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17— working on mtegral-, the procedure has three steps: SIMPLIFY,

4
-

J > { o
~ .
In order to solve problems in indefinite integration

Y effectzvely, students need both a mastery of the special techniques
of mtegratmn and a general procedure for choosing and applying
these techniques \° problems. Most textbook‘space and classroom
tue in this subJect area is devoted to teadnng and pract1c1ng the
speczal techmques of mtegratmn. It is generally assumed, that
with much pract1ce and the help of insightful comments from their
teachers, students will develop a_"feel" for ‘the material that
enables them to solve problems effectively. In l}f experience, "
however, many students have had difficulty learning to approach
proble-s in mtegratfen systematically and effectively -- even after

. Iengthy classroo. discussmns of“problem solutions,

N

To,overcome this problem, this booklet providgs students

-

4

d1rect1y with a general procedure for approachmg ‘and’ solving
problas in mtegr.atmn. Based on observations of "éxperts'

CLASSIFY; and MODIFY, °

- ?

In step 1, gIHPLIFY ve try to reduce a problem to one wluch

<7

4’ can be solved by a formula or can be done easily. uff th1s fails
‘ to solve the problem we proceed to step 2, CMSSI}?Y Here we use thd
v, form of the mtegrand to dec1de which spec1al techm.que (mtegratmn
by parts,sby partial fract1ons, etc.) to use on the_,proble-.' If we
are unable to CLASSIFY the integrand, we go to step 3, HODIFY. There
We try, to.nampulate the integrand into' a more familiar of manageablc
fom. We always check for simple altemanves before begmpmg
comphcated calculations, and start the process over with step 1
- whenever- we have succeeded in transforming the integral to so-ethmg
. eas1er The genera} procedure is outlined in the table on page 3

%9

and summarized in full detail on the ,last page of this booklet

"
» ) . L, o~

INTRODUCTION \

LR
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INTEGRATION:

- 2 A GENERAL PROCEDURE -

.

Y
)

N

Proceed from one step to the next when tlle techniques of

that step fail to solve the problem.

Always look for easy

alternatives before beginning complicated calculations.

If
ea

B

Lt

u succeed in transformlng the problem to something
T, begxn aga1n at Step 1.

“Step 1+ SIMPLIFY)
Easy Algebraic Obvious |
Manipulations Subsgl;utxons

o
v
g .
. .
- ¢
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Step 27 .~ CLASSTFY! '
Rational ) Trigonometric Sﬁécial
‘1 .Functions *Products Fynctions Functions
* \ _‘!‘ .. « .
*‘ N . i -
. 1 9 = - .
", f Step 3% MODIEY!
. Problenit. Special keeds ‘
" Sthilarities Manipulations Analysis -
¥ “ PR

.

-

' HOW TGO USE THESE MATERIALS
/ ¥

Work the pre:test in Appendix I, These naferials are written
Eor people who have mas;ered the basic techniques of rntegration. If
you miss more than one of the pre-test problems, of if vou find them
difficult,

derivatives and substitutions before you start Chapter 1.

you should review vour textbook's sections on basic anti-
Before you
work on Chapter 2, you should be familiar with the techniques of
partia} fraotxons, 1ntegratxon by parts, and trigondmetrig substi- -

tutions. 1 ’

‘ This booklet is organized like the General Procedure, givén in
the chart on page 3. The three chapters in the booklet and the -
are dtvided into correspond to the three steps in the

You should work through

sections th
generél procedure and their subd}v1s1ons.
this booklet following the procedure, closely, until ‘using it becomes
automatic. If it does; you will be able'to solve problems-in

integra¥ion like an expert. .

Each section Gegins with a description.of some techhfﬁue of
integration, which is summarized\in table foym. The table is followed
by sample problems, which serve }s review problems and examples. \XSE
‘should try to solve each sample problem yourself. Then compare your

Just reading through the solutions

answer. with the solution given.
will npt be enough! You should focus on the process of solution,

which is as important as thié answer.

* J ° s - ! I3 -
. Each chaptersends with exercises-designed to reinforce the

‘procedures you have just learned. Work the exercises as if they

were a test. Dethiled solutions aré in a separate solutions manual.

[

‘Note' Jt's easy to ”lose" terms 1n an 1ntergal if we're not careful..

I've chosen to write all the terms in an 1nfegral at each stage of
This-takes some extra

M ]

the process, and I suggest you do the same.

. .
‘ i ‘ . [N 3
.

time, but it helps prevent cgjtly mistakes. 5
i . 1 - . ;
,.»' . . .l . ’ '-a
' . [ Y _ ' M ! *
\. ) .- - . . N . T\L-
‘,444/
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SIMPLIFY] '

There is ‘one general rule that you should keep in mind
whenevér you are solving problems:

.~
£ -

ALWAYS CHECK FOR EASY ALTERNATIVES
BEFORE BEGINNING ANY COMPAICATED
OR TIME-CONSUMING OPERATIONS. ' (.

«

~ i ]
As the sample problems below illustratey it is worth taking
a i"ew moments to look for % quick or easy solution to a problen

before jumping into a.eonpl;icated procedyre. This is espetially

true in integration, where a timely observation can save tremendous

SR -

Section 1 3 . .

v r. N

EASY ALGEBRAxc_ .
. MANIPULATIONS

-
A}

Some algebraic nan1pulat10ns are easy enough to use that
it's wort&: considering them autodatically before going on to
anything else. For example, We almost always break the integral
of a sum into'a sum of integrals and then 1ntegrate term by term.
Before doing this, however, we should lodk- for other alternatives.
Sonetimes an algebraic or. tngonometnc identity w111 simplify
the term facing us, before we try to integrate it. Another operation
which. is more complicated but also worth considering is sj:mplifying

‘rational functions by long division. ,

. We call a rational function (thd quotient of two polynomals)

a "proper fraction" if the degree of the numerator is less than

the degree of the denominator.

Proper fractions are usually easier

to manipulate than others.

amounts of work.

The twb types of SIM’LIFYmg operations we will

Also, we can only apply the technique

-

discuss dre sumsarized below. ‘ .

» - -

. rStep 1: SIMPI;IFY I

R Easy -Algebraic §* Obvious -
Manipulations Substitutions

< ‘ P
-
. 1
i

.

of partial fractions to proper fractions.\ Thus we.should consider

In sum,we have:
L

dtvision as a prlelimin_ary si;plification.

N
<

- . EASY ALGEBRATIC MANIPULATIONS
J§ (1) Break integrals into sums .

(2) Exploit Identities
(3) Reduce rational functions to *
4 Proper Fractidns by division
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' . . . T Solutions, Continued : X 8
o o A : —

SN SAVPLE PROBLEMS . 2 /(Slnt*OSX)'dx - | . -

’ ) ]

- S . . : The fxrst thing we should notice is that the integral can't
+ Each of the following sample problems can be SIMPLIFIED . be done directly, so some sort of manipulation 1s called for.
. by an easy algebraic manipulation. Try to solve each problem If we square the term (sin x + cos x), we obtain
before vou read the solution, and then compare vour method with . f(sinzx, + 2 sin x cos x + coszx) dx.

[ mi . ) ) » - . N .
ne . STOP! While the integral can be broken into three terms and
, R each done separately, there are simplifications. Do vou sese them?

. . ‘ Recalling the trig.identities (sinzx + coszx = 1) and
. 1 ) 2 f(sin X + cos x) dx (sin 2x = 2 sin X cos x), We can write the above as
¢ - ¢
. f(sinzx + coszx) dx +f2 sin x cos x dx = fl dx + ﬂsin 2x dx
’ e . =x-%—cost+C.
dx * NOTE: The term,stin x.cos x dx can also be solved by the T
. substitution ussin x, or u = cos‘x. These give two equivalent
solutions to the problenm,
- . L * ; ’ X+ sinzx + é\ and X - cos’x + C.
; . . ¢ »
B . SOLUTIONS g - ’ )
- - “ ’ . . . . ks ’
1‘ fl + sin'x 4 : . L
-} —a—dxs - . .
[ ] . 2 - ® » R . &
cos X, N . . . 4 s
; . . : %
This integrand contains a_sum, so we should consider breaking .
the problem into 3 sum ©f integrals. This gives us 3 3 . '
’ . 1\. .
5 . 1 _dx+ [310 X4, o fseczx dx + [23DX gx .
1 R cosix cos’x cas®x : d The integrand in'this problem is an "improper fraction",
. o N so we should perform a division. The division gives us a
. . e *  quotient of (x) and a remainder of (-x), so we obtain’
- The first 1ntegral can now be done directly. In the second, A ‘Ca
=y we notice that the denominator contains the term cos x. : x3 x A BN L x .
Since the numerator is sin x , which (except for a minus ) d = ffx - - d‘§ ’=fx dx -/ 5 dx. o
: sign) is the'derivative of cos x, this suggests that we x +1 . x" + 1 x°+ 1
. make the substitutions . . . P ‘
s qL . . In the second integrand, we’ notice that the numerator is one
. u = co‘s X, du = -sin x dx. . half the derivative of the denomipator. If we make the
Then the inte‘grals become ' / substitutions u'= (xztl), dg = (2x dx), the above becomes
. '\ [-si . . - - 1fdu _ 1,2 1 '
. fseczxdx fzsin x dx tan x - ;‘% . - fXdX--z- - -2—55 -ilnlul+c °
. - 2 .
cos’x u . . N ] 12 1 2
. . i . ' 11 . ‘ : =3.-x-3_-1n|x+ll+c. .
=tanx;,,/u’2du; tan x - (-u )+C = tar;x+a-:+c , ‘ * B
e g- 1 : “ ot . .
Q © = tan x + +C = tan x + sec x + C, . 13 J
Emc*z : L Cosx ., JQL 4 .
s 7 - , - ‘ 3
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. ‘ "oBvious"”

. 3 :
SUBSTITUTIONS"

0 Q 1
Note: If the problem I just discussed were /x2-9

3

.

.

s
\

’

4

e .
—fte—cosx—is an™ims{de function.

Using substitutions is one of the.dmbs‘: powerful tools we have

for simplifying and solving integrals. 1 always look for substitu-

t1ons before. I try more cqnplex procedgresi

I use in lookmg for subst1tut10n5'

.

N .

(1) Does the ihtegrand contain a function of a. function?

- If it does, try a substitution with u-,'as the_-~"inside" function.

Consider the "integrals o 9.‘ N )
. ’—/ -
. .
fx tan (x ! and sin x #x .
1 + X £05 X R
.The term tan~ (x ) appears in thg first integrdl, with’ xz as an
N £
inside function., I would try the substitution u = x” in that

problen, The denominator of the ‘second integral is. co'szx'=
P would try ‘u =

r) .

Ccos X.

.(2) Does they integrand contain a complicated or "nasty"
If so,

Consider

function, particularly i: the denominator of:a fraction?

e [
try a substitution with u as the "nasty" function.

]‘(tan X + x)(T-)dx and f—f——-g-dx.‘ . “1 '
+1° - .

-1

In the first problenm I would try u = (tan x + x), and hope that

it helps. [It does; see sample problem 2.] In the second problem
the denominator .isn't particularly "nasty", but it's worth trym.;: the

substitution u = x2 -9, Then du =.2x dx, and the integral is

There are two guidelines

(cos x)z,

dx, the

substjtution u = 'x2-9 *would not have helped. In general, a -
f(x)

du f'(;c)dx somewhere in the integral.

substitution u = will only Help if you can find the terd

If you try a subst1tut.1on
and it looks like you're gettmg 1nvolved in a compllcated procedure,
stop to consider other alternatives. The procedures of chapter 1
are designed to help SIMPLIFY and solve an integral rap1dly. You
should explore all Simple alternatives before trying anythmg
conphcated. Ifeneed be, you can always return to a complicated

substitution later. . °

OBVIOUS SUBSTITUTIONS

“ ‘(l) "Inside'" functions

(2) "Nasty'" terms and
denominators

SAMPLE PROBLEMS T w

PEach of problems 1 through 3 can be.solved by a . .

substitution. Try to solve each problem before you read the .

‘solution, and then compare your method with mine.

‘ -1 2
tan x -1 x“+2
] e (tan "x + x)
1 /——f > 2] (z

- LR 2

i
4 One of the following two 1ntegrals is much easier to solve

*

2x _2x dx
2.
’5

<.9
L
[
s
%

xlfdu Y
z

fnlul\+ C-=

-;- In |x2-9' +C,

than the other.

% Decide which it is, and solve it,

(b)j(l*x )
15

(a) / x (1'+x) dx

—
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‘In this problen we have the tem e
is an "inside" functmn. If we try’
-
then du = 1 3
1 +x

= tan 1x,

Since

’ . 1 o
tan x( 1 )_/u . ou
e — dx} = Je du = e +
/f 1 +x . .
N . R -1
) ‘=etan x¢c.
» A
* « !
.. ) ¢ -

; 2 -
S W X, +2
o (tan + X (—2—— dx -
N X ) x&l) ‘

. .

his expression the term (tan~ lx

. . . \ L . A X -
. M \~3 . ) a’ i
2 " 11
. SOLUTIONS - o
. . etandlx &
M 1 -—-—2 d* -t ~ - . -
* wl + x : , v ’ ~
-1 . -

x’ so tan°.1x‘v
> o

[ §
dx.

du does appea? in the integral, we can make the substi-
. tution. The integral becomes

= o

+ X) 1s rather
ion

"nasty". WNe might consider the substituti
P u = tan lx + X,
and see\_if it helps. We obtain
1
> —7 +1}dx =
, (1 + X ) (1 + xz

H 2, ) "
= 1._2. dx’
' ( 1+x

and, we're in luck.

2
f(tan 1.x¢ x)(xd
x*l

2

1

1 - 2
=-z—(tan x*i)‘ +C

)
¢1¢x2 dx .
N+ x s

The integral then becomes -

dx)=fudu =-1-u2*C ..

Solutions, Continued ' 12
. . P ~
-x -
- e + e
30 I x = 9% .
e - e .

+  I'd like to work this problem using-all the methods of.
this chapter, to illustrate how [ would think about this  ¥]
problem if I didn't know where it came from.

As a first step, I look for algebraic s1mp11f1cat1ons.
The numerator is a sum, so I might consider breiking the ~
integral up into .

This doesn't seem, to help, so I Yook for substitutions. I
" might be tempted to try the substitution u = eX at first,
since all the terms in the integral are expressed in terms
of'eX. But du = eXdx, and I don't see that in the integral.
For that reason.I won't explore the substitution further now.
. If necessary, I can return to it.

Finally, I might try a substztutwn for the denomnator,
- e ). .

. u'=s(e*
du = (X + e %)dx,

which does appear in the integral. From here on the problem is
easy. We have

This ﬁives

v ¢
a

4. One of the followjng two integrals is much gasier to solve

. than the other, Decide which it is, .and solve it,

(a) f et ax (b) f(nx‘)s dx .

fx L _'[e*+ e ax] = /l du =1 ful+cC ’
=X u
Je -% ‘ - . .

: | A

IR, 3 1%
\ . .

‘e
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'by partial fraetions or by using the substitq{ion’ x=3sin0!

) N \

As always, I start working on a problem by looking for’
algebraic simplifications,” In both parts (a) and (b) of
this problem, I can multiply (1+x%) by itself% five times,
and then integrate term by term. That seems\tgp complicated,
however, so I look for other alternatives. :

In both parts of the problem I see (1+x
temm (1+x4) is an "inside" function. If I try)’

~

H

so that they

u=1+ x‘, then du = 4x3 dx.

Since the term (x.sdx) appears in part (a), that
be easy to solve. It becomes

. -
fx3(1+x‘)5 dx = '-:- f xS uxax) = %j:s du =

= musxh® e,

ntegral will

Gu) v C

4 4 * WARNING * # &
, 2LV

The sample problems you've worked through in this chapter °
may have seemed very easy, because you were on gudrd for simple .
solutions. On tests I've seen Students s'iwnd ten or fifteen
e
minutes trying to solve .

x -9 /

v

The moral of this dil?ter is: “ |

' When you start working 'on a problem, aluays .
check fon an easy algebraic man,ipulaf;ion or
obviO}s substitution. Only vhen you're sure
the problam camot be SIMPLIFIED should you

try anything else. PR - .

. ' =}
: ] @ [F 2t
| 4./
3 - :

L - IR _ J

Y
EXERCISES FCR CIAPTER 1

~

Detailed solutions of these exercises are-available in a
separate solutions manual., The order of the solutions is scrambled,
to keep you from accidentally seeing the answer to the mext problem
you are working on.. The solution number of the exercisé you are
woRking on is underneath the exercise number. For. example, o

ll.

sol. 5

s

' means that solution #$ presents a discussion of exercise 1.
’ . I I I N ' .

In each of the following exercises, one problem can be done
easily. Use the techniques of easy algebraic manipulations and
obvious substitutions to determine which it is, and solve it. ,

1 5. "

' (a)‘fln(ex) dx ,
sol. § sob. 3 -

cos x dx
i+sinx

dx
, (a) f2+s1nx
)

® Jin(x) dx

. a) {221 4 () [——21 &
, 2. el , 6} G0 + /3%,
sol, 2 sol.ft
1
) —_—dx
/(u./n?)s

4 k3
.

2
X +x +1
()] 1 dx .

¢

. - 4 ' * |
(a) Jtan x sec x dx - g (a). dx
3] 7] @ f=5
sol. 8

(b) ,/sec“x tan-x dx sol, 6 ) 5x
) [jE=—=dx -

e
1.8 } (a) ! |,
(e X 4x + 3 .
) sol, 7 [ T -
" Stanlx dax (b) 'szz—dx
/ N . X - 4x 4+ 3 .

. ‘ o \

~
£
I
PY
»

ol, 1
.

18 - y
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, - . . “CLASSIFYI "RATIONAL FUNCTIONS .

3

three-step procedure when solving integrals.

or easy solut1ons to ‘a problem. ‘The second step, if necesgary,
consists of choosmg and applying the technique;\most 11ke1y to

?’

solva a problem. . . .

. h

mte.grand Ask ,an expert why he chooses to solye fx sip x dx
using integration by parts, for’ e.xample, and he'll say "because

follows routinely once the right technique has been chosen. ’

‘ -
.

L) N =
. 4o, e s R s 7
In this chapter we will classify integrals mf/four bagic
categones, and* discuss the techniques most often effecnve in

dealing with them. Our classification is summarized by the _

second -box in the General Procedure: T

-
Ps

-
r Step 2: CLASSIFY .
- -
';_i'f, ’ Rationjl . Trigonometric | Special
) - | Functions Prod}xcts Functions Functions

B

/

Yoyr goal "in workmg through this sect;on should be to

to ‘them. If ../au systematically use\{ne

o aolve most of the prablems at the end of your-text 's chapter
S| om integration. .-

R - 20 -

As we noted in the i’.ntroduction,texperts generally follow a:-
The first step, which
S

we discussed in Chapter 1, consists in Yooking for simplifications

- . Tlus choice’ of technique is- u‘lly based on:the FORM of the

it's a product of dissimilar functions." The solutmn to a problenm

classify mtegrands by form and recall the techmques appropnabe -
szmplzﬁ,catwns of c"napthr 1

and tHe' cZaaeszatwn scheme of this section, you should be akle

. -

S )
A ratjonal function ,is, the qixotient of two polynomials. The
procedure for integrating rational functions is straightforward, *
although it may sometimes be long and mvolved A large part of
that pro(:edure is purely algebraic, and consists of, ""breaking up"
We winll

begin by examining the simple or "basic" rational functions, and then

complicated rational functions into sums of simpler onmes.

discuss how-to break u;; thecmere complicated ones.

= . o\ .
Part.1: - - -
¥ BASIC RATIONAL FUNCTIONS

Definition: A Basic Rational Function is a "proper fraction" of the

form . ) ' . .
. r , T , . or rx + s .
. A n
. ax+b - (ax+b) ax2’+bx+c
< Do . . ¢ .

- A !

‘Basic rat1onal functions ‘of the first two types are easy to

integrate. “If the der_lomnator is (ax+b} or (ax+b) , she
substitution u = (ax+b) will solve thp problem., See sample
problems and 2. ' v - a

\ ' :

v

Thangs are more complicated \f the denomnator is quadrat1c'

If the denominator factors easily, we use partxal fractmns to
¥

" break up “the 1nteg1:and .For example, . »
:f (x-5) dx  _ f(x-S)dx .=,f_?_'- .S W
,x'z Zv4x + 3 (x-1) (x-3) X~ o o
v . 2 1n]x-.11-1n\x-3\ s . S

. We w111 dxscus§ the techm.que of partlal frac;lonsv m part 2
e 4]

of "this section.
N ¥ ~

[ ~

2

™

o
[Avuirrext providea by enic [l v
¥ ¢ - . -

M ’ N . «
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. -\

Suppose the denomlnator does' not factpr ‘easily. Then

. v

| __ complete the square and nake a substrtut1on “for the u term in

the denominator. There'are two possibilities. * T

‘) >
(i} 1f the denchinator is of the form (u *a'), we will obtain

something of the form . ! . - .

EY .
4 _butc ‘ : 1 .
_/—f—z'*d" R du.
u“+a
N D S R
The fitst 1ntegral on the right w111 y1e1d a logarxthm and the 7
secon}tnges an arctangent. .

(ii) If the denominator is of the form (uz-az), we obtain

. B,

bu+c
f’i""z du. .
w-a : .

< ]
4/}jé;e arq\two ways to contimie.from here. One is to factor the
denomindtor, and use part1al fract1ons to break up the express1on

butc ~ : - ’
& )
. . {u+a) (u-a). ° a
If the factors (u+a) and (u-a) . look reasonable, this is probably
& .
a*good way to finish the problem., W& do have another alternative,

” however. .
» Ne can write thF integral as
~
u’ 1 - A
bu[ 7 2 du + ch 53 du.
u -a )

. N B ha
The first integral is J-logarithm, and the second can be solved
easily using the formula givem below.
through 5.

* See sample problems 3

<y 4
INTEGRATING BASIC RATIONAL FUNCTIONS

-~
If tﬁé denominator ‘is (ax+b) or (ax+b)“, substitute
= (ax+b). This reduces the problen to standard form.

If the denominator is quadratic and factors easily,
use partial fractigns to finish the problem.

If the denominator is quadratic and does not factor -
edsily, complete the square. If the denominator is then

(u2+az), integrate directly to obtain a logarithm
and/or inverse tangent.

ii: (uz-az), either use partial fractiens or break up the
7 integral and use the formula on,p.17.

—

¥

- S
Note: Make sure you have -chécked for SIMPLIFICATIONS before,you:
- ugé the procedure fbr rgttonal fhncttona

. o
Y
—

¥ .- SAMPLE PROBLEMS

4

- -

THe solutidns.to these problems ijlustrate the techniques
described above, Try to solve them before you read my solutions.
If they cause you a_great deal of difficulty, you should probably
_practice on some sxuridr problems from your textbook.

Y

L4

_..i._a..dx
Sx +.
Ix + 7
2 .
X"+ 4x + 13

¢ .

¢

&

5. )z
A X

Y
v

+4x + 2
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Solutions to Sample Problems > Y. 19 Solutions, Continued - 20 -
- Y . R
ﬁ4 - ~ L Y
1, f‘é"{'ﬂ dx : e - ¢ _the denominator is of the form (u- +a ). where u = (x¢2) . |
’ : i S eimnd s v . and a = 3, Making the substitutions u=x+2 and du= dx ’
) There is no algebraic simplification possible. Since the we obtain .
- * denominator is (5x+7), we make the substitutions ) |
: : u=5xeT; dus S dx f /(3x+7) dx Q(IS(u-Z)”ld“ . =/3‘§ i /Tdu 2
The integral then becomes’ o< ’ o J xFeaxe1s gu 3 ut s
. .
/. -S-f > dx sfdu -g-ln_lul ¢ o= -;-lnISx+7I +C. . X = % 1nlu2+32| + %tan-l‘(%) sCc ’
. . N * . i a - . .
\ : ) | ¥ e
o R ’ - -2— In |x “4X“13' + "' tan ( 3 ) C.
[ J - / P . - i . \ P
2 (4x + Ok ' . . .
Again, I see~ no aagebrgic siqliﬁcation. Since the . . . <,
denominator is (4x+3} “the substitutions .. ¥ R ‘- .

’ N . . B
X . e u=4x+6; du = 4 dx ‘ 4 / X2 ax .

) ’ ’ - x° ¢+ 4x + 13

' \ are called for. The integral -then becomes : .
) - S fdu _ 5 J‘ 6, _ 5fu’ o s ”
. f = T:[_G = FJu du = i ._s. +C As always, I begm work on this problem by lookmg for easy
. (4x +3) : u algebraic nanipulatmhs. The integral can be brgken into a
) . sum of two integrals, but this does not look especially )
" . 11 a0 ’ Nt promising. I see no useful identities and this is already
: , : . = - ?( _5.)4- C = ——= +C a "proper fraction", so I look for obvious substitutions next.
g , g u 4(4x+3) ' The "nasty"” term is the denominator, so I' should -
Ry ‘ ' consider the substitution
d ) . s S . - 2 .
it . ' . . . usx-+4x+ 13,
y N ’
.- //\3 ‘ / 3+ 7 dx' o : - This would give . L
Lo * J s ] o <o i Gu=(2x v 4) dx, .
e . . 5 . . o which is double the mmerator in this probleam! The rest is
. - " » easy. The integral is
- As a preliminary algebraic nanipulatmn 1 would consider = - .
. breaking the integral into a ‘sum, but that doesn't look like 7~ 1 [(2x+d) dx 1 {du 1 ) . £
‘ it will help yet. Checking for obvious substitutions, I would {3 . = 3ju ° 5.}nIUl+ c , 5
. consider substituting for the denominator, u = x 2,4x3Y3, N X +4x+13 . .
. This givgs du = (2x+4)dx, which does not appear An the .. .
numerator. I can't factor the denominator, so I should . s 1 1n Ix2+4x+13|
complete the square. Since .- i . < \ . 2
> » . 2 ’ 2 2 Notice: This problem could have been done by conpletinlj the
+4x +13_=s*(x“v4ax+ 4) + 9= (x+ )"+ (3)7, square in the denominator, like we did in probiem 3. The "
T . 24 - . advantage of the SIMPLIFY step is that it saved us the trouble.
. Q ' - - )
ERIC 2N DA L 29 ' >
T T Sy ‘ w ey ‘ . ’ : ’



Solutions, Continued s 21

5'9‘/‘2)‘#5 dx ' ﬁ
%4 * X_+4X+2 “ ' ".

A preliminary check indicates that nonme of the SIMPLIFYING
procedures will be -ofr assistance here. Since I cannot factor
the denominator easily, I complete the square to obta/in

eaxe2 = Peaxed)-2=+ 2 - WO
’ o
’ Thus the denominator is of the form uz-az, where u = x+2g
and a = /2, Making the substitutions u = (x+2) and
du = dx, ° we obtain .- et
n N
© fesra | flazesis | (e (3de
x2t4x,+2 u2 -2 u2 -2 uw -2 °
. The first integral is easy, and yields a logarithm. For the

second integral we can use the formula on page 17 to obtain

Sl Ao \
' u2 -2 ‘2{5 u -fZ_ u +\/2— ’

and the intégral becomes . .
u-du . 3 1 - 1 )du. =
u” -2 2/? u -z u 2
1 2 3 = .
=1 |u-2] « Inf 2] - Infu +J£l)+c =

- -2 o zl?( tu

1 2 3 u -VZ _
5 In ju-2} ¢+ —— 1In +C = .
b bl 2 w2 |

1 2 . 3 (x+2) -2
=1 +4%+2] + — 1n + C. R
. z " lx ! 22 l(snz) «/2'l

K

¢ 0y \
. -

b

f’art 2: -

DECOMPOSING RATIONAL FUNCTIONS. .

In part 1 of this section we learned to integrate the basic
rational functions. It is a fact that any rational function can be
decomposed into a sum of basic rational functions. The techniqes we
use are summarized in the following table.

DECOMPOSING RATIONAL FUNCTIONS -

If the"function is an "impreper fraction", divide to obtain .
the sum of a polynom}al and a proper fraction.

a;

)

Factor the denominator as far as you can, into a-product
of linear and quadratic terms.

(3)

Use the technique of partiai fractions to decompose the
proper fraction into a sum of simpler terms.

)

We have already discussed step (1) in the SIMPLIFY chapter.
If you are trying to integrate an improper rational function, your
first step should always be to divide, and then to look for further
simplifications.

* Step (2), factoring the denominator, can sometimes be
difficult if.the denominator is complicated. The following rules
from algebra often make this task easier.

Rule 1: 1If a polynomial with whole numbers for coefficients
has a root which is a whole mmber, that root

is a divisor of the constant term of the polynomial.
Rule 2:

-

For any polynomial P(x}, the term (x-a) is a
factor of P(x) if and only if P(a) = 0.

’
S

'
$To see how these rules work, let's factor the polynomial

P(x) = x3+;2+x§'6,

By Rule 1, any mmber which is a root of P(x) must -be a divisor
of the constant term 6.

Thus the only candidates for a whole
number Mot of P(x) are .

Y,
+1, -1, +2, -2, +3, -3, +6, and -6.

s

)

37




i*

Now. we use Rule 2 to see if any’of these are roots of P(x). Testing
" the ca;;didatef,ong at a time, we obtain Voot
P(e1) = 1341241 +659, so (+1) is NOT a root of P(x).
PeD = ¢0° ¢ (0P e (D 26, L
£ . [ s07(~1) is NOT a root of P(x).
P(s2) = 25+ 2%+ 2 + 6 = 20,50 (+2) is NOT a root of P(x).

P2 = (P P ()6

4

.

-8+ 4-2+6= 0.,Thus (-2) IS a root of P(x).~

Using Rule 2, we now have that x - (-2) = (x.+ 2) is a }‘actor
S 4 -
s ,,'o‘f P(x) = x3 + ‘x2 +.x + 6. We can divide to find the other factor:

‘a » * »

i - _xz-x + 3
. X*ZIxs+x2+x+6 N
ke 5 s x3 +2x2 e

-x°+x
., ‘-'xz-zx

.3+ 6

" 3x+ 6 . !
3

]

: mus-"P(x)'sx?+ x,2+x1'6 = (x+2)(x2-x+3). The quadratic

term cannot be factored further, so we stop here.
e . v r 2 :
o ' N i " 5 -
. Step (3) ‘in the procedure calls for using the technique of .
partial fractions. - Since your textbook describes it in detail,
» v

1 1'11 just smmarize it here. _.° * . .

P

*

C The t.échniiiue of partial fractions is used to 'deco-pose a
proper fraction into a sum of basic rational functions. Make. sure
you have a proper :fraction before you try.to use the technique.™

S .i;ac}\,tén in the denominator of the fraction you are
trying to break up will give one or more terms when you use
partial fractions. . - o

ir (ai_*b)@'a;pp'ears' in the den‘inatot, there will be a term
of the form ‘ .

-

a—x—%-s—' 'in the decomposition. . »
- 1f (git‘,b)n app‘eai‘s in \the ;lé:hoiinator,‘ there will be tems ’
,%’ the form -. . ) .
TR T . S
. .- N . P
i : T L ~ in the decomposition. |
Q . (ax+b) . (ax+b) (ax+b) © ’

‘e

-

nine. \

denominator.

Step 2:

g'teg 3: C

iseron

-z.
s, ax +bx+c

Cx+D *

You'will rarely, if ever, enc
We will not dedl

To use partial fractions, follow this procedure:

L3

’

e e LN e )
e o ’uliv é“f, ° » - ".\
° a
S . 23 \‘ ] /
: 24
- . at, N - ¢ ;

If the term (ax2+bx+c) appears in the demgminator, there will be
a term of the form )

t

in the decomposition.

nter terms like (a£2+bx+c)n in the’
with such functions here.

coefficients still to be determined.

Step 1: Decide what terms will appear in" the d
the guidelines given above. Write an equation,

.
3
o

)hltiply'both sides of the equation by the denominator
‘of the fraction you are trying to break-up. Write

both sides of the equation as polynomials in x.

0}

.4
are the coefficients of x o
These enable you to

equati

/

using the techni
problems before

3

-

"~ SAMPLE PROBLEMS

.

. . 4
. Decompose these two functions into

C, etWe’ decoapositiorl.

Sums o

qués we have just discussed. Mak
you read my solutions. Then compare r work with

a

4

3

t

¥

x3+x2-6x+s

1.t

2
X

+*+ X -

6

.

of (5)., so

N
| :

+x-6

' 3 2 - .
1. £(x)= X +2x -6x+5
x .

. The first_thing we should
by division. That division ha

v

do is reduce the “improper fraction"
s a quotient of (x) and a remainder

L 29

n both sides of the
solve for the terms A, B,

basic functions,

e e to try the

3

ecomposition,using
with the

~

s
.t
»
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Solutions, Continued

26

Solutiornfs to Sample Problems
. . < ]

/‘J -

£(x) P

(x+3) (x-2) .

-
~ Since the temms in the denominator are both linear, the partial

fractions decomposition will be of the form

s

5
(x+3) (x-2)

Multiplying both sides of this equation by (x+#3)(x-2), we get

S = A(x=2) + B(x+3), or

(0ix+ +5 = (A+ B) x + (-2A + 3B).
(Ramember that if a term does not appear, its coefficient ig 0.)

. Comparing coefficients, we obtain the equations '

A+B=0 , so that A=-1
-2A +3B = § JB=1 .

(x+3) (x-2)

-

f(x) = x-

kS

' 4
glx) = 2

This fuhction is also an improper fraction, so we divide to
‘ obtain '
glx) = x + 3
3 .
. s x -1 ‘

»

Our next step is tofactor the denominator. Since the constant

AR
'VU

° )

term in the denominator is 1, the only c%ndidates for roots

are x = +} and x

m3

This tells us that

= -1.

Since

-1=0, x=+1 is a root of x>-1.

(x+1) is a factor of (xs-l). We can divide

to find the other factor. This gives us :

X

Thus

- gx) =

(x-l)(x2¢x+1)

3
ol

*
X +

3

= (x - 1)(x2 +x+1).

-

JQ

(x-1) (x%exs1),

. and our problem is to decompose

-~

into a sum of basic functions.. Using the criteria on pp.23-24,
we ,see that the decomposition will be of the form

3

FE ]

A . _BxsC - °

"M (x-1) (RZex+]) -1 xlexel,

Multiplying through by (x-l)(x2+xt1), we obtain
.S

3 =

Thus

A (x

2+x¢1) ;.(BX’C) (fll)

AxZ e ax oA+ Bx? - Bx e Cx - C.

~

03+ (0)x +3 = AYB) X2+ (A-B+Ox+ (A-C).

This .gives us the three equations

A+ B
A-B+C
A -C

=0
=\0
=3

., SO that

s
<

Plugging these three values back intos¢*), we obtain
w Q

3

1 (-1)x +(-2) .

+

: ]
(x-1) (x“+x+1)

g(x}) =2 x

x-1 x2 +x+1 , so that




Section 2 . - .

< . PRODUCTS - ,

'.};. . N ° A

i8 a product" of dissimilar functions, you should consider using.
integration by parts to solve the problem. 'The formula is derived
"from the formula for the differential of a product, ’

£y

N -

d(@uv) ="u dy + v dig . . .
«| Integrating each term, we obtain .
2 v =fu d‘,’ 0fv,du. .

Rearranging this gives

wdv=

uv -.fv,du.j

~—7

call one u and the other dv. We differentiate u to obtain du,’
and integrate dv to obtain v. If we can then'integrate' the t‘erm
r\fv du, .the i)roblal is solved. The goaliof this procsdur'e, then, )
is to choose u and dv such that the term fv du is easier to solve
than the original problem. As the sample .problem}, illustrate, this
y imTiThed by differentiation. These
the box be )

L]

usually happens when u is
¢

comnments are summarized i ow,

¢

If the integrand is a product, and especially if the, integrand

To apply this formula, we separite the integrand into two parts. We ®

N , ~AFEGRATING PRODUCTS

Consider integration by parts. The formula is

.fudv=

and your ghoice of u and dv shoukd be governed by two things:
(l)quu nust be able to integrate the texm you call dv. -

R (i) You want fv du to be easier than the original integralr
L This often happens when u is simplified bK differentiation.

LRI

.uv-fvdu ,

.

32,

Q

~ » \

1. f'z}c’osx.dx

_J

28

~

Voer This formula also has Special application to the integration
of single terms that we can't integrate othen‘v’isel Since ff(x)dx
can be written as ;/'[f(x)][l dx], we can think of that intdgrand

as a‘groduct and try integration by parts with u=f(x) and dv=dx,

« See sample problems 3 and 4.

. B

SAMPLE PROBLEMS _,
-

.
s

\

As usual, try these problems before you read my solutions.
Pay particular attention to the reasoning I use in making my
choices of u and dv in each problem. , ’

" 2‘ fxz tan”x dx .

3. Ssinh e ‘1ﬁ/unn2§‘ -
. . %

, © SOLUTTONS R
. - - v

.

1. fxcosxdx

There aré two possible choices of u and dv in this problen;

u=x and
dv= cos x dx -

Yy
progising, we should determine
LY
du = dx

v sin x

hY

-

u = €os X ,
* To see which is more
dv= x dx {.

du and: v in each. In the

first case we obtain ' » and in the second

.

l Clearly fv du is easier to solve in

the first case, so we make the substitutipns wu=x, dv=cos x dx

7 Then : '

2 J(x)(cos x dx) =
N S

£ N

(x)(sin x) - f(sin x) (dx)
' u dy U v du )

o EMC . -
R oo e . .
S . - -

l -
N = xsimx +/cos x + C. 33)

. te

sl =




* L , C
Solutions, Continuéd

v .

Y dwvs

-

N - <.

¢ T The functions .

h same by either mtegratlon or d1fferent1atxon.
hand, polynonais are usually '!comphcated" bv integration

Th1’s suggests the follow-

. - L 3 .
x’ sin X, and cos X~ are affected about ithe
On the other

and made simpler by differentiation.
ing guideline: = ° e
Let P(z) be amy polynomial. ALl of the integrals

fP(z) e dx, fP(:é) gin x dz, fP(z) cos z dz A

shoudd be done by pa:rts, with u = P(z) :x}d dv the ranmnder

3

‘[xz tan Ix dx_ — Y o
. .. ° P )

As in problem 1, there are two reasonable choices ‘for u‘wand NN

tan!x

xz dx.

a
dv

Tusx
: , =] + or
&= tan x dx} {
Letts examine which choite will help more. In the first case
we will. have that du = 2x dx,

' will have to mtegrate dv

which is rather n1ce. But we
11 dx,- and that is no smple

tan

PR

natter. In the second case, we vull have " -
' v #
N 4 - i
Cote :tjlu‘---t —*-—-z-dx and v = %lxs. N
" 1 +x _‘q&‘xf ) o ,
‘Here "du is ‘much simpler than u, because we've replaced ~ | |-

an mverse tangent by a rat1onal funct1on' With-this choice ',

r . - .

L. e,

we ol;tant , - - .. ) ,: el - .
dx .
f(“" 0 (¢ d") (tan x)(3 x) -f( 5) »
. u_ e dy, u‘ v ‘V',‘ du,A R )

The second ’mtegral can” now b done by: the procedure for
: 1ons. After .usyng the procedure, we obtam

3.

2%

- have to.integraté fi(in.x dx)

y . .
fsm x dx . o : d

-

‘I'h1s mtegra.rﬁ can be cons1dered as a product, if we

>

wr1te the problen as, f{sm x)(1 dx). ’Since, as in problem 2 B »’
. we obtam the greatestsmphfmat;on by d1fferent1atmg an

»

inverse trigonometric function, we set .
B .

s,
. >

u = sin lx ) du = | dx
, W “'so that ‘ ) ‘

dv = 1 dx v

} e v=x.
.rhei . . g o » .
Sesin @'Y = sin R - jz))?%) , :
: R '. - 4 h— ha ol :x,_, v 7
s u dv . u v Y du

Al

j(lnx)dx.,«‘,\ v

s .
Like pmbleu 3 this, can be done by parts if we write it as

2
fmn 2710 axd. paeh { U =(in X2 l and “’“ Txnx
.Y s . © Pe ’v 1 gx v =X
we obtain-. v . - "
. ﬁm 020 4 = (n 0 (x -f(x)(—mxdx) ‘
®dv u v. v"" du .

u

= x (Iny) -kflnxdx. .fﬁ"—'\

_Ke haven't solved the problem, but we' ve simp11f1ed it:ewe now
instead of ./'(ln x)2 dx. A second,

-integration by parts w1th U=1nx,- =1 dx gives 1
. .
1 _

- x(in ;r)‘ - 2fan x x)(l dx) = x(In :gonmn x) (1) &) Qa0 |ome
C T v,a& - . uo v VA |-

: . A i

R - " = x(1n*¥)“-2x(1n x)+2x + C,

Note: Like- many problems in 1ntegrat1on, th1s can'be _done in S
more than'one.way. The s'hbsntutxon W= ln x (ore* =x), .  |id

R

transformthn x)zdx to f er dn, wluch 1s done by parts (twice} - .
J g

Py
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Twin Pairs of Trigonometric Functions

o . 1 e o d | d B
. 4 ~a-x~(s1n X)= cos x -&(sec x)= sec x tan x -a-;(csc Xx)=-csc x cot X
gl . d " d 2 d 2 '
wUF Lo . TRIGONOMETRIC ad—x(cos x)=-sin x -d—x(tan Xx)= gec'x : -a;(co; X}=-¢sc x
T R . " . ) 2 - .
. . FUNCTIONS s1n2x¢coszx=l tan2x+l=sec2x 1 + cot“x = esc’x |
-, A .\ . ' . .~ - ’ '
e . - . «If we are unable to exploit the "twin pairs", we turn to a
o M . - N .
. There are many, special techniques for integrating conb’inatilons different approar::h. The x.xext thn.lg Ne Ty t? do.ls £ I.'educe the
_ -} of the trigononetric functions, and tu;yi'ng to keep track of all of pot!ers of the trigonometric functions appearing in the integrand.
-~ . ~ Co This is usually done with the help of the formulas
. | them can be-.difficult. Instead we can keep some general guidelines . &

-

<" | ‘for app: aching trigonénetric integrals in lg.nd. The basic idea is
. : R . 02 .1
" | to exploit the relationships among the trigonometric functions sink = 3(1-cos 2x) cos?x = -12-(1+C°S 2x)

" | themselves, in order to.simplify the integrand.

<

. -

or by a reduction formula obtained by &sing integration by parts.

e The first kind of manipulation we loock for is a simple . See sample problems 3 and 4.
s

o substitution of the kinq u = sin x, u = cos x, etc.h’or this kind Finéily, there is a "last resort" technique based on the

of stxbstltution to be suc:.:essful, the i)@grand sl:ould consist of substitution u = tan % " ‘Admittedly, this formula seems to come
az: exp:;essmn involving cne trigonometric function, multiplied by J out of th',e blue". Howe\rer:' if nothing else seems to work when you
the derivative of that function. For exaq:le,' : ‘ / are trying to integrate a rationel function of sin x and cos x,
.. N 4 < »
S I . T - . the substitutions s : > : , x
N f“s xdx © o of the forn JE(sin x)[d(sin 0)], ¢ - S
; 1+ simx. ° ' X 2 .
. 1 u=tan(-i-),sinx= 2u2 ,cosx=l—“-2-,dx=2d‘2l )
“.'l where f£f(sin x) = ———p— and d(sin x) ='cos x dx.  * % 1+u 1+u 1+u® -y
l+sin"x . 7 || will transform the integrand to a. rational function of u. It can then

In this problem we would make the substitution u = s“.’.}' SnJ.lfar“ly,j— be finished by the techniques of section 1.~ See problem 5. In sum, |
iff an integral can be expressed as ; . B ) . .
.t . 1 a .

b ,Jf(sec:x) (s’ec x tan x dx), we would set’ u = sec X INTEGRATING TRIGONOMETRIC FUNCTIONS ~ l <
] . .. ‘e . . s -
g Our first fobject, then, is to manipulate an integral into the .- |, (1) Exploit "twin.pairs" to prepare for substitutions. Try

‘ ' to obtain ff(sin x) (cos x dx), etc. .

(2) Reduce powers of trig functions in the integrand, by
half-angle- formula or integration by parts. -
= tan(-’-t-) transforms

’ ,fom‘*Jf(sin xl (cos\x?dx), etc, To d9 this, we try to-explodit the

- "twin pairs".of. 'triéonometric functions: sin x and cos_x,
sec x and'tan'x, and csc x and cot x. The "twin pair" rela.tio’r}- (3) As a last resort, the substitution u =
r rational functions of sin x and cos x to Fational - . i

2 ships are summarized in the table on page 32. We ddscuss how ‘to e N
< . : functions of wu.

A
' -
»

s .| use them in sample. probleas 1.and 2. .
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— : 33 ’s& *___Solutions, Continued

»

. J -
) SAMPLE PROBLEMS o ‘ 2 ) fs 3 tanfx dx
Q >

| . 1, fcp.ssx dx 2,/sec3x tan’x dx 3, f;infx .dx X .

'§ince this integrand involves sec x and tan x, we should see
) if we can express it as '
: 3 7 5 f..__,_.__dx
4.fsecxdx e J 2 + sin X

SOLUTIONS povwer of tan x can be expressed in terms of Secant.. We have

‘ 1 ﬁossx dx
” - »

As a first approach to the pr&blen, we should try to exploit
the “'twin pair" of sin x and cos x. Thus we should .try ’

(a) a function of sec x, multiplied by (sec x tan X), or

(b) a function of tan x, muftiplied by (Secznx).

In this case we can achieve (b), since factoring out the).érm
(se¢ x tan x) leaves us with (seczx tanzx), and the ever; )

/
/
1.“\

.Y 3 3 S
ﬁec X tan"x dx =/(sec2x) (tanzx) (sec x tan x dx)

=/(sec2x) (seczx - 1) (sec x tan x dx),
and the substitution u = sec x gives us’

2 2 _ .4 2 .15 13
to obtain either (u \1) du 'f(“, -u)dy =Fu - U+ G
- (a) a function of cos x, multiplied by (-sin x}, or" . 1 5 1 3 ]
. i ) P Al . g =-—secx--§Secx¢C.
() a function of sin x, multiplied by (cos x). S , .
. ’ Notice that we can achievé (b§p Since cos’x odn be expressed )
+ in temms of einzx, then any even power of cos x can be expressed [ 3 / sintx dx
- in tems of powers of ei'nzx. n this problem we can write . ¢
cossx - (cos‘x) (cos x), which gives us< p . Technique (1) doesn't help us in this problem: if wg try to

¢ separate out (sin x dx), we're left with the tefm (sin®x dx), .

s .&4 ) .2 .2 - which can't be expressed as a polynomial in its twin, cos x.
< /cos x dx = f( x) (cos x dx) = ‘&l-sm x) “(cos x-gx) Instead we turn to technique (2) and use the double-angle formulai
. 2 .4 Sl -
4 . = f[ 1 - 2sin“x + sin x ] (cos x dx). \ fsmix dx = ﬁsinzx)z dx = /[-;—(l-cos 2x)]2 dx
This is now in the form Jf(sin x) (cos x dx), and the o . .

*  substitutions u = sin x, du = cos x dx give us = g'f(l ~ 2%os 2x + cos“2x) dx. )

N . . .
/[' 1 - 202 &G Jdd = u f% uS e _;_~u.5 . C . The first two terms in this expression can be' integrated easily, .

’ « . and we can again call on a double-angle formula to express

c ot “r 8} / . c0522x = %(1 + cos 4x). This gives us

= si Esins +lsin5x+C
. =sinx - 3 Xtz .

, . -l—fdx—-l—fcos 2x dx +lfdx+-1— cos 4x dx =.
. -4 2V 8 e 8
Note: This technique will work exactly in this manner for any by

sin 4x ; sin 4x - 8.sin 2x + 12x
= 33 + C

odd powers of cos x and sil\. .

Q

“ERIC
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Sotutions, Continued

4 (") ./'s'e"c3 x dx. = sec x tan' X -fsec3§;3&9"+ fsec x-dx. .

; . He can then consider (") as"an adebrmc-eqtﬂtiona

2.0 ¥ -
'l‘hxs' xs a ch.ffxcult‘ problen. We!ll go through it slowly and

-in detaxl so that the reasomng for it and problems like it
"becomes -apparént. We begin by noticing that.teghnique (1) ’
doesn't work for us here and that the dowble-angle formulas
.dontt apply, so we decide to use mtegratmn by parts. There
are three reasonable choices:

)

o .~‘(a) f (§ec°x) (1 dx) , ®) / (sec?x) (sec x dx), and
] S —— W ———— ——
Vooow ., dv _ . o u dv .

, "

<

N ('c) f E&eq x) (srczx dx)
o . u dv

v B LI -
N ]

ln choice Ea). setting ‘dv=dx would- le;d.to vax, and the ters

:(v du) would involve both x _and a combination of trig :
functions. Integrating that looks difficult, -so we go on to try
something else: .In choice (b), setting Bv = (sec.x dx) leads
~ to v = Inlsec x + tan x} , which is nasty. Thus we examine

- choice ‘(c)..Since ' . ‘
du = sec X tan x dx

T
T * - i .
. u * sec x
sy = tan x C .

= seclx dx nges

and tlus is the best of the t.hrqc ‘hltematxves, we procead : .

/(sec x) (seczx dx) = (sec ) (tan x) -/(:an x) (sec x tan x dx)

u., odv s u%% ' v, & E
e . .= sec X tan-x -f (sec x) (tanzx dx).
2>

“ We-can use the. identity (tan x = seczx - i) to obtain-

v

/secsx dx = :f»ec x. tan x - (sec x) (seczx - 1) dx, or .

’ - o .
N P

LN v

Por a uo-ent it looks as if we've gone around in c1rc1es.
" because we now have the term P2 . )
.i;:'fsecsxdx ) ',"'". v

A ~
s LR J

awears w:th a riegatwe sign on the right-hand side of (*J.

U= (secxtanx)-U+(f§eéde;).

Solving this equation for U, we obtain

sec.x tan x + Jsec x dx

sec x tan x + Inlsec x + tan x| + C.
Oividing both sides of this equation by 2, and replacing U by
jsec x dx,

3 1
fseg xdx = 3
where-C'=C/2. " "3

Note: - This is a long and imvolved procedure. With mnor
modifications, it will provide Teduction formulas for, povers

' of all the trigonometric functions. Because of its. éamplexity,
however, you should onzugonszder using it after cheaking+that
techmque (1) and the le-angle fornulas don't help.

e finally obtain . s

I

[ sec x tan x + Injsec x + tan x{] + C',

2+ sm x ,
In this problem, neither the “twin pairs" or ‘reduction

formulas seem to help, so we make use-of the "last resort"

substitutxop given in.technique (3). The substitunons

. 2 -~
‘ 2 N 2u : l-u®. .4 2 du
u =tan(z); Sin x'= — cosx=——2-",dxv —
e R T . 1su T Lew
transform the integral to *

24 : '
j‘ du -
=. ‘-7-.—- .
f/;u +2u+2 - Ju sutl o

CR

-

“ie ‘nns is a rational. funtnon, and is done by-completing the
m-lPl+1/2] + C ,

.square in the. -dénominator:
Lot ="
(u+l/2)2+(3/4‘) /374 :

./:1 +u+l

. o v 1 - . X. y ¢
et [ e
‘ T~
. 3/4° .




Secsion 4
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. SPECIAL FUNCTIONS

In this section we will discuss, three kinds of substitutions

which occur often enough that they are worth singling out
for special mention,
with terms of the form

(azmz)n/z ( u )n/2 and (u a)n/2

We deal with functions like these by uldng a“trigonometric

substitutions for one of the terms

™ (a " JI/Z (@ _.uz)llz’_ 1/2

or (u a)

The substitutions can be memorized, but I find it easier
to draw a triangle and derive them. All of the substitutions

come from the Pythagorean theorem,

The first type of substitution deals

which saysthat ’ x + Y Z2
i:l the ‘trqiangle to the right. 7 !
If we place the sides a and u v
' on the triangle carefully, we X
can make the third side of the triangle be any of the terms in (&)
See the triangles below. .
for & for fox
2 2.1/2
@212 (a -u?)1/2 (w-a%)

.

. functwn of &,

Y . )

Once the triangle has been drawn and labeléd,
substitution we need from it.

we can "read" whatever
"Follow this procedure,

’ To obtain an expression for u , use the trigonometric function
that involves u and a. Once.you have u as a trigonometric
differentiate to find du. . ' )

4 2, use the trigonamet»id
and a in the -

To obtain an expression for (something)
function that imvolves the sides (aomethmg) 1/2
triangle. ..

Make the substitutions. Tie result will be a trigonametric
integral, which you can solve in témms of 9. To express the answer

. — . .0
tn terms of x , "read? the funetions from the triangle. . -
Sanple problems 1 and 2 will illustrate how to u5e this -

procedure. See page 41 for the second ’afid third kinds of substitutions
wegdiscuss in this section.

SAMPLE PROBLEMS

SOLUTIONS

b

M '
1. f (xP9) /2

.

1. f.g, R |

)

Before we try a trigonometric substitution, we should check for
. any SIMPLIFICATIONS. Unfortunately there are none, so we
draw a triangle. In this case the term we wish to substitute

for is 1/ 2 . N 3
| b

(x%+9)1/2 ~ ..

(x%+9)
so we draw the triangle .
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Solutions, Continued 39 " Solutions, Continued @& 40
4 , N o

- o . ’ ”
To obtain t?\e substituno.n.for X, we use the function that sin 0 = %}_ , o x=3sin0 and, dx= _;_cos 0 do.
involves the sides (3) and (x). In this case *

" . ¢ 3 s J 4oy . .

tan © 3’3‘. , so xs3tan@ and dx=3 seczo do. To substitute’for '\,4 9x® , we use the trigonometric function
. involving that term and the constant. Here
To obtain the substitution for (x2+9)l/ 2; we use the function | 5 %
that involvﬁeg ("i2+9) /2 and (3). This gives us cos @ = 4;9" . SO J4-9x2 = 2 cos 0. .-

* Lo

2..,1/2 . . .
sec 9 = &_;_;_Q_L ’ or (x2+9)l/2 = 3 sec 0. &

We are now ready to substitute these into the problem. We get

.

3 sec 0 do

) o ,
o (x/\§+ 9)7/2 _/(x?ﬁ.z)ﬁ§ 3 /(3 (3 sec 03 - o

. /3 sec?0 do
= —T_ =
27 sec” 90,

. =-;-sin0

%fcospdo

+ C. N

I3

~a

- gives us the final answer

. l. X '+C...
C 5\"2i0 172

Qfm,z

In this problem the term J4-9x2
aZ-u?,

o )

is of the form and suggests

a triangle 'with hypotenuse 2 and leg:

3x, like the one drawn to the #ight, .
) . 4 -9x

We first determine - x apd dx by using the trigonometrics

. function involving.(3x) and (2).

44

. This gives us , R

+ We now return to the triangle to obtain the value of sin 0. This

.
& EN

At this point we're ready to substitute 4n the ‘integral. We

obtain !
( sin 0) (E cos @ do)
3' 3
4 Ix 2 cos @ .
2 4 1 S
sin” 0 - 57[(5)(1 - cos 20) do

L4
© . L 27
«Zfao - Z fecos 20 a0

i N

2 1 .
377'9-2'7'51!120+C i

=-§-7-(0-singc050) + C.
' < ) ’H
To complete the problem, we need only read off the values of

the functions of 0 from the triangle. Sin @ and cos @ are

J4-‘9x2

’;5 and > respective'ly. To find 0, we can use \th\e Function
sin 0: since sin 0 = ;-3‘-, = gin 1(.;»(). .
Thus - : :

. -l 3x ¥4- 9x2

1Gh - T e

' f 7__!,__"2 . 2 i
. 4'-9X 27

@




SPECIAL FUHCTIONS K
f ‘ I

The second and third types of substitution wé discuss in this

. R Lo . . INTEGRATING SPECIAL FUNCTIONS
section are really special cases of a suggestion we discussed in

Chapter 1, where we noted-that it is often worth considerin (1) If the integrand includes,terms oF tie forr:

substitutions for the "nasty" terns in integrands. Expressiohs . az-uz n/2 (uz_az) /2 o (az+h2)n/2
| involving e* and ,/ occur often enough to justify 1stmg {a !, *
(a) Draw a right tﬁxangle

these substitutions, ‘”‘.-‘_ . (b) Place a and “u so that the third side of the
triangle is the term you want.

Né frequently ‘encounter integrals like (c) "Read" the  substitutions from the triangle.

f 1 1 + 1 ( (2) I the integrand is a_rational function of &=,
Jex + 1 dx,/;x e ax E dx, . make the substitutions

. e u and dx = — du
which are rational functions of e*. At first glance it looks like (f n
(3) If the mtegrand is a rational functwn of x and

s . _ X 7 .
the subst1tu;xon u.= e will not be of assistance, because.the make the substitutions
d‘lk.e dx is missing. You should make the substitution : /axb = u, % = %(un_b)’ and dx'= R 0]

N

@
..

" SAMPLE PROBLEMS

ex, then du =

If you are trying to integrate a rational function of e » make the .
W
o

substitutions , I . .
& =u and dz du . | ‘04'. /-)l? S 2x+1 dx,
The m 1t will be a rational function of u. - € . ’ .

- . * 2 B
. ' : -, SOLUTIONS
A similar comment holds for integrals which include terms of -7 -

“the form - . : . LB

, n./ ax+b. ‘ , . 3 , 1 . o,
. dx R
EN [ ] X -X ¢

If we set u = Vaxs , then u" = ax+b, and x = %(un:b). e -e - ' ’
. o . ‘.. _n n-1 : " o~ o :
Differentiating, e obtain dx = a u’ " du. . The integrand, m‘thxs problem is arational functmn of e~.

) , , ., , . her for h .
If you are trying to solve an integral which is a rational fumction i erefore we should make the substlfut}ons “
. . . 1 °

of =z and axtb, make the substitutions =u, dx = T du,

even thaugn (e d:) dogs " not appear in the numerater. Since

s
e-xa .l_ A N . °

@ =, z=ib), ad dx=2d*
==, the integral becomes

The result of these sybstitﬂtibns will be a rational function of u. X u | N

See sample problems 3 and 4 for these substitutions/. The table

on page 42 summarizes this section.




Usmg partial fractlons or the forlula on page 17, this is

g T Sk R s A
f ( v )du = -z-[ln lu-ll - 1“‘“’3']? c
l”"f , 1 ex-]_ .
= = 3 ly +C.
. url 2 o1 .

\ .
4. f -,1? \/3 2x+1 dx .
so we should make the substitutions
' uA?Wl; u3=2x¢1; x=%-(u3-1‘); dx=%u2du.

The inte then becomes

it W)(d,) : f(f(l "n)(u)(;uz )

e .

. -
Using the technique for rational functions, this becomes

‘/@ ?’m fzu 2 -:—2-—“‘::51) du'.. ‘

4 3u+ 1n'u—1| < 3 ln[uztuﬂ_l - (f-) ta 1(2_;_;_1.).¢ c,

Al - b

The integrand in this problem is a rational function of X _

3 and 3'/‘ 2x+1,

. where u= \/2x01.

.. A -
. 23 ’ EXBRCISES . , . ° 44
b ¢ X‘ ( ) . . - ' T
= [ /‘ du oo ) l — s . \
1, = 2 : .
-2 (u) u®-1. . . EXBRCISES FOR CHAPTER 2 : .

PART 1: - ‘
the SIMPLIFY and CLASSIFY steps of the General JProcedure.
DO NOT SOLVE THE INTEGRALS AT THIS POINT. ‘Examine them for
simplifications, classify them, and decide which te:‘:hnique
. you w’ould use to solve tham. Th;n compare your reasoning with

mine, in the solutions manual. Remenber:

means that solution #6 presents a discussion
of exercise 1.

- - \ .
7
1 C—m—— dx x tanx dx
i) S L,l S
¢ [ ‘ [ * " '
h 4 4 '. - 3 N
2. /Z,tan x dx | 7 f 5x .dx
H‘, 'Lol. IJ ‘ , - Isol. .14 xZ -1 \“
* * S
s dx
Lol.3; Lol. 1] vx2e6x'
. A
14| [ 2
7 L L ' jcos (ln X) dx
1. \/gxt ol. 9
v : j 4 »
\" SOJ X dx l j
sol. 1 szw' sol. 2 24 cos x- .

- t . «

. N . - o .
The purpose of these exercises is to give you practice in

A

“
The exercises are.continued on page 45.. J

N
N ~ae _4.4 0"
L - ~ -y
, * . > .
. - -




fcscxcthdx ’
15 v

X"'X

]f(sinx-cosx)dx

sol. 7l ./; P
L/unx
sol. X*l

sol. '3

—g——dx
sol 12 f

42 ADART 2 A 2 #
Al e . -
Solye each o£ the exercises fron part 1. Detailed solutions ?re

‘l‘his table lists the number of the solunon
. l’\

in the solntions nmal.
to each exerc1se below the mmber of the exercise.

-~

I}xegl:i;e b1 2154

.

.Solution # |

g
| .y

‘HO?IFY!

]

ﬂ{apters 1 and 2 of this booklet contain the basic techn
necessary for solving most first-year calculus integration p

routine (although not necessarily easy) matter.
We encounter the most difficuly with problems of unf
form,’ those which. resist classification by the methods of

Once this has beén done, we return to the SIMPLIFY and
steps of the General Procedure to finish the problem.

'l'he _three sectmns of this chapter are:
-». (1) Problem Sinilaritiéé'. looking -for and explé
resemblances. between the problem we -
and problels we know how to intggrate

(2) Special Msnipulations: techniques for expfessi P
complicated integrands in more convenieny form |

mght help solve a problem, and: hodify
integrand to include then. g, .

MODIFY

Special . :
Manipuldtions

A




N

K
Ll

;| "Section 1

-similarities between them and problems we know how to do.
. there are two possibilities.

- . s

',, /-\\\jould use on the easier problem might help us solve the more
|

|

F

|

;

|

B A 7o Provided by ERIC

PROBLEM
SIMILARITIES .
: - s -
Some integrals can be classified e;sily, but look so compli'-'

cated that the standard procedures for solving then promise to be
Other integrals may not fit into the classification

very messy.
scheme of Chapter 2, andywe may not know an appropriate way to

‘ _One way to approach such prob\leas,is to look for

If the
form of a difficult problem reselbles‘ tha-t of a "standard" problenm,
' We might be able to reduce the

solve them.

difficult problem to that "standard" form. Or, the techniq\uerye\

ifficult one. Th¢ sample problems will illustrate this kind of

approach, Summarized in table form, we have
R s
y
|
PROBLEM SIMILARITIES
- ~(1) Look for easy problems similar to the one you
age working on.
2 Tvy to reduce the difficult problem to the forn
of the easy similar problém, .
. (3) Try the techniques you would use on the sxmlar
L problem, , B J
™ ¢ '
. ) ’ . f
Y : .52 .,

SAMPLE PROBLEMS -
———f_ ~ .

/ . R -
Use the suggestions gtven on’pgge 47 to try to solve these
problems. Then compare your solution with mine, ,

2 f dx
- 9x *8

>

1
dx
3‘ \/(x+1) ;xsz?c

~ v . .

~

SOLUTIONS

»

The intt;gra.nd in this problem is a ratiomal function, so
we could solve the problem by the procedures of chapter 2.
The denominator is difficuit ta factor, however, so we look
for another approach. , ~*‘
The problem would be easy of the denominator were (1 + x )

instead of (1 + x J can that be arranged? Yes, because of

the x term én the numeraior. Making the substitutiong)
2
_ us=x, du = 2x dx, . N/\]
we get , . -
X 2x dx 1 du -1
—g & = .= ~—— = Ftanu + C
fl +x 1 +x 1 +u" 3 '
T ) . \
1, -1,2
= > tan [x7) +C.
) |
JJ

yed
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Solutions, .Conimued . 49
. T ~

:;2 ‘/r '3"""3"" S :
- 9x 3 C . —~—
’ t 4 -
- . ~

Th1s problen, like problem 1, ¢dn be solved directly by
the pracedufe for ratiorial functionms.' The defominator factors -

without difficulty-to give us

xée . . . . . rL .
L . i - o N,
. P s ve L e
- « ” N ~
cx3-1x(x3-s). N ;

.. .. Me could continne factoring 'the_denomma.ton,,use parti
fractions, and then integrate term by tebm, That p;omses to be
a very involved pmcedure, howeler.. ‘We.should stop and look
for other alternatives. ) :

. Note that the integrand resanblea 4 simple rational funct:.on
\u-th a quadratn: denominator: .instead of (x-1)(x-8), we have
(X l)(x 28). Can wg/sT
term (x dx) appears in-thé numerator.

du = 3x? dx,

we obtajn - . S

l‘/' du R ‘1‘_/ (¢7)+ (7))du {’,;
3 /D @8s. 3/\u-1"u-8 .°

' 1 1 -1
. -2 e rims e s | dU
- 21_/(u-8 u-.1‘3
: 4

ify the denominator? Yes, smcg the
With the substitutions

u =~x3;

- - 1 ( ale . . - 1 : u-8}~
= 53 inju-8}" - 1n|u~1|)» C = 57 in o1 ¢ '
- 3 - . » L]
™ = Lol
AxT-1
. % < -
Jote: Subsgitutions -like this might haVe occurred to-you after——|-

If so, terpfic. Our guiding
’ '.‘ prmuplg is: at every 8taae of a problem; look for easy

aZtematwea. As, you gain experience,y&;atalogue of
SIMPLIFYING techniques will grow. i

, . ’ N
L) b 1)

workmg through chapter 1,

N NP

Solut‘ic;n.;», Continued

3. / |

As a preliminary, simplification, we might consider a substi-

SR o
(x+1) ‘/x§+‘2x T )

tutzen for the "nasty" tern in the denominator: u = x2+2x.
Th15 tbads to = (2x+2)dx, and at first glance this

looks promising. Unfortunately,‘the term (x+1) is in the
denominator, instead of the numerxator, where we would like
it! ip_we abandon this substitution temporarily, in the hope

vwe can-find something-easier,- - -- -
. }

Lodking for similagities, we can ask;_are there any '
"standaqrd forms" that include square roots in the denominator?

7— » etc. This suggests
uvYu2sa?

completing the square, in the hope that we get somethmg
easier to handle. We have [x2 +2x} = [()«»1)2 - 1], which

. du
Yes, terms like [
- N.uataE

4 .

3 -~ S
suggests the substitution u = (x+1). Then . )
Ch e . ) )
/____d.x_ =f_du_ = sec-lu + C
(x*1) v/x2+2x uv u2-1
. . :
= sec (x+1) + & - .
& , 5;" .
~ 9
~ -~
* ot ’ N
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. . y A. RATIONALIZING DENOMINATORS
’ ‘ — This technique is based on the relation (A+B)(A-B) = A2-B%,
. SPECIAL s . :
SL’\ Ifw 1 A b and B b v , we obtai .
MANIPULATIONS . ‘ _ ® Teplace, ’/‘r"- LBV e dbtain
. . . ' % AW I VY ) =u- v
. ~ ° . ’ ., o
N - - . L] -
. K If theintegrard toa fraction vhose denominator—is of the form
¢ * - . . 3
In this section we discuses four teChniqu;s designed, to express (Va £t Vo ), multiply both the numerator and denaminator by its
complicated integrands in more convament foruufor integration. "conjuga\te,” (i3 /oe). The den?lmlnator of'th? resulting fraction
They arte @ . T ir\sz‘mpty*{u*-"v):* T : , . . T
. » : l See sample problems 1 and 2. ' .
3 . . Ld 4 -‘\ ' \ o ) -~ .
s : - . . .
A - SPEGIAL MANIPULATIONS® ™ . .,
P AP S : A + IDENTITIES !
» A. Ratignalizing denominators of quotients b B. SPECIAL JSE OF TRIGONOMETRIC
° Py . . “ ‘ B
. . B. Spegial use of trigonometriciidentities < d od
. i i ic i iti i t iscusse
- C. "gdmmon denominator" substitutions . The basic trigonometric identities, like the terms : 1
. . 3 3 i . or example
D. "Desperation' substitutions . in (A), can b}gntten as the difference of two squares example,
i : . . 2
. v \ ‘ (1+cos x) (1-cos x) = 1-,q:oszx = sin‘x;
. s . . , , . 2 s ocosdxs ¢
“ \ . Yo« . - * \ (14sin x) (1-sin x) = l-sin"X = cos™Xx; o
~ B . “ a
’S», LA . (sec x +tan x) (sec x-tan x) = seczx- tan’x = 1; \,_) L
Y .’  “Thede, technmues often .1nvolv§ complex mampulauons. It may i 2 2 1 ’
- = - cot x =1,
not be clear that they aYe lielping to solve a proylen until we have , (ese x *C.Ot x) (ese x-cot X) ese x . .
done solie complicated caliulations’. For that reason, these tech- The terms pa‘ired'above. like (l#cos x) a;nd’ - (T-cos x): dre’
‘ niques differ from the s1mp11f1cat‘tons of C}Lapter 1. When we first called conjugatée ’ : . 2
examine an integral, wi look for fast.and easy ways-to solve it. If- ‘. T % ° — .
that fails, we try to..classify it and use* standard te.chn‘iQues, Only ' a . - )
if that fails, or if the standard techniques look"very complicated,, If the integrand contains aw of the temms (1% cos x);
do we look for alternatwes such as these, With practice you will (1} sinz), (seczt tanx), or (csextcotas), eitherwn
discover hhxch~ apprpaches to 1ntegtals you.can examne rap1d1v, and the denominator of a fractzcm or inside a square toot, Tconsider l
which are time-consuming. This knpwredge should gOVem the order nuptzplyzm and dwzdmc the integrand by its conjugate. l
’m which-fou apply them. 4 * . ) - .
{ i 7 . NS ) 4 L See sample p_roblems's and 4. N J
o . P Jj - . ¥ T - * - / .k : T kd — A
1E MC * - . Sb can . . . .\.)‘ \ o - . .
-y T . . . ) 5 7

N




D. "DESPERATION" SUBSTITUTIONS

k]

Our guideline in Chapter 1-was-that we should only conside;r
substitutions that are quick and easy to use, and we postponed
) looking at any substitutions that looked cog?plicate§ or unpromising,
If neither the SIMPLIFY nor CLASSIFY steps help us solve a problenm,

we should now consider more complicated substitutions ‘in the hope
— .

:/ C. "COMMON DEROMINATOR" SUBSTITUTIONS
l ¥hen an integrand involves a sing—le tem like VX = xl/n,
we make the substitution u = xlln, or equivalently, u" = x.
) The result of this substitu.tion is an integrand which has .integar o
. (whole number) powers of u instead of fractionxl p'owers of ‘x
” Some integrands involve _m_m_than_que.jmn;mna]_mx of
x, like
P s ]
. S b 4 + X . " .
»
 To solve an integral like this, we would like to find a *
' ;Qbstitutiorn u=x ™ Such that att of the fractional povers

We choose N as foljows.

of x.are replaced by integer powers of u.-
]

Let N be the smallest common denominator of all the fractional
powers of x which appear in the integrand. Make' the substitution
u=::1/, g0 that land-- de =N .

The integrand which results from thig substitution will be a ratwnal

::=u’

flmctwn of u.

- i
. In the problem above, the snallest common denominator of
1

3{ v and 32- -is 6. Thus we should lake the SubstltutlonS’
E u=x1/6; x=u6; dx=l6u du. R i."
‘The integral then becomes s

f‘l . ‘
2 .
u + 4 S . /
P 3 z(6 du: . v /
-/<“ﬁ’“)u ) \

,

which can be solved by the_procedure for ratmnal functions.
See sample problem S.

. R »
Y L] .

that théy will prove helpful. At this stag)e,/ue have little to lose.

For example, to sofve N $

: /

=1+/x oreven u=J/1+/X . See problems;

* we might tryo

To solve

x +1 x + 1
or even u =
X \x

REMEMBER: Our goal 18 to mampul.ate the mtegrand wuntil it takes\
a familiar or convenient form. As aoon as we, succeed, we return’
to the SIMPLIFY and CLASSIFY techmquea of chapters 1 and 2.
’ "N . L
SAMPLE PROBLEMS

we might try

u-=

Try each problem befm you read the sblutwn. Then compare your
reasoning with mine.
4.

. N - . -

0y d
5. @7
60

/\/l-cosx dx

[N

L Jetm
X dx

2. [F5=
3 /,,w;x

I -

o
‘
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" Solutions to Sample Problems 55 Solutions, Continued ] ' . 058
e - RYS T
"\. ‘v v . < v 3 N .'4‘
- SOLUTIONS 3, ,[ & , Dot
P . ; J i+ cosx &
“ f > N M . v -
Jxel '/x- . ' Since the integrand is a rational function of cos X, we could ;
ST . use the substitution u = tan % to transform i,t.to'“g,lrational
. . . [ function of u. Since working with conjugatés in_th.i‘s case :
To solve this problem, we multiply both numerator and N is fairly easy, we can try that first and see what happens, 1
denominator by the conjugate term (Vx+1 - vx-1), i We get Lt ‘
k This gives.us ) ' j dx = / (1-cos x) dx 1 cos x! df"
. 1+cos x: J (l+cos x)(l-cos x) :
Wx+1 - J/x-1) dx - f(h«l ~ ¥x-1 )dx ”~ sin®x R
(Vx+1 +Vx-1) (Vx+1 -¥x-1 ) (X“l) - (X-l) [_dx cos x dx 2 N
- S > = fesc'x dx Z 4 (where u=sin x) .
. Jsm x sin"x . o 4
t A . . . > -
— .
0l - vl ) dx 1f 1/2 / 1 1 ¢ , .
= = J(x+1 d - = f(x-1 = - = = - —_—— . ¢
f 3 ) 2.( ) 3 ( ) cot x + =+ C cot x + =4 C av - -
- « . M N A
. ! ” - . . 4
- Foen’?-gen® v 1 ; > =t xv esex el /.‘.Q ‘
. ) . T 1\ ) v
. . ’ [ ‘ . o :: ) '
. - ) + .' y . & ® P “ . i . °
‘ : . - 4. /,/l—éosx dx«- i ) v,\,.
2 x dx’ . . . \ s . . L
. hd 3 Jrme ) - ) ‘.” * .
CANC N At ‘ In this problem the "nasty" term is’ inside the square root. ,
. ’ If we multLply (1 cos x) by -its con;ugate (1+c05 x), we obtairl °
. b n - . - - e Qar + & - ks s 2 2 . =
Here too we multlply\tmerator and\dénomnator by the .. sin°x, and the square root of that is Just sin x. 'Fdr that
conjugate term, (1 + v1-x ). This gives us t ‘reason we can try the technique, in the hope that the result
; * . . ) is simpler to work with; £ it 1sn't we would look for sohme-
- - . . - °
- /x ( 1+ JIox ) dx =/x (1+ J/l-x ) dx . thing else.. . . <
(1-vIg8) (1+4i7%) 1- (1-x) | ‘ . f /‘( ) N
. 1-cos x)(l+cos x)- - . .
Y ; v1-cos )?‘ & = //a (Tecos x) - dx . .

1+cos x - Jl+cos X ke

\j N ./x Leslx) dx . f(l * (l—x)l/z)dx ! ! \/\’sm X /Jsm X sm xdx - = e
X T+cos x ¥ ‘

Y . . - i )
= %. % (1-x}3/2 + C. This may look as comphcated‘as the 1nteg-ra'1 “We started -with,
' ’ < but is much easi-er and can be done by the techmques of
' . ) . Chapter 1. We-have the term cos x in the denominator,
.3 . . o . R
o ’ e ' AN Y . )
ERIC & ot — _ 61 : .
o . . t . C . o oo - "
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Solutions, Continued x . 57 - - -
s ' / ” — N[ Section 3 ' - s - )
. and (almost) 1ts d‘er1v/§'t1ye m the numerator., Making the .
’ ‘. subs,txtutmn u = coy x, the 1ntegrtl becomes- .
- . ‘ > - . . .
e . [ -au. -1/2 1/2 ~ - .
/d“ =/-(1"u) . 202 4 ¢ . NEEDS ANALYSIS
) ) Jl*;u 2 : -
= -2/ 1+cos x + C. ' _ R . .
e . o . . ' ) \ N
50 / ﬁ - ' ‘ \' A"
x - X ’ ¢ : The techniqué of needs analysis has been implicit in much of |
L. - This problem involves ‘fractional exponents. The least ' our work so far, dnd we now state it formally as an 1ntegrat1on
- ' 3 . J:O-OHeno-inator—ofw%—and—%_tsﬁ‘ﬁmé“the substitution " technique. It consists’ of asking what might enable us to solve a
to. ' /6 e : 5 . problem, and then e1ther adding it (and compensating for it) or.
. u=x""% so x=u and dx = 6 u” Yu, ’ ' changing something in the problem to it,, Needs analysis explains *
- . . . ~
. . The 1“,“’3.1'31 becomes 3 the reasoning behind our exploiting "twin pairs" of tngonometnc A
. ! / 6u5 du _ ~6 lu: du 6/“3 du ’ -functions, for example. If an 1ntegrapd is a complicated. expressxon
b u® - - u, -T - ' involving sin x, we search for a way to introduce the term
/ e T ’
i g . -6/ u cusle 1 ) du = ) (cos x d.'x) Conversely, if (cos x dx) appeared 1n the integrand,
u-1 » . We mght seek to express the rest o,f the integrand 1h terms of
. e - (zu_ + 3u2 +u+ Infu-1 ) +C = sip x. For an integrand mvolving e* , we might seek to 1ntroduce
- S , . (le/z . 3x1/3 . 6x (6 .6 I ’x1/6- ) l)‘{ o ' (e*dx). [Thas\_sls dore automaneally by the substitutions u=e i
. . . - .. du*e"dx, s dx = -du An altemate*strategy is gwen in sample
" *: .- 6 p T ) . - ’ " problem 1.] If the integrand involves xn, we can look for a way .
- . '/ 1 +x  dx ) R to introduc® [nx"" 1 dx].. As usual, we summarize in table form, -
P /7 » . . \. . . . N
< Th1s problen can be done by sequential sub§t1tut1ons u = /‘; . v % '
s - L ' ? ’
L ve lvu; w= v’_ As an example of a "desperatxon" substitu- e, O
P |+ tionm, however, we might try ' - NEEDS ANALYSIS.
i S A N 2 i : a
AR A u=v-1 +‘v/:i' . Then u” =1 +/Y; X.= (uz-l)z; and (1) book ‘for a term, or a fom of the integral, that would.
. 2. . enable you to solve it.
dx = 4u(u®-1) du. Then . : .
- . , . . ’ . - (2) Try to mod1£y the mtegral to produce the term or form ¥
L . Youmeed. . ' o
1+ /X & = /(u)Hu(u.z-l du =/4 Foawdw - 7 ' £}
. 3 )T CH - 4u')du = X (3) Try to introduce the term you' need, and compensate for {&.{ .
. . ) . it,
o R N R I 3 5/2 - s -] '
. SUFweC s faeM i taemyt L ' ] |
v 1 63 ]
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tc 3oive-eack of these 'rcble‘ls waing a neecs analysis. !

QOMPAYE YoUr eolut ch with rine.

[ dx

"n

g

s . 3
ex - e.x ‘ ¢ g‘ \ax +b)
. i »
secx dx 4 ! dx .
3 - sec®x * j-(sin x + 6)(cos.x} -

1 /“" |
. ex_e—x

e solved this problem before on page 42, where the

’

procedure for special functions called for the substitutions
and'

\leeds analysis provides another route to a soluuon ~since

L okan |

u

-

the integrand is a rational functzon of &5, I ‘would like to
'nns wourd work most easily
egent in the -Lntegmnd I can

make, the substltut*on L ex
i1 the tenr ‘du =& dr .aere

obtam 1t if l’ muluply numeragor and denonmat:or ‘of the

integrand by e*. This gives

ex dx
COIGEER D!

.and now the substitutiomr u

X .
= e gives

—

.

u+]

Ja = 4 (mfel - mfuetl) o C

pS

N

»

n-
where u = X,

{ . - <oluti.>x.§’, Continuel ~ X : *
= —— = B SN f —~f - . ~ ..
o . 'SAMPLE PROBLEMS {<e:_ x dx : b |
} —_— - JV5 - sech .. S

- 2 - > .‘ > M y ) a
:mcc this integral involves s function cf sec x, our first

reaction is: ~e need the term ( ac ¥ tan x dx'. We can multipl’

numer&‘tor and denominator-by ‘tan x :o obtain !
, T : ,
/' {sec x)(se¢ x tan x dx) ° o .

v {tan x)\/S—seczx . . '

but this looks very °nastv Instead, we can ask: he have

the te (sec £ dx) 1n thé numerator. Cdn the rest of the

integral be caxpressed—iHems—of—wn—xi—xa&,—.smce—.__
2

sec®x”= tan?x + 1. Using this in the denominator, we obtain
' 2 .
sec X dx du [u = tan x]. -
——  *Jad R
Vi - tan?x JVa-ut A
e L y
=sin' @ ¢ € = sinT (G e
27 , —

3, J . s
x(ax+b) '

One way to handle thas problen might l{e a "desperation"

subst1tut10n, u = (ax +b) . Another way is to focus on the

term causing diffuculty, the X" in the denominator. To make
. . . n-1

a substituticon like u = xn. e would need nx in the

n‘mera.,cr.' We can get it, if we multiply numerator and

denominator by nx g__,ﬂh’e integral becomes

s .

11 g 1 [ ox™lax . 1/ adu
B (u) Gausb) ,

™1y (x) (ax"eb) (x™) (ax™+b)

n

We can now solve the problem by partial fractions,
bt -

obtaining
L4

e )
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Solutions, Continued 61

1

. = -ﬁs (lnﬂlul - In lan+b|)+ C = EF In m C
el R . n
1 X
N s —1In + C.
. © nb ax™+b .

4. . / dx h) - /
(sil\x + 6) (cos x)

Since this integral involves sim x and cos x » We.need

either } .

- o

(a) (sin x dx) in the xmllexiagtoﬁg with all the

rest
expressed in terms of cos X, or ct

®) (cos x d‘i) in the mmerator, with all the rest
-expressed in terms of sin x.

¢ ) -

If we try (a), we obtain ‘ s
&
sin % dx ’ . .
S o (sin X + 6sin x) (cos x) .

That doesn't help, because we can't express the denominator
easily in terms of cos x. So we try (b):

f dx.' r cos x dx

cos x dx

( % ' ’ T \

_/(sm x + 6)(cos x) j(sm X + 6)(cos x)

Here the numerator i§ (cos x dx) and the denominator is a
function~of sin'x. Now the substitution u = sin x gives us

“« M -

/ du _ d '

3 = u
J (u+6) (1-u”) . iu+6“1+u5i1-ui R .
) /( s, Yy, 1/14) du

‘u+6 l+u 1-u

’ .

= 1nlu+61+ 1n|1+u| - 7 r_x! 1-ul + ¢

l
k =3 In|sin x + 6] + —-1nl1+sm x} -71nl1 sin x| + C.

- 8g R

(sin x + 6) (l:sinzx).

2 - - J

o‘

EXERCISES . . :,J? 62

+ EXERCISES FOR CEAPTER 3 \
uy i
Examine each of these integrals and DECIDE how wou
Then compare your chosem approach

PART 1:
would solve it.
with mine, which-is given in the solutions manua:.

7’ <

: [ S .
16,] [
dx o 3
ol S -3; +2 sol. 7 1+ x
20J f tan x dx A 1 dx
sel. 1 sec-x + 2 ~ {sol. 8 (x+4)y x2+8x
3. - 81 [ _«
sol. 3 >+ 1T & sol. 1 Vi ik
‘> < N 1
" 1O fan
\
T X . 1/2 1/3
sol, 9 /)414» T dx sol. 2 fx (1+x )dx’
5101 .. | 10
. i X A 1 [N
sol, 4 /ﬁ:; + /Tox dx sol. 6 /sec X + tan x 9%
& N [N '

!

PART 2: . Solve each of the éxercises gwen above. Detailed

"solutions are in the soluti manual. The solution
numbers are given below. . >
Exercise # |1 |2 [3 (4 ]s |6 |78 ]9 |10

Solution # [15] 20 1319 14| 17| 18] 114-12 | 16
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Pre-Test . ¢

" You should be able to do ;ll of*fh‘esrpgoblems w1thout difficulty.
If you have a lot of trouble, practice these-types of problens

u . before you-try to work through the booklet. Answers are on-the_
< opposite page. .
S K ) 2 .
1 a
(113?"(%’;3»39’ 2.1) ° @ ﬂx ¢n2ax
. 4 /o
- > . 2 — e
: . @ a-%ms : /.x e*
(%) Fo0fsin x ) (10) f#i"—
3 - . - ' x + 6
. 2‘ Ay R
) =S¥ *h, sy /(fol) (Rax)” ax.
I N . 4 ! ‘o
< « ‘. .
;.‘J 4‘§d" B . 4 I 2 B .
“(5) ==(tan 6x) . = 12 csc“2x dx
] e a2 f .
29 . - ' .
(6). $4108(51n"2%)) (13) //‘cos Sx dx- | ¢
0 ) e ’
ES R P s ' . - “, .
R B (7) xitan 4x)- . (14)* /sec x tan x dx_ .’
v ‘ : . coo Co
: ) ’ .o - BN ' P
R L}
. T oo ¥ N

J ~ , . A2 /—
7 3 - ' Z\
- Appendix " )
Answers £0 Pre-~Test . \
- , i . .
-2 | 15 .23 ." .
_£1) 10x + }-”x“ . i (8) TX f3X 4+ x+ (3; ) A
_ NoT 1ot e c
- 3
LN ‘) »
22
(2) 6x(x%1) (9) -;-e" . C
S ; /
- -
N : ’
(3 SoEX_ (10) nj’e6l & C
. 2¢/sin x )
s » A
2 ~ o ‘
T4 14x e7X 1 5 (11) % (xz.ox)8 *
N l ! c
¢ .o
T (8) 6 -secl6x™ 1) Fowrzxec T -7
h‘ :
« " L3 — s - -
(6) 2cos2x - . (13)« = sin 5x.+.C . . 2
sin }x_ o s i ’
T "‘ . ' & s
N
] ) - ~
7 _ed (14) Secx+C .
1+ 16x> S . )
- A\‘
o o o\ 8\9
. © L ‘ ~
- Ry { \{ N - <+ J
. X "-,_‘ \\ f .
‘I v N ’
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This table contains the formulas which are
ESSENTIAL for integration,

- them so well that you never have to refer
Z_ to the table when solving problenms,

You should know

ESSENTIAL FORMULAS® °

Trixononetrz

{a) sinzx + coszx
¥

. ]
(b) sin 2x = 2 sin . x cos x

=1 -

*

(c) cos 2x=

[ \ 2

¢

2
coszx ~=esin”x

2 coszx -1

1‘:- 2 $in? x

Integration /

n u
1) l‘;du alve)

¢

3) eV du = "
& .

n+l"
+ C

(z)Jg-‘-f-J Inu +¢C

+ C

g @) Ssin u du
' (53 fcos u du
(©) foectdan
(7) fesc®u du

Ty

(8) /sec u tan u du =

9) fcsc'u cot u du .= -csc u+C

3

(‘q

3 -cos u + C

sinu + C

1]

tanu + C
“

-cot u + C.

sec u+ C

~

L
. at

“  This table contains the formulas which are

USEFUL for integration. For short-term use
(on tests, for exarple) memorizing them will N
save you time and trcuble, For long-term or

o ional use, you can look them up or. : .
d&hem when you need them. -

3

~ .

¢

+ USEFUL FORMULAS

——

Trigonometry

(d) tanzx + 1=

sec X

(e) 1+ cotzx e csczx

2 (f) sin’x =

(g) coszx =

1
2—(1 - cos 2x)

%{1 + cos 2x)

Tnﬂegration , -

(10 m si '1(%) +C Jas) Itan'u du =
(14) Jcot u du =
L}
1) fdu_ 1 1 y
Sl eI SR (S
. (16) Ic§c G dd =
anf—2_ -1 l“(%) » C
-a

-lnjcos ul - C |

In}sin uf + <

In[secu + tany-CA

’

-1nfescu + cot u+C
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A'Detailed Outline of the General Procedure ~

g

SIMPLIFY!" » !

L

(1) Break integrals into Sums.
(2) Exploit Identities.

(3) Reduce rational functions to
Proper Fractions by division,

. 3
°

GBVIOUS SUBSTITUTIONS - )
(1) Substitute for the "Ingide *
Terms" in complex expressions.

(2) Try to substitute for "Nagty"
Terms or Denominators (brief 8
tries only). '

i~ f

T . : <

. "CLASSIFY! .

x

luxﬁéhgrxhs RATIONAL FUNCTIONS

(1) Reduce to "Yproper fractions" by dit'ision

(2) Factor the denommat T,

(3) Decompose by vartial fraoctions into a sum of
"basic'l'\ rational functions. .

4) 1f the denominator is (ax+b) or (ax+b)n, N
use the substitugion u = (ax+b).

‘(5) If a quadratic denominator does not factoy
easily, complete the stfgare For the terms

"(1) Exploit ‘twin pairs to prepare for substitutions.

. f(sin x) (cog
(2) Use half-angle formulas o integration‘by, parts

[NTEBRATING TRIGONOMETRIC FUNCT3ONS

Try to obtain integrals of the form i

Y

dx); etc. '

to reduce powers of trigonometric functions
the integrand.

i: (32+u2), integrate directly to obtain a -

« 7 logarithm and/or arctangent,

-

ii: 3(u2—az), break into a sum ,and use the formula -
. ., on p.17 or use partial fractions.

Cgt:sider integration by parts. The formula is

N~

INTERATIPG PRODUCTS >

. L)

0 Judw 2w -JSodu
;and your choice of. u and dv
by two things: . e

atr

should be governed

. (1) You must be able to int'egrate the term dv.

(2) You want fv du to be easjer than the original

' (3) As a last resort, the substitution u = tan(—i-) J
.transforms rational functions of sin x and cOs x
¢+ to rational functions of u. (see p.32) e
INTEGRATING SPECIAL FUNCTIONS O

(1) If the integrand includes t&mme of the form N X

(a2-u?)n/2; (u2.ayn/2 o (a2+u )n/Z

(a) Draw a right triangle .

(b) Place a and u so that the third side of ¢
the triangle is the term ‘you want. %

(c) "Read" the substitutions from the triangle.

(2) If the integrand e a ratiomal funection of ex,
make the substitutions

e =u and dx=l-d.

(3) ‘If the inte rand is a rational functwn of x
and %/az+b , - make the substitutions

-

Ll (N

integral. This often happens when u is ! _n _n-1
. simplified by differengiation. U uiox a(u"-b), and dx = 2™ du.
; e
. ' MODIFY! ‘ ¢
PROBLEM SIMILARITIES SPECIAL WANIPYEATIONS " NEEDS ANALYSIS

(1) Look' for easy problems similar
to the one you are working on,

{2)*¥ry to reduce the difficult -
problem to the form of the easy
similar problem,

{3) Try the techniques you would
use on’the similar problem.

(0}
€3]
(3)

.. "4
:_“:‘i N L

Rationaliiirig denominators
of quotients, ' ;o

Special uses of
trigonometric identities.

"Common denominator"
substitutions.

"Desperation” substitutions

(1) Look for a term, or a form
of the integral, that would
enable you to solve it.

(2) Try to modify the integral
to produce the Dtertn or form
you need. .

3) Try to introduce the term /

- a \ et

you need; compensate for it,
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STUDENT FORM 1 EDC/UMAP

55 Chapel St.
Newton, MA 02160

Request for Help

3 T —

Student ¥ If you have trouble with a specific part of this unit, please £111

out this form and take it to your instructor for assistance. The infbrpation
you give will help the author to.revise theé unit. -

.

Your Name- - - , Unit No. ..
Page ’ : CoeE ' ' )
_ " . ' . Model Exam
- Section . ’
O upper. | o R - OR Problem No.
OMiddle Paragraph T Text
C) Lower ., ’ Problem No.

Description of Difficulty: (Pledse be spedific)’

P ~

-

]

-

p
. - . t Py ‘\
. . .
. -~ ~ . - . 3
L 3 ,
. -4 P L
AR PR Y

Instructor' Please indicate your resolution of the difficulty in this box. -

(::) Corrected errors in material“__‘tist corrections here.

A

-

(::) Gave student better explanation, example, or procedure than in units
Give brief putline of your addition .here:

L ]

4 /

k3
-

»
14 . ’

(::) Assisted student in acquiring general learning and problem-solving
skills (not using examples from this unit.)

’

A . -
' . : . v
. '\ . .

» - \
'

o ‘ q' ) ' - \

A - ' Instructor's Signature
. . : :

. . [
. . .o ~ . .

b
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., ° Please use reverse if necessary. - : . 5
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.Return to:
STUDENT FORM 2 ) EDC/UMAP

55 Chapel St.

- Unit Questionnaire Newton, MA 02160

Name . Unit No. Date
Institution * Course No.

Check the choice for each question that comes closest to your»ﬁersonal opinion.

1. .How useful was the amount of detail in the unit?’

L

Not enough detail to understand the unit R

Unit would have been clearer with more detail '

____Appropriate amount of®¥etail

_____Unit was occasionally too detailed, but this was not distracting . - °
- Too much detail’; I was often distracted

+

.2. How helpful were the problem answers?

____Sample solutions were too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems
Sample solutions were too detdiled; I didn't need them

S ————— v \ L)

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?

A Lot Somewhat A Little * ____ Not at all

"How long was this unit in comparisén to the amount of time you generally spend on _
a lesson (lecture and homework assignment) in a typical math or science course’

Much Somewhat About Somewhat "Much-
Longer Longer the Same Shorter Shorter
5. Were any of the following parts of the unit confusing or distracting? (Check
as many as apply.) .
Prerequisites - v

____Statement of skills and concepts (objectives)

Paragraph headings -

____Exampiles

____Special Assistance Supplement (if present)

Other, please explain N . *

I e

6.' Were any of the following,parts of the unit;particularly helpful? (Check as many
as apply.)

Prerequisites

Statement of skills and concepts (objectives)

Examples .

____Problems

Paragraph headings

able of Contents

____Special Assistance Supplement (if present)

\

cher,\please explain \j
Please describe anything in the unit that you did not particularly like.

v .. a &
Al

Please describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more space.) . -

b ' , 74 .

L4
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’
) This table contams the formulas which are . s(geet;cs,;sélmfgragsailg‘l)sglgemo;;f‘1111gnth:m will
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Trigonometry
. 2 .2

“cos )_(2.*_Sln x (@ tan?
. (c) cos 2x = 2 cos“x - 1 3 IR ) , A ) >
(b) sin 2x = 2 sin x cos X i 2 () 1 + cot®x = csc® x | (g) cos®x = 4(1 + cos 2x)

2 2 2

x +'1 =3sec” x f (f) sin“x = %(1 - cos 2x)

(a)°s1n2x + cos“x = 1

l.- 2 sin®x

- .

Integration - i N L’\ .
(4) [sinu du = -cos u + C . )
. -1 - FYd .
(1) fudu = u*? (5) fcos udu=sinu +C o sin ‘(2) +C (13) ftan u -1n|cos u| + C
n ! 6) fsec u du,= tanu + C . (14)fcot In|sin u| + C
lt '1 /(15)] in | u+ tanq+c
(7).jcsc u du = -cot u +{C a ( ) sec An |[sec
(8) fsec u tan u du = sec u'+ C (16) fesc
& ) ' (9) fasc u cot u du = -cSc u + C
. -
"
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Solutmns, Chapter 1 < ’ 1

1 (Exerc1se -l) Part (a) can be solved easily.
s . . .
There are no easy algebraic manipulations in either part of the

. ‘ptob,lel, so We look for. substitutions. In both (a) and (b),

the "pasty" term is tan'lx. If we try
’ u= tan'lx, " then du-= 11, dx, .
x“+1 ’
and this term does appear in (a). Using this swsntutmn in
part (@), ve obta.m ) .
’- -1
/“'2‘ x dx /(tan (- dx) =fudu =
X +1 .
\ -
1 2, 0\ 1 -1 2 .
7 u 0\‘C ) 7 (tan "x)° + c .
4 '; -{ -
N i ‘| '

' 2- (Exercxse 2) Part (b) ‘can be solved easxly.

4

Boi:h
integrals (a) and (b) can be broken into suns, but that doesn' t

* look terribly promising at this pomt.'

But we notice that part (b)

is an "improper fraction", so he should divide "to reduce 1t to

is (x ),and the relainder is

Now (b) is easy to finish: o

el

.= %,xs + ln,x*l' + C.

We begin by looking for algebrnc s1lp11f1cat1ons.

There are no 1dent1t1es
which apply to either problem.

a proper fraction. _The quonent

aj.

JEgd

I " ‘

*x

x#l dx

-

Solutions, Chapter 1 ) : 2 <

3

3,£(Exerc§se S)_Part (a) can be solved easily.

In }his problem, a simple algebr;ic manipulation is all we
need. In part (a), In(eX) ' /

. fln (ex) dx

X, SO

T e e

=fxdx :%x + C

A . . ~

K

4. (Exercise 6) Part (a) can be solved easily.

Sim;:e both pai‘ts of this exei'cise involve a Sth power of a
rather nasty term, algebraic simplificatipns are out of the
question. ‘Both because it is "nasty" and ~an_,"' nside" functionm,
the ter (1 + /X ) commands our attentiofi.

we try
1 S
u= (1+vx), they du = —dx .
© 2/x

The term vX appears in the denominator in part (a) of the
exercise, so part (a) looks promi.{ing. We obtain

[ & 1 1 / 1 1
— dx} = 2 —— 3
ae ﬁ)s.(/x‘ ) a »ﬁ)s(zfx‘ dx)

Jomya v vm )

2/‘5 du =-31;4 +C )
]
t . !
) . - . -1 ;*C
2(1 + /X)) o .
: ' ] / .
< - =
RECEIYT®
'- Tounbi 24977
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. Solutions, Chapter 1 3

[

E

G.

RIC

Aruitoxt provided by Eic:

.
v ~
« 3

5.(Exercise 1) Part (b) can be solved easily.

o

-

We might try exploring with trig tdentities in the hope of
s'implifying either part of this exercise. If we do, a short
amount of exploration convinces us that this approach is

In both parts of this problem thé '"nasty" term
is the denomi’ntor, +(2+sin x).

XY .
unpromising.

« If we try °

-+ -~ - u= (2¢sin"x), then du = cos x dx.

Since, (du) is’ the numerator in part (b), (b) is the easier
problem to solve. We get

cos x dx fdu
2+sm X

]
In fu] + C

In. |2+sin x| + C

(\-«;, :

-

A

(Exercise 7) Part (b) can be solved easily.

’

In both parts of this example we have that 'the integrand
is a rational function of e*. While we might be tempted to
jump into th?substitutfon u = ex, let;s follow the procedure.
The first of our algebraic manipulations calls for breaking

an integral of a sum into a sum of integrals. If we examine

(b), we see that this almost finishes the problem. We obtain
’ Sx 5x
/————e ; ! ax =/<e—x— + ~l—x>dx =/(e4x + e-x) dx
. e e e
. 1 4x -x '
=ze -e’+ C.
) /
’ J

i

. Q .

- . ~, Sglutions, Chapter l i 4

. (Exercise 8) Part (b) can be solved easily. \?
. ~ ) .

, .
As in Sample Problem 6, the moral heré 1s: look before vou leap!

We can factor the denominator into (x-1)(x-3), whith means that

both parts of Exercise 8 can be solved by the technique of
Partial Fractions. In both {a) and (b), how‘r,"the "nasty" °

term is the denominator, (x2-4x+3). If we try '
' S
u = x2-4x+3-, then du =(2x-4)dx, :

which is twice the nun;erator of part (b). Part (b) can then
. 'S A

be solved almQASt imedi'ately: - . »
. v .
. f—(’z“z)d" - /__LZ“ %fd_: = Flnjul+cC
. X" -4x+3 -4x+3 . .
¢ * -
» - %— 1n 'x2-4x+3| +C ' .
X . . .

Y '
. 3

-

i 8.¥Exercis_e 3) Part (b) can be solved easily.

.
. AN

We might try to exploit the relationship tanzx +1= seczx
in either part of this exercise, but ‘manipulations with this
may get complicated. We should hold off using this wntil we
have checked for a.nything easier, In part (aj we have tan x
as the "Einside" function, which suggests *s
u=tan x; du-= sec’x. L .
tnfortunately, we don't have seczx(in part (a), or any easy
‘way of getting it. So'we go on to part (b). There the "inside"

Y

u = sec X; du=secxtan:§dx. - a

function is sec x, suggesting

T

At first this do@sn't look helpful either, until®e realize

that we can "borrow" a (sec Xx) from_(sec4x)~= (secs.x) (sec xJ.

fsec4x tan x dx f[secsx][sec X .tan, x dx}r

%

Vana

81

‘ 3. _1. 4 1.4 s . \
=fu dy =zu +C -zecx+C o
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we studied in section 4, - v ax+b, and suggest

2:(5!e1:cise 10)° ' "Z;Q.dx ' R N Lo

3 {Exercise 15)
(4

A3 ..

N . - : e '
- .o -« . N
4. (Exercise 3)°." /.4xdx" s o : ’

. in the denomnator indxcags that’ we should consxdeithe .

3

The SIMIFYmg techm.ques of Chapter 1 don't seen. to

help her,e Our clue to approachlng th lem is *the tern

x+1 1n the pumerator. This is one ecial functions

e substitutions

- - 2
3Ix+1 ; _uz‘c 3x+1 5 x.= %(uz-l) j,dx 3z u du . '
] - v e

¢ e . . v . o

#cos,wx : s .

is'a eod)inatmn of ‘trig funcnms, so we check for the &
appfopnate techmque there. - There doesn’t see‘ to be any wny
to" exploit "twin pan's" and there ere no Jpowers to redyce,

50 we are left \uth the "last resor;" substxtutmns based on

LY

u= tan(—)

-J(éinzx - coszx) dx o
* "Ne could use the techn.iques of the Trigonometric ;"

Functions sectxoﬁ bit we should check for easy alternatives
first. If we remember tfne trigonometric 1dent.1ty, . : ’

e . " cos 2x = cbs’x - sin’x , Fo R

the.probléem can be’ done easily by the methods of Chapter 1. . '
. - - " 3 PR N

. - . . . .
-

. "
e -1 ° . i
» - 9 . L ¥ ot

) ]

There are no apparent sxq:lifzcatmns, and the tern, e.

subst1tut1ons u= et du = e dx° dx = % . .

“

N The lethods of dtapter 1 don't seen, to apply. The mtegranc

‘—

2 . . "
7 (EKerc15e 15)/ (x 3x) dx * R

tan~

, Qur clue for approaching it is the '
term

X"+4, , which is one of the *
‘special fE’JaLe studied in section’,
It suggests trig substitutions, . -

4,

based on 'the triangle tb the right.

- ) . . “

. we

~

8 (Exercise 6)

~

is

A ?:§v~~ I L. S0 ST e T . J-f"'-' R ] . .
S . ' ‘Solytions, (hapter Z, PART I. ' -5 o Solutions, Chapter' 2, PART I ' 6
g T 4/ . T N N - R TN
- C o o : =y tan “x-dx ’ & o
1,N(Exe17c1'se 4) /6"“ dx‘ - , 5'(Exe1:c1se_lt~.) /T . e’
S W E : "\ ' ’ : .

The methods of Chapter 1 apply here. The "nasty" tern i3 -

1x; and if we set u=tan x, Q\en du = __;lx_ from this
point on the problem 1s easy. . X+ - ,
- < ‘
6(5. ) frz—“k& L
xercise. 1 . . s *
. ; N x x,*-’.. . . .. -
L} -

. There are no apparent s1mp11f1cat10ps “for this problem.

b4 +x-2 . e

. . X -

‘The 1ntegrand in tlus exercise is a rational functlon ;o
should follow the procedure for rational functions.

. . . . - .
. 4 . ¢
- R N . . )
R b

“e
. ¢ -

fxtan xdx .

1) ‘ N
Tﬁere are. no apparent simplifications.; Here the integrand .

a px;orduct of dissimilar.functions, so integration by parts

. tisa likely technique. The tbo choices we have gre, : ‘\)-
. (a)* us= ‘- »dv = tan lx dx. K .
(b): us tan” e dv = x dx. . . ‘ )
o Choice (a) doesn't look promismg, because we wfdld ha‘ve o
to integrate dv = tan x dx In ehoxce (b), we diffetentiate.
: _u* tan'lx to jobtaif du = —.—g-J-‘—-, which'is much simpler. So
we' use integration by parts,” +1 g .
. .v‘ . with u = tan'lx;' & s xdx. . )
SO » S , ;o 83 * S
,\3.. ‘ . /. c . —,—.,',_-:-u ---’ - ’ - ) ) ]

. - - .
22 4 - 1

=




Solutjons, Chapter 2, PART I 7

v Term$ of the ‘forp ;

L ¢ is suggested; ‘with t‘te help of the djagram given above.

X

< . . :
9. (Exercise 9 fw

Since this integrand contains an "inside" function,
(In x), our first approach should be to try the substitution

u=1ln %. -

10.(Exercise 2) /2 tan*x dx -

There are no apparent simplifications. Since the pro})lem

1nvolves tr1gonometr1c-smct1orfs we should first try to
exploit the relatmnshxp‘ between tan x and its "twin", sec x.

* If that fails, we gight look for a reduction formula..

.~

le.li *:.&.—d b | @

o ,
11 (Exqrcise 8}, S ¥ .
* v x2+6x ’ .

e
v

As a prehmndry 51np11f1cataon we might facfor the

-

terl in the denomnator to obtain
X e .
P x' . ..

s ' J(x)(x+6 .

but this doesn't"seen 'to help muth: lh'at,can we integrate?

Y

~

Y

. uZ:a s -
so, we should-consider completing the
square @@ the denominator to.obtain * +

s dx. v'lith u = (x+3), -thi,s
\/(x»S)z -9 .7 - -

T s 3 du , and a trig substitutig
’ u2-3 : f}l

.

o, ‘s i’ S .
. . o
< ’ 8% -
~ °
" ~ ¢ . L4
o ¢ . -
- ‘ hd » . R
» N . N «
'/\ o - 2
- . /" N -

e o 0

.

Solutions, Chapter 2, PART | -~ 8

, Kl ’ :
12 (Exercise 16) fxsdx : “ . .

13(Elxercise 5) /M \‘\ F
2 . * ¢ .
v x“+4 .

L pe3
14(Exercise f) 'Sx dx

€

x -1 oA
che the mtegrand here 1s a rational- #uncnon we should
follow the procedure given 1in section 1 for mtegranngﬁ

rational functions. . . . }

While the denominator suggests a trig substitution, we
should be careful and check for simplifications first, Since’
the 1ntegrand contains an “"inside" functlon (x2+4), we can
try u = x +4 and see what happens: du = 2x dx, and we're

in luck: The.problem can be done by the means of Chapter 1.
Y

x -1 L o
~ . N ’
The mtegrand is a rational function, byt we shouldn't

rush into the techn1ques of Chapter 2 until we've checked fo&-

simplifications. The "nasty" tem is the denominator,’ and 4f -

© we try u = 4;1 then du= 4x dx. Since our numerator is

(Sx dx), we can f1n1sh the problem easily with the, techmques
of Chapter i. ) < )

G- . ~ o, ]

4 L4
.-

15(Exercise 14) ! /csczx cotsx'dx " :

5 1] . ’ -
This problem can be done directly by the means of Chapter

"], If we se’ u = cot x, then du = ~c'sc2x dx, and the

]
ihtegrai becones

3 . . >,
-/u d& . -7 . .
. 4 .

' . [ i .

.Y . . .
,6(Exe1?c1se 1) ' -/;.:scéi cot3x dx : ' v
= . . .

Th4s problem can't be done mmedxatelv by the m¢ans of

. Chapter 1. Se have to e_}plolt "twm pzurs" ~as in Sanple
Problem 10.~ oo

l‘._cf
™ - v ‘.8
.Y A N J

[N -

’
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S ""1““""_ v . . ‘Solutions, Chapter 2, PART II .9 . i Solutions, Chapter 2, PART Il 10 ‘
e , ‘ ™ R
) 11 ' o de ' . 19 E 15 ’
. - 1*7,(Exercise~4‘)‘ T il . . , (Exercise ) f(sm X - cos X) dx
N \ . o ' ) solution [3 »for our reasoning. We have .
. . - See solution [1] for-our reasoning. With the substitutions * . ce “ ‘° (3] & .
) : U =v3x+1 ;° u2 = 3x+1 ; x = '%(uz-‘l) ; dx = %u du, ) . . f(sin X - cos )Q‘dx 5 =fcos 2x dx = - Esin 2x + C.
. the integral becomes =~ = — | » 7 s . ' . :
) c 1,2 202 e P . : L i |
- 6 [-g(u -l)] [3 u du] = i ’(,uz‘l)z .du R ) Y 4 dx ’ B l
. _ \ 9 D ] 2 O(Exercxse 3) . / :
< / u N . ¢ % L4 X .
» N - . _7‘7 - . e _1 <
: = -fi/Eu“-Zuzﬂ) du = e% [é w2 u] ¥C 1A See solution [4] for our reasonmg. With the substxtutxons .
‘ B # T u'= eX; = exi} =% ’ I
. . —~> . 3 H a ’ r .
= % [+ 3xe1y3/2 _ : (3x+1)3/,2 s Gt “the integral becomes . ]
Vv, ' [ 3
< < ” 2 . e " 0“\ : : %.
' ' ' " ’ C . L 1% [L_U:] U rtial fract
. . .« . “ . - u) (o 4) smg pa ractions,
. N ‘ t i ' ° u-1
| 8 i 9 dx . . this is , - ~
10) s . .
. 1 J(Exercise 10) . : v : af {2 -L)aw - = 4 (mnfu-al, - mpug)e c
. 2 + cos x v . N, u-1 Y
See solution [2] for our reasoning. With the substitutions , u-l . e*_1 " )
- - - Xy . ed _ 2u 2 1-u? 2 du =41n,u-I“'c = 4hni— . ¢
\ u-ta.n(—z-),.smx-—j-; cos x = — ; dx = -, e
. . , s l+u - 1+u . 1+u . 4
. the integral becomes . , . ’ ! N :
. ‘ . ’ . . .
( ) ) ' i . 2/1 tan x dx . . . N
. N I‘Bf gu . . . (Exercise 13) ;:24-1 -
: u+3 . oo :
’(1 ) : ] ) ; See solutmn (s]. for our reasonxng . With the substitutions
0u - < . < .
[ - : 9 N ) \ ¢ = t -%. d = dx ‘
v Now if we remenber formula 71 from the table of useful u = tan Xx;.du= —2—1‘
2t . N . . X+ ]
4 . integrals, this is . Lo - . . .
e s s, v e- T ., .the integral becomes .
s ’ ’ "1 -1, u ’ ' < ‘ T
S . ] L8 (= tan (=) + C . . -1 dx . .12 .
- 1 . . ‘/3' ‘ i R - . . tar 'x x2+1 fudu _3u 4} -
“ . * N . i ol L]
. -t X - . e
1@ .. 48 l(tan(i))+ C. %[:an x]¢ s ¢C -
+ . o . 3 . . [« . . .
. r . 73 / .o ' o ; PR .
: — = o - . * RECEIVED
g : ‘ | 29 ) o~ . . . , . . . »
« ' hd . . . 0 2
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: : Solutions, Chapter 2, PART 1 |- = 11 Solutipns, Chapter 2, PART II N 12
R . A ™ (A _ S : ~
"2 2.('Exexjcise 1) f 7 dx « \ ) 24.(Exercise 6) . f‘ tan~ 1% dx ‘
T Wx4 . ) ' . :
~ . S 3 f s . s s .
.See solution [6] for our reasoning. Based on the triangle ee solution [8] for our reasoning. Using integration by
. Ll D parts with R . T .
to the right, we olztam the = tan-lx dv = xdx | . .
substltutigns < 2 tan 0; du = ___zd_x‘__ o v = %XZ . we obtain
N dx = 2 sec“o do; and x+1 . o
\/xz-+4- = 2 sec 9. the integral ’ . %1 -1:.12
b 2 . - (tan "x)(x dx) = (tan “x){3x7) - ( X )( )
ecomes '7/2. sec’0dg - . 1 [sec 0 do. . - _— = __..__.'X_*_l
L (2 tan 9) (2 sec .9) 2/ tan 0 . e wdv [ u v v o 5
9 - . . R XY . 2 . - * . } s . g‘
7 [[1/cos 0] 4O = 7/ = 21 2 -1 Lj; dx 1.2 -1 1/‘( 1 Y
. = = .= i - © =3z X tan x{~-5f5— = 3Xx tan 'x-3 1- dx
- . % [sin Q/cos 0] W2/5in 0 -30€csc 0 do. * ' .2 . 2] a1 K ol xz+1) )
" » B ¢ - hd
5. Usinig formula (16), we obtai - ’ > ) ) S
Using formula (16), we obtain : - 12 -1 1 4. -l
R ' ; . . [T 7 X tap X -5 Xx+5tan x + C, .
» o :—z- In Jcsc @ + cot 0] + C. . g y s 4
4 |° ' 6oing back to the triangle to "translate" csc @ ‘and ‘cot © | ¥
:"'"v-.-, .. in teras of x, we obtain ;a.g;« : 2 5(Exercisev9)'§‘(}{7c°s(m x) dx
L M ¢ . ° B , ”
=l w2 e | o bt
5 ' ' ‘ 7 - X X . v, " See solution [9] for our reasom.ng With the substitutjons
R - . i i “u=1Inx; = - dx the integral becomes . K
'\ N N ) - . . ) R h )
~ ‘. . flendly = =' H
Jf"} 2 3(Exerc se 12) (Xs*xz!dx ; »" ’ ﬁos(ln x)[(x) ‘dx] feos u du . sin v+ €
2 * xex-2. ' - P ) « . =sin(ln x) + C.
= - Fonowﬂ:g the procedure fbr rational fmct{ons, we ‘obtain . . ' &
S%Q.Ldl = f x + —gl——) dx 7) . 26‘8:epcise 2) —“ﬁ tandx dx ‘
X +§-2 - X +%52 A * . . .
vy . : ! N | e - . - See sélution [10] for our reasoning. Exploiting the ;-elatimf
dx = /’ 4/3! !2/3! ) .o ships between tan x$ and its “twin," sec x, we'obtain °
‘ ;;: jx . x+2)ix-;) ) x x+2 - x-1 ) -
. . 1 - than dx = 2/(tan x)(sec x-1)-dx = .
M o %; %Jn'xozl v Zinjeal + c. : o 2/ (tan’x) (set%x)dx - 2 " tan’x dx = e
ey Ot &ﬂ, “(' . . Zf(tanzg:) (seczx dx) - _Zﬂseczx -1) d&x = . . [
;~‘ o ‘ 88 ) L. : . o 2/(tan x) (sec”x dx) - Zfsec x dx _+ Zfdx =
ce e ' T -t ° . SR b
s U : , , - NS ' Y 4 L. u
;i,’\~ L L . . - V | , . . %-tansx.-.Ztanxtz x+ C. ' ’
R AP : ‘ ' :

1
- rllurm«unmc tanl T

. . - . . A .= . = - o e %
) . L v - EE . 3 . ~ 2 .

., 1"~ T p Toos o e - o VA T e e, T, IO e . .
1 <t . Ceems AR o e 3 AT Seene T . - A

", - . . FEEAN . . . ~ R —_— - - . o
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. 13 . ) Solutions, Chapter_2,.PART I1 13

- Solutions, Chapter 2, PART 38

- . ‘ ‘5dx .
8 2 7(exerc1se 8) . 1 fdx - 1 f(u-3/2)du ¢ o
. =/ . . : Jx &+ 3J %1 32 / ’

. v, x“*gx B . . ‘ . . +3/4
- - é /
See sojution [11‘] for oyr reasoning. After completmg the square ,
. %:ﬁdx.lfix__-}.ud“,lfd“ :
o ® in the deneminator and lakmg the substitution u = x+3, . .3 u2+3/4 2 u2+3/4
. 17 . the above integral becones - v ‘ . )
S du’ o, : . 2 .2 $ %xz + 3 1njx- ll ln u2+ % + 15 1 tan'l(u_) + C

o . 3 <2 . u“-3 )3/4 m

.- - . vuc-3 . From the triangle . . )

- . T to the right, we obtain the .3 s % x ot l In|x- 1 - lnjx +x+1|+gtan l (2;;—1) .
- .subsntutmns s . . _~5T'$ \

- -1 -~ u= 3 sec 0' du = 3 sec @ tan 0 de; Ju?-32 = 3 tan-0. <~
s - ‘ﬂus transforms the integral to o ; 29(Exercise 5) 9x dx
T——.:“_;;__y\___ ® ) “"o A 3
<1 3 sec- @ tan 0-de¢—-— oc 0 EEE g Jx3+4 ,
. S /s 3 %o O = sec dO = . ) ) i
y Co- L w\ . . See solution [13] for our reasoning. With the substitution -
. - . . 2 -~ = 2
. ) 51n!sec0+ta:_10|+c =5 % ;3'4-(: . u = x°+4, wehave‘ .
_ o : ' ) ' 9x d’xc 2x dx . 9/ -1/2
. . 2 W , r = = _; / = _fu
. x*+3 +6x |- . du
LY . =5 1In 3 + ‘—3— + i C.‘ 44 JJXZO“ ‘/ X24‘ /- 2
= B N - s
. L} - .
) ) - . 599 1/2 +C = 9 x2+4 . C. )
28jﬁxercise 16) Fadax +. : ' s -
. JRRL I N . N ) . - ..
s : . x"-1, - \\ . . .
. . Following the procedure for rational functions, we ohtain o 5x° dx . -
. .8 . . P o N . (Exercise 7) of = .
. . . N . 5 x -1 ) .
. . /x. & /(x . ; ) P ‘ . ' K \
. - x3-1 : x>-1 - . f ) » See solutmn [14] for our reasoning. With the substitution
. ’ ® ‘ . . ¢ ] »

$ .

. “ - /( . 'xcl . ), . T~ cuF (X -1) ;- the integral 1s .
v" : . = X + ﬁ—_ dx . . r - .
, x-1) (x“+x+1 ) T
N (x-1)( ') ﬁxcxx 4/4de Sfdu=.5_1n]u'l+c _'

/- ‘ N 2 )

‘ . . . . &:’. . x‘ 1 - 4 ’ ’
‘ . f xo QB CUBx > W9\, : }\ . oL
: ' = xfexel s ' p 5 4 ‘
R . . ) 4 =2-1n'x -1'+C. .
< L 1 . N . ~ ‘ R . .
. . et ‘ s . 1 ._d_i 1 !x-l! dx . % ' -
' - - k] J;tdx *3 x-l'-gf . ¢ ;N ) ‘
¢, . . . ( ) + -- R , R . : - . P
4 ° . A
s * - . . t N * . !
i o We notv make the substitution u= (x*—-) in the thlrd i \ ) .
‘f' 1 ° integral, to obtaJn . 1 f ™ )
- . \ . y .l'.‘ i . .
J \ Soene | q 1. .

. . s N : .
90 ) ’ - ’ ) -
, LY ” . ~a . i ' ’ “ ¢ = N
L . Lo .. L. . . @ L B} Yo . . Xy )
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3 1'(Exercise 14)

R -f(cot x) (-.csczx dx)

3 2,(!31ercise ll)b
* .

Solutions, Chapter 2, PART II TS

fcsczx cotsx dx. , -

% 7

See solution [15] for' our reasonmg 'thh the substitutions

. 2
u = cot x,- da = - csc x dx, the above becomes

-

L4
-/u du = -%- u4

+C

" .

‘ Jcscsx cotsx d‘.

R
fcscsx cotsx dx = f(csc *) (cot x)( csgx eﬁf@i Jx)

f(csc x)(csczx - 1)(— csc x cot x dx)

,At th1s point! thée integrand has been expressed in terms of

csc x and.its d?rimtive. With the substitutions u = e¢sc x,*
o \

du 2 - ¢Sc x*got x dx, we obtain . -

- f(u—)w—-nedu) -

/(-u*u )du' . o
Ll o

$~° 3 -

1 #s  1- 3

='—cscx+-—cscx*C - .,
3 3 . .

. . . .

A4
a e . .
.

Solutions,

Chapter 3, PART 1 10

[ 4
(1 (Exercise 8)

Like Sample Problem (9), this problem can Ve approached a
. number of ways. With such a nasty expression, we might be
tempted to make a '"desperation'" substitution with

‘/)‘tuz(l « x13y 4 . . '

This is not a "common denominator' substitution problem, If

.2, (Exercise 9)

-

we multiply the two terms in the integrand, the problem can’
-be handled £asily by the methods of Chapter 1.

P

3 ‘ 23’ K :
. X dx : -
e (Exercise 3) / 1 ‘
This is a "common denominator" substitution problem, where
—  the terms in the 1ntegrand-are——x——/-3——-and ‘xl.—-irhe—comon

denominator is 3., so we should make the substitution

[

4 . ) . us=x .

., X dx ,

1+x # V1-x .

‘4, (Exercise 5)
-y -
In this problem we should rationalize the denominator, "and

then see whatever else is cailed for. ‘ N

.- The form of#this 11‘,v’x'oble1n is similar to pational functions

We' could obtain a quadratic

{ - “«
denominator by setting u = x> | 93 : B

<

. with quadratic denominators.
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Solutions, Chapter 3, PART I

f .
. 6.' (Exercise 10} j dx

sec X + tan X
The easiest way to handle this problem is to recall the
identity: tan’x + 1 = seczx, or secx - tanzx =1,

We can multiply the denominator by its conjugate, sec x - tan x.
- . - Y

. \ . )
» (Exercise 6) ' /x_dx__ \

3

Y 1ex3

There might be any of a number of approaches to thxs problem.

The key. bbSerVatxon to* make is that the numerator. X dx, mcan
* be written as i(x )(3x dx). This makes the substitution -

.

u = ‘x3 look promising as a beginning; we can go on:from there.
S

i . dx
8, {(Exexcise 7) —_—
f(x+4)|/ x2+8x

As- in Sample Problem 3, we need a way to get started on this
problem. P?arhaps completing the square in the denominator =~ .

will give us a lead. .
v ) ( L‘ .0
. X
9, (Exercise 4) f ;.1.. dx

There doesn't seem to be .any easy way to approach this
problem. It uught be worth trying a desperation gubstitution,

E}

_ 1 X
U YR :
:

.

10.(Exe'rcise 2) /tan' x dx

sec x + 2

°

Since the integrand contains an expression involving sec x

in ‘the deénominator, we gan ask:-what 'do we need to integraté:
such an expression? The derivative of secX, ['sec x tan x dx].
We can obtam this by multiplying both nulserator and denom-
nator by sec x, - v

, Solutions, Chapter 3,

PART I1I

\_

11(Exercxse 8) . \/ dx ’

o

See solution {1] for our rbésonmg. With the substxtutxon

3

u‘=\/l+ﬁ,wehave u2;1+x/3<', uz-l NS x-(u—l),
and dx = 4u(u -1)du. Then the integral becomes

2
4u{u”-1)du _ - 4 3
/_)_u . 4/(u_1)d3,-3u-4u+c.

3

4

—[1+f1 - 41 +YT]

R

/2

Ny

1 2'(Exercise 9)

- ‘/'“1/2 . