. and stay fixed at.P when $t=1$. Thus, a parametrization of the. shrinting motion is a continupus function
$\underset{-}{F}\left(s^{\prime}, t\right)=f_{t}^{\prime}(s)$ of two variables, $s \in[0,1]$, which marks distance along each curye, and $t \varepsilon[0,1]$, whìch marks the. different intermediate curýgs in the motion.

It must satisfy
a. $F(s, 0)=$ 主 (s) for ail's,
b. $f(0, t)=F(1, t)$ for al'l t, and
c. $F(\sigma, 1)=\stackrel{?}{?}$ for all S .

Such a fanction F is called a homotopy. It is said to shrink the loop f in X to the point P.
n If T denotes the solid donut, or torus, shown in Fígure 9 , then its exterior $y=R^{3}-T$ is not simply connected. The loop L, which wrapps around the hole, cannot be shrunk to a point without.crossing T.
: Suppose there were a homeomorphism h from the exterior D of S^{2} tio the exterior Y of T. Thén, knowing \{ D° is simply connected, we could prove Y to be simply connected as $3 \underset{\text { follows, Let'f parametrize a closed. loop }}{ }$

Figure ${ }^{\circ}$
Then h^{-1} of is a closed loop in D. Since D is simply connected, there is a homotopy F which shrinks the loop h^{-1} of in D to a point P. Then hof will shrink the loop f in Y to a point $f(P)$. Since this works for any loop $\mathbb{f}^{-i n} Y, Y$ is simply connected

We say simply connéctedness is a topological property, because it is preserved by homeomorphisms.

5. THE EXTERIOR OF. THE HORNED SPHERE

We can prove similariy that the exterior of B of the Alexander Horned Sphere is not homeomorphic to D, if we can show that it is not simply connected.

At first, this might seem difficult, because the claws never touched, so.the exterior of dach approximation is simply connected. However; à property which is true of each of a sequence of approximations is not necessarily true of the limit. In fact, we can define the horned sphere differently, so that the exterior of each approximation is not simply connected.

- Imagine you are carving the colid horned sphere $g\left(S^{2} \cup \dot{C}\right)$ out of a piece of wood. The first approximation , ${ }_{1}$ will be a torus with two bulges, one for the original sphere, and one to contain the claws, as showf in Figưre 10.

If we continue, we get a sequence of closed sets $K_{1} \supset K_{2} \supset K_{3} \supset \ldots \supset g\left(S^{2} U C\right)$, each of whose exteriors is non-simply connected. (See Figure 12.)

Now suppose the loop L could be shrunk to a point in the exterior B of $g\left(S^{2}\right)$, using a homotopy $F(s, t)$. Since the image of F does not meet $g\left(S^{2} \cup C\right)^{\prime}$, it must remain a finite distance ε away. But now we find a solid approximation K_{n} within ε of $g\left(S^{2} U^{\prime} C\right)$, and the image of the homotopy will also miss K_{n}. This contra dicts the fact that L cannot be shrunk, to a point on the exterior of K_{n}.
6. PROBLEM

Draw a sphere $g\left(S^{2}\right)$ such that its interior A is not homeomorphic to the interior C of a round sphere.

358

Solution: Push the horns into the inside of the sphere. ~A hole has been cut away from the surface to make them visible.

Student: If you have trouble with a specific part of this unit, please fill out this form and take it to your instructor for assistance. The information you give will help the author to revise the unit.
Your Name

Instructor: please indicate your resolution of the difficulty in this box. ..Corrected errors in materials. List corrections here:Gave student better explanation, example; or procedure than in unit. Give brief outline of your addition here:Assisted student in acquiring general learning and problem-solving skills (not using examples from this unit.)

$$
361
$$

Name
Unit No. \qquad Date \qquad
Institution \qquad Course No. \qquad
Check the choice for each question that comes closesit to your personal opinion.

1. How useful was the amount of detail in the unit?

Not enough detail to understand the unit
, Unit would have been clearer with more detail
Appropriate amount of detail
Unit was occasionally too detailed, but this was not distracting
$\square T$ Too much detail; I was often distracted
2. How helpful were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
$\square S$ Sufficient information was given to solve the problems
___Sample solutions were too detailed; I didn't need them
3. Except for fulfiliing the prerequisites, how much did you use other sources (for example, instructor, friends, or other books) in order to understand the unit?
\qquad
A Lọt
Somewhat
A Little
Not at a.ll
4. How fong was this unit in comparison to the amount of time you generally spend on a lesson (lecture and homework assignment) in a typical math or science course?

Much	Somewhat	About	
Longer	Longer	the Same	Somewhat\quadShorter\quadMuch

5. Were any of the following parts of the unit confusing or distracting? (Check as many as apply.)
4 \qquad Prerequisites
Statement of skills and concepts (objectives)
Paragraph headings
Examplés
Special Assistance Supplement (if present)
Other, please explain
6. Were any. of the following parts of the unit particularly helpful? (Check as many as apply.)

Prerequisites n
Statement of $\hat{s}^{n} k i l l s$ and concepts (objectives)
Examples
Problems
Paragraph headings
Table of Contents
Special Assistance Suppleर́ (1f present)
\rightarrow Fother, please explain
Please describe anything in the unit that you did not parṭicularly like.

Please describe anything that you found particularly helpful. (Please use the back of this sheet if you need more space.)

KINETIC̣S OF SINGLE REACTANT REACTIONS

by
Brindell Horelick
Department of Mathematics

- University of Maryland Baltimore County Baltimore, MD 21228
and
Sinan ${ }^{-}$Koont
Department of Economics
University of Massachusetts Amherst, MA 01003

TABLE OF CONTENTS

1. SINGLE REACTANT IRREVERSIBLE REACTIONS
 1

1.1 Oefinition and Some Examples 1
1.2 Graph of the Results 2
1.3 Questions 4
1.4 Chemical Kinetics 4
2. REACTION OROER 5
2.1° Definitions 5
2.2 Zero-order Reactions 5
2.3 First-order Reactions 6
2.4 Second-order Reactions 6
2.5 Statement of the Problem 6
3. OETERMINING THE REACTION OROER 7
3.1. Solving for a(t) 7
3.2* The Difficulty 8
3.3 Solving the Oifficulty 9
3.4 An Example 10
4. HALF-LIFE 11
4.1 Definition 11
4.2 Formulas for Half-Life 11
4.3 Zero-order Reactions 12
4.4 First-order Reactions 13
4.5 Second-arder Reactions 13
5. MODEL EXAM 15

Intermodular Description Sheet: UMAP̈ Unit $\ddot{q} 32$
 Tide: Kinetics of single reactant reactions

Bares, J., Carny, C., Fried, V., and iv. Pick (1962). Collection of Problems in Physical Chemistry. Addison Wesley, Reading, MA.
Capellos, C., and B. Bielski (1972). Kinetic Systems. WileyInterscience, ${ }^{\text {NY. }}$
Frost, A.A., and R.G. Peartion (j961). Kinetids and Mechanism. (and ed.) John Wiley and Sons, Inc. NY. ;
Ladler, K.J. (1965). Chemical Kinetics. McGaw-Hill, Inc., NY.
Stevens, B. (1970). Chemical Kinetics. Chapman and Hall, London.
Weston, R.E. Jr.... and H.A. Gchwarz (1972). C Amisal Kinetics.
Prentice-Hall, inglewood $\mathrm{Cl} \mathrm{iff}_{f} \mathrm{f}$, NY.
Prerequisite Skills:

x

1. Be familiar with the Cartesian coordinate shy stem.
2. Understand that $a^{\prime \prime}(t)$ describes the rate of change of $\left.a \nmid t\right)$
3. Be able to integrate

$$
\int_{0}^{t} \frac{a^{\prime}(t)}{a^{n}(t)} d t
$$

for $n=0, \frac{1}{2}, N, 2,3$.
4. Be able to solve an exponential equation.

This unit is intended for Calculus students with an actives
interest in and some background knowledge of chemistry. This balk- ground may be'represented by concurrent registration in a college level chemistry course.

Output Skills:
9. Be able to describe single reactant irreversible "reactions, including definitions of rate constant, reaction order, and half-life.
2: Be able to find explicit. formulas for $a(t)$ and for the half-life for a reaction of order n.
3. Be able to determine the reaction order and rate constant of a reaction, given data on $a(t)$, provided the reaction is of order 0 , 1, or 2 .

This material was prepared with the partial support of National Science Foundation Grant No. SE076-19615 A02. Recommendations expressed are those of the author and do not necessarily reflect the views of the NSF or the copyright holder.

> "(C) 1979 EDC/Project UMAP Ali rights reserved. 36.5n

1.1 Definition and Some Examples

Suppose we have a chemical réaction of a parn darly simple sort, one which involves only one substance (léa call it A) as a reactant, and which is irreversible, therefore gofing to completion. It may be represented b' writing:

$$
A+B_{1}+\dot{B}_{2}^{\infty}+\cdots+B_{n},
$$

where $B_{1}, B_{2}, \ldots B_{n}$ are the product's. Suppose at time $t=0$ we have a certain'concentratiogn a_{0} of A (méasured, for example, in moles per liter). It is possible to observe and record the concentration $a(t)$, of A at various. . 7 , - later times t.

TABLE I
Experimental Data from Three Single.: Reáctant Irgeversible Reactions.
(a)

t (seconds)	0	51	.206	454	751	1132	1575	2215
$\mathrm{a}(\mathrm{t})$ $(\mathrm{mg} \mathrm{Hg})$	15.03	14.58	13.32°	11.49	9.73	7.79	6.08	4.17

(b)

t $\left(\begin{array}{c}t \\ \text { mintes })\end{array}\right.$	0	1	4	10	30	40
$a(t)$ $(m \mathrm{mg})$	55°	50	38	21	3	1.5

t (seconds)	0 \Rightarrow	120	180	240	330	530	600
$a(t) 7 a_{0}$	1.	.6705	.5825	. .512	.4995	.310	.2965

Table I gives three sets of such observations. Part (a) is for an experiment conducted at $280^{\circ} \mathrm{C}^{\circ}$ involving the decomposition of trichloromethyl chloroformate into phos. gene:

Part (b) is for the decomposition at $500^{\circ} \mathrm{C}$ of ethylamine into ethylene and ammonia:

$$
-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{NH}_{3} .
$$

Part (c) is for alkaline hydrolysis of ethyl" ${ }^{\text {titrobenzoate }}$ at an iffitial concentration of 0,05 moles per liter.

The reactants in parts (a) and (b) are gaseous. At constant temperature and volume, $a(t)$ is. proportional to its partial pressure, and it is this figure, in millimeters of mercury (mm lig), that appetrs in Table I. In part (c), $a(t)$ is given as *a fraction of x_{0}^{*}.
' In the converstion of trichloromethyl chloroformate to phosgené, both the reactant and the preduct-are gaseous, • and the total pressure actyally increases as the reaction proceeds-recause each trichloromethyl chlorbformate molecule gives rise to two phosgene molecules. The partial pressure of the trichloromethyl chloroformate is "déduced"from the total pressure by taking the reaction equation and the original pressure into account. In many reactions, however, the amount of the reactant $i_{\text {s }}$ determined by techniques based on its absorption of light. :

> 1.2 Graphsfof the Result's
> We have plotted these results in Figures 1,2, gnd 23. In that all of the curves decrease as it increases, 'these curves look very similar. But. there is at least one significant difference (aside from the differences of ${ }^{\prime}{ }^{\prime}$ scales's. In each figure we have selected various concentrations of A and determined graphically approximately how long it takes for $a(t)$ to decrease from the selected concentration to haif of it. For example, figure 1 shows us

Figure 3. Alkaline Hydrolysis of Ethyl Nitrobenzoate' (from Table (c)).
 decrease from 14 to $7 \mathrm{~mm}, \ddot{H g}$, or 1220 , Seconds for itnte decrease from to 5 mm Hg. In eqch of theffirst two figures the measured time intervals are approximately equaj, but in Figure 3 they are not.

1.3 Questions

Can we explain this difference in terms of, the reactions? Or, turning the question around; can we draw any conclusions basect on these observations, aboft the nature of the reactions?
i.4 Chemical Kinetics

Questions such as these are part of a branch of chemistry known as chemical kinetics. Chemical kinetics, is concerned with the rates-and mechanisms of chemical
reactions. The name reflects the fact that "kinetics" is concerned with the, changing aspects of systems, as distinguished from "statics" which concerns systems at equilibrium. We should also point out here that the rate at which a chemical process takes place and the mechanism of the process (i.e., what exactly happens during the transformation of A into $B_{1}^{\prime}+B_{2}+\ldots B_{n}$) are two different things. The study of reaction mech-. anisms lies at a higher theoretical level than the study of reaction rates. In general, experimentally determined reaction rates can be used to rule out a proposed methanism if they are inconsistent with it? . But experimental data. that are consistent with.a proposed mechanism cán only. serve as supporting evidencé for_it; they cannot be used directly prove its correctness.
2. REACTION ORDER

2.1 Definitions

To make the question in Section 1.3 more specific, we shall summarize some background information about the reaction rates in reactions of this type. If substance A (in gas or'liquid form) is uniformby distributed, and if the temperature, and volume are kept constant, then, it usualiy turns out that the rate a'(t) at which A decomposes is proportional to a. non-negative integer.power $(0,1,2, \ldots)$ of the concentration $a(t)$. In other words (1)

$$
a^{\prime}(t)=-k[a(t)]^{n}
$$

where k irs a posifive constant and n is a non-negative integer. We call k the rate constant and in the order fic. the reaction. Equation (1) with n_{0} established is called the rate riaw fqu theaction.

We shall coftsider reaction orders 0,1 and 2 in detail. . Higher réaction orgers for reáctions of the type , we afe discussing are corsiderably more raré.

2.2 Zero-order Reac.tions

Setting $n=0$ in Equation

$$
a^{\prime}(t)=-k_{0}^{\prime}
$$

where we have introduced the subscript to denote the reaction order. The rate is independent α. the concen. tration of A. It is determined by other factors such as temperature, the intensity of light in light-induced reactions, the surface area available in surface-catalyzed reactions, or the amount of catalyst in homogeneous catalysis. (A catalyst is a chemical substance that cone trols the fer a reaction without undergoing any net change in itself over the course of the reaction.)
2.3 First-order Reactions. .J"

In this' case, we have

$$
\begin{equation*}
a^{\prime}(t)=-k_{1} a(t) \tag{3}
\end{equation*}
$$

Most simple decomposition reactions, involving, a single reactant are of first-order. This is not surprising if we imagine the reaction process to consist of molecules of A decomposing randomly. If; for example, each malecte has 1 chance in 10 of decomposing in the next second, then abouit $\frac{1}{10}$ th of those present will in fact decompose in that second. In other words, the change in a(t) in that secong is about $-\frac{1}{10} a^{\prime}(t)$.) We describe this by writing,

$$
a^{\prime}(t)=-\frac{1}{10} a(t)
$$

2.4 Second-order Reactions

The rate law for second-order reactions is:

$$
\begin{equation*}
a^{\prime}(t)_{c}=-k_{I I^{a^{2}}(t)} \tag{4}
\end{equation*}
$$

In general, elementary reactions which require the collision pf two molecules are good candidates for this category.
2.5.-Statement of the Problem

Equation (1) has b'èn confármed for many reactions 'by numerous experiments, and also explained theoretically.

371

We shall not get into the theoretical explanation except to say (as has already been indicated in Sections 2.2, 2.3 and 2.4) that different reaction orders are the result of
$*$ different underlying reaction mechanisms. So if we have a reaction and want to know more about its mechanism a very useful first step. is to determine its reaction order experimentally.

Can we use data such as that given in Table 1 to determine whether a reaction has one of the orders we have discussed, and, if so, which one?

0

3. DETERMINING THE REACTION ORDER *

3.1 Solving for .a(t)

To begin with, we can use Equations (2), (3), and (4) to obtain explicit formulas for aft) in the three cases.
(a) Zero-order reactions) If $a^{\prime}(t)=-k_{0}$ then ${ }^{\text {: }}$ $a(t)=-k_{0} t+C$ where C is a constant of integration: Using the fact that $a(0)=a_{0}$ we see that $C=a_{0}$ and

$$
\begin{equation*}
a(t)^{\bullet}=a_{0}-k_{0} t . \tag{5}
\end{equation*}
$$

(b) First-order reactions: Starting with Equation (3), divide both sides by alt) (which is never zero):

$$
\begin{aligned}
& \lambda \quad \frac{a^{\prime}(t)}{a(t)}=\cdot k_{I} \\
& \int_{0}^{t^{\prime}} \frac{a^{\prime}(t)}{a(t)} d t=/: \int_{0}^{t} k_{I} d t^{\prime} \cdot \\
& \left.\ln a(t) \cdot\right|_{0} ^{t}=-\left.k_{I} t\right|_{0} ^{t} \text { : } \\
& \ln a(t),=-k_{L} t+\ln a_{0} \\
& F_{a(t)}=a_{t} e^{-k} I^{t} .
\end{aligned}
$$

I

$$
372
$$

(c) Second-order reactions: In Equation (4) we divide each side by $a^{2}(t)$, and conclude that -

$$
\frac{a^{\prime}(t)}{a^{2}(t)}=-k_{I I}
$$

$$
\int_{0}^{t} \frac{a^{\prime}(t)}{a^{2}(t)} d t=-\int_{0}^{t} k_{I I} d t
$$

$$
s \quad-\left.\frac{1}{a^{(t)}}\right|_{0} ^{t}=-\left.k_{I I}^{t}\right|_{0} ^{t}
$$

*.

$$
\frac{1}{a(t)}=k_{I_{0} I} t+\frac{1}{a_{0}}=\frac{a_{0} k_{I I} t+1}{a_{0}}
$$

$$
\begin{equation*}
\dot{a}(t)=\frac{a_{0}}{a_{0} k_{I I}{ }^{t}+1} . \tag{7}
\end{equation*}
$$

Exercisel

Find $a(t)$ expricitly for a thiforder reaction.

Exercise 2

Assume tyo reactions' are of first and second order respectively:

$$
\begin{aligned}
& a!(t)=-k_{I} a(t) \\
& b^{\prime}(t)=-k_{I I} b^{2}(t)
\end{aligned}
$$

Assume they begin with the same amount of reactant ($a_{0}=b_{0}$), and their initial rates are the same $\left[a^{\prime}(0)=b^{\prime}(0)\right]$. Prove that $a(t)<b(t)$ for all $t>0$:
(Hint: Note that $\frac{a(t)}{b(t)}=1$-hen $t=0$ and show that it is strictly decreasing for $t>0$.)

3.2 The Difficulty

- The rate constiant ${ }^{\circ}\left(k_{0}, k_{I}, k_{I I}{ }^{\prime}{ }^{\prime}\right.$ is of course not符now, so we cannot get away with, anything so naive as plugging our data into Equations (5), (6), and (7). to see which one checks out. It is true that the gtaphs
of these equations have three distinctive "shapes.", whatever the constants are (for example, Equation (5) is a straight line). So we could constider graphing our' experimental data and trying to determine which "shape" curve fíts it best. In this unit however, we present a method of determining, the reäction order that does not depend on graphing, and which also gives us the rate constant at ro extra cost.

3.3 Solving the, Difficulty

The method starts with solving Equations (5), (6), and (7) for $k_{0,}, k_{I}$, and $k_{I I}$:

(10) $k_{\text {II }}=\frac{1}{t_{2}}\left(\frac{1}{a(t)}-\frac{1}{a_{0}}\right)$,
$t>0$.
Now if, for exampie, the reaction order is zero, then all the data points should satisfy Equation (5) for some constant k_{0}. Thus whenever we substitute any data point ($t, a(t)$) to, the right side of Equation (8) we should get more or les's the same value (namely k_{0}). Naturally there will be small variations due to experi-.. mentaleerror. Similar comments apply to Equation (9) if the reaction order is one, and Equation (10) iff the reaction order is two.

So all we need to do is compute three rows of

* figures -- the right sides of Equations (砮, (9), and (10) .- for 'our data points, and see if any row remains more or less constant. If so, that row gives us the reaction qrder, and its constant value is the rate constănt $\left(k_{0}^{\prime} ; \dot{k}_{I}\right.$, or $\left.k_{I I}^{\prime}\right) \not{ }^{*}$

3.4 An Example

As an example, let's go back to part (a) of Table I.. In Table II, we have repeated the data and also tabulated the right sides of Equations (8), (9), and (10). The figures in. the row corresponding to Equation (9) are nearly constant ($\approx 5.8 \times 10^{-4} \sec ^{-1}$) while those in the other rows are not. So this reaction is apparently a first order reaction with $\mathrm{k}_{\mathrm{I}} \approx 5.8 \times 10^{-4} \mathrm{sec}^{-1}$.

- Tablef II

Calcǔlation of Rate Constant and Reaction Order for Data of Table $1(a)$.

t	- sec	,	51	206	454	751	1132	1575	2215
$a(t)$	mm Hg	15.93	14.58	13.32	1149	9.73	7.79	6.08	4.17
$\frac{a-a(t)}{2} \times 10^{3}$	$\frac{\mathrm{mm} \mathrm{H}}{\mathrm{sec}}$.	\cdots	8,82	8.30	7.80	7.06	6.40	$\begin{aligned} & 5.68 \\ & 1 \end{aligned}$	4.90
$\frac{1}{t} \ln \frac{a_{0}}{a(t)} \times 10^{4}$	$\frac{1}{\sec }$	4	5.96	$5.86{ }^{\circ}$	5.92	5.79	${ }_{5.81}^{k}$	5.75	5.79
$\frac{1}{t}\left(\frac{1}{a(t)}-\frac{1}{a_{0}}\right) \times 10^{5}$	$\frac{1}{\text { min } \mathrm{Hg} \mathrm{sec}}$		4.03^{20}	$4 \quad 15$	4.52	4.83	5.46	622	7.7

Exercise 3

Determine the reaction order and rate constant from the data given in part (b) of Table 1.

Exercise 4

Determine the reaction order and rate constant from the data given in part (c) of Table 1.

4. HALF-LIFE

4.1 Definition

The half-life $t_{\frac{1}{z}}$ of a certain amount of a reactant is the length of time required for exactly half of it to be used up. In other words, if the amount of reactant is a_{0} at time $t=0$, and $i f, a(t)$ is the amount at a latér time t, then $t_{\frac{1}{2}}$ is the solution of the equation

$$
a(t)=\frac{1}{2} a_{0} .
$$

In Section ${ }^{\circ}: 2$ we determined graphically the halflives of various amounts of three reactants, and discovered that for two of the reactants $t_{\frac{1}{2}}$ did not seem $\ddagger 0$, dępend upon the initial amount, but for the third redctant ${ }^{\left(W_{1} t\right.}$ did. Let us see if this phenomenon can shed a little more light, on the concept of reaction order.

4.2 qFormulas for Half-Life

To start with, let us compute $t_{1 / 2}$ for each of the three reaction orders we are considering. All we need
(- to do is sef $\mathrm{a}_{\mathrm{a}}(\mathrm{t})=\frac{1}{2^{2}} \mathrm{a}_{0}$ in.each of Equations (5), (6), ^ and (7) and sodve for t :
(12) ${ }^{\text {a }}$

$$
\begin{align*}
& t_{\frac{1}{2}}=\frac{1}{2 k_{\sigma}} a_{0} \quad \text { (Zero-order). } \tag{11}
\end{align*}
$$

$$
\begin{align*}
& t_{t_{2}-} \frac{1}{k_{I I} a_{0}} \text { (Second-order) } \tag{13}
\end{align*}
$$

Exercisé 5

Find $t_{\frac{1}{2}}$ as, a function of. a_{o} for a third-order reaction:

Exercise 6°

We define $t_{3} / 4$ as the time required for $\cdot \frac{3}{1}$ of a reactant to be used up: That ive, $a\left(t_{3 / 4}\right)=\frac{t}{4} a_{0}$. Find $t_{3 / 4}$, as a function of a_{0} for reactions of zero; first, and second-order. ${ }^{4}$.

Exercise
Find thep ratio $\frac{t^{3 / 4}}{t_{\frac{1}{2}}}$ for reactions of zero, first, and

Exercise 8

Table III gives $t_{\frac{1}{2}}$ and $t_{3 / 4}$ for three initial amounts of the -reactant in the reaction

$$
\mathrm{CH}_{3} \mathrm{CHO} \longrightarrow \mathrm{CH}_{4}+\mathrm{CO}
$$

1

$$
\theta
$$

acetaldehyde methane carbon monoxide
Determine _if possible whether the reacition has one of the three orders discussed if this unit and, if so, which one.

TABEE III.
Half-life and $3 / 4$-Life Data for the

$$
\text { Reaction } \mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{4}+\mathrm{CO} \quad \text { (Exercise 8) }
$$

a_{0} (mm Hg)	$42 h$	225	184
$t_{\frac{1}{2}}$ (teconds)	1	385	572
$r_{3 / 4}$ (seconds)	1135	1710	1920

Exercise 9
Suppose, for every x between ${ }^{\circ} 0$ and ${ }^{\prime}$, we write t_{x} for the. time required for fraction x of a reactant to be used up. (In Exèrcise $6 \quad t_{3 / 4}$ is an example of t_{x} with $x=3 / 4$.) Show that in a first-order reaction independent of the initial amount no matter what x is.

4.3 Zero-order Reactions

For a zero-order reaction, half-life is proportional to initialiamount. "The greater the amount, the longer

$$
\begin{equation*}
\cdot \infty \tag{12}
\end{equation*}
$$

377
the half-1ife. To help yourself understand and remember this, think of a very large number of marbles, from which we remove, say, 10 each second $(k=10)$. The more there are origínally, the longer, it will take to remove half of them.

4.4 First-order Reactions

For a first-order reaction, half-life is independent of initial amount!! To heíp understand and remember this, thınk àgain of a very large number of marbles. This time remove one half of the pile in the first second, then one hay.f of the remaining pile in the next second, etc. $\left(k_{I}=\frac{1}{2}\right)$. No matter how many we start with, it will take one second to remove half of them. Also, at any later stage it will take one second to remove half of what remains.

4.5 - Second-order Reactions

For a second-order reaction, half-life is proportional to the reciprocal of the initial amount. Another way of saying this is that a $t_{t_{1}}$ is a constant. The more of A there is, the less time it takes for one half of it to decompose! Although this may seem paradoxical we invite ${ }^{-}$ you to consider the fact that second-order reactions depend upon collisions of pairs of molecules. Equation (13) says that the more molecules there are, the more likely they will collide, and the faster the reaction wifll proceed.

Exercise 10

The following data were obtained by F. Daniels and E.H. Johnston (J. An. Chem. Soc., 43, 53 (1921)) for the dectomposition of nitrogen pentoxide $\left(\mathrm{N}_{2} \mathrm{O}_{5}\right)$ in solution in carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ at $45^{\circ} \mathrm{C}$:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{O}_{2} .
$$

5. MODEL EXAM

1. For some reactions the reaction order is found to be fractional. Find alt) explicitly (in terms of. a_{0}) for a reaction with reaction order. $n=\frac{1}{2}$.
2. Define t_{x} as that time for which $a\left(t_{x}\right)=(1-x) a_{0}$ Find, t_{x} for a second order reaction. Is this t_{x} independent of a ${ }_{0}$?
3. Determine the reaction order and rate constant from the following data for a hypothetical reaction.

t (seconds)	$\cdot 0$	2	4	6	8	10
$a(t)($ moles $/ 1)$.10 .0	3.98	2.51	1.82	1.44	1.19

ANSWERS TO EXEQCISES

1. $a(t)=a_{0}^{\prime}\left(\frac{1}{2 a_{0}^{2} k_{\text {III }} t+1}\right)^{\frac{1}{2}}$
2. The information given to us is:
3. $a^{\prime}(t)=-k_{I}(t)$
4. $b^{\prime}(t)=-k_{I I} b^{2}(t)$
5. $a(0)=b(0)$
6. $a^{\prime}(0)=b^{\prime}(0)$

To see that $\frac{a(t)}{b(t)}$ is a decreasing function of t, we show that the derivative of the quotient is negative.

$$
\begin{align*}
\frac{d}{d t}\left(\frac{a(t)}{b(t)}\right) & =\frac{b(t) a^{\prime}(t)-a(t) b^{\prime}(t)}{b^{2}(t)} \\
& =\frac{b(t)\left(-k_{I} a(t)\right)-a(t)\left(-k_{I I} b^{2}(t)\right)}{b^{2}(t)} \\
& =a(t)\left(k_{I I}-\frac{k_{I}}{b(t)}\right) . \tag{14}
\end{align*}
$$

Now, $a^{\prime}(0)=b^{\prime}(0)$ means that \cdot.

$$
k_{I} a(0)=k_{I I} b^{2}(0)
$$

and $a(0)=b(0)$ means further, that

$$
\begin{aligned}
k_{I} b(0) & =k_{I I} b^{2}(0) \\
\cdot k_{I} & =k_{I \cdot I} b(0)
\end{aligned}
$$

When we substitute this value of k_{I} in Equation (14) we obtain

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{a(t)}{b(t)}\right) & =a(t)\left(k_{I I}-\frac{k_{I I} b(0)}{b(t)}\right) \\
& =k_{I I} a(t)\left(1-\frac{b(0)}{b(t)}\right):
\end{aligned}
$$

Since $b(t)<b(0)$ for $t>0$,

$$
\begin{gathered}
-\frac{b(0)}{b(t)}>1 \\
{\left[1-\frac{b(0)}{b(t)}\right)^{i} \leqslant 0}
\end{gathered}
$$

an ñ̀d

381
3. Reaction order $=1$

$$
k=9.4 \times 10^{-2} \mathrm{~min}^{-1}
$$

4. Reaction order $=2$

$$
\begin{aligned}
a_{0} k=4.1 \times 10^{-3} \mathrm{sec}^{-1} \text { or, since } a_{0}^{\prime} & =0.05 \\
k_{0} & =8.2 \times 10^{-2} \eta \text { mole }^{-1} \sec ^{-1} .
\end{aligned}
$$

5. $\quad t_{\frac{1}{2}^{-}}=\frac{3}{2 a_{0}{ }^{2} k_{3}}$.
6. Zero order: $t_{3} ; / 4=\frac{3 a_{0}}{4 k_{0}}$
'First-order: ${ }^{t_{3 / 4}}=\frac{1}{k_{I}} \ln 4$.
. . Second-order: $t_{3 / 4}^{*}=\frac{3}{a_{0}^{k} I I}$
7. Zero-order: $\frac{3}{2}$

First-order: 2
Second-order: 3
I. 8. . Second-order.
10. First order, $k \approx 6.2^{-} \times 10^{-4} \sec ^{-1}, t_{\frac{1}{2}} \approx 1120 \mathrm{sec}, 3 t_{\frac{1}{2}}=3360 \mathrm{sec}{ }^{\circ}$

ANSWERS TO MODEL* EXAM,

1. $a(t)=a_{0}-r_{0} k t+\frac{k^{2} t^{2}}{4}$.
2. $t_{x}=\frac{i}{a_{0} k_{11}}\left(\frac{. x}{1-x}\right)$; No.
3. $k=7.5 \times 10^{-1}$ Thole $e^{-2} \sec ^{-1}$

Order $=2$.

[^0]: In truth, the compas's points to the north magnetic pole, not the North (geographic) pole. Diserepancies of this kind are discussed later in the Special Assistance Supplement. [$S-1]$

[^1]: ${ }^{2}$ Historians disagree as to the origine of the magnetic compass. You will find an interesting acccunt of the compass and its history under "'compass"' in the Ercuclopedia Brittanica.

[^2]: ${ }^{3}$ Recalling that $\cos ^{2} \beta+\sin ^{2} \beta=1$ may help here
 118

[^3]: ${ }^{4}$ The cartographic history in this section is taken from Crone (1966). The mathematical history is drawn from the notes of Professor V. F. Rickey and from Cajori (1915).

[^4]: ${ }^{6}$ Thé reader should be warnẹd that, in general, it is not true that the integral of an infinite sum is equal to the term-by-term sum of the integrals. However, as you will see proven in more advanced courses, the calculation here is legal because the series involved is convergent for all values in a closed interval $[0, x]$ where $0 \leq x<\frac{\pi}{2}$ and the functions' Involved, including the sum, are all continuous.

[^5]: The moded has been taken' from computer program BUFLO. See the references for fyll acknowledgement.

[^6]: ${ }^{3}$ This will be true in the wild. On a ranch, survival to adulthood would be more likely. Data in this paragraph appliesito wildlife. See Sections 2.5 and 3.1. The references offer similar data due to Fuller.

[^7]: $A H^{2}=.95 A M+. .75 Y M-O N^{\prime}$
 $A F^{\prime}=.95 \mathrm{AF}+.75 \mathrm{YF}-\mathrm{QF}{ }^{\prime}$
 $Y H^{\prime}=.60 \mathrm{~cm}$
 （2）
 MF＇$=1,60 \mathrm{CF}$
 $\mathrm{CH}^{2}=.48 \mathrm{AF}$
 CF＇＝． 42 AF

[^8]: ${ }^{4}$ Beware of thits trap as you work your program: if you compute the components s of next year's herd in their usual order, a new value of AF will be computed. before the old value can be used to calculate $C M$ and CF. The old value of AF must be saved before it is replaced with the new one.

[^9]: ${ }^{5}$ See E.D. Branch, The Hunting of the Buffalo, University of Nebraska . Press, 1962, p. 11. Branch's figure of 25 is presumably drawn from journals of the 1800's and may well be high.

[^10]: We have considered an obvious way to simulate a a catastrophe with
 the-model in Exercises 7 and 8 , sect ion 2.6 . the-model in Exercises 7 and 8, section 2.6.

[^11]: ${ }^{8}$ Up to now we have used $A M$, AF, etc., as components of the herd, after harvest, QM and QF as the number of buffalo just harvésted. 2 . In Section 5 these variables are components of the herd bofore 'harvest and' quotas of buffalo about to be harvested.

[^12]: *Variables will be, given with their cm-gram-second (cgs) ünits to help us understand their physical meaning. Any system of units could be used; of course.

[^13]: *1797-1869. He was studying the flow of blood through veins and
 arteries.

[^14]: * One of the exceptions is another novel by James'Joyce, Finnegan's Wake.

[^15]: *Zipf's Law r.f $=k$ appears to fit many kinds of ranked data beyond our word counts. For example, when U.S. cities are ranked by population (so that $r=1$ for New York, etc.) then $r \cdot f=k$ holds pretty well, where $f=f r$ is the population of the city with rank r. The rule fails for cities woeld-wide, or for cities in much less urban--ized, industrialized societies, and the extent of fit to this law has been proposed as a measure of a nation's urbanization. Consult the social science literature for more details and other examples.

[^16]: *Fhanks go to William Glessner of Central Washington University for sugge3ting Exercises 6 and 7:

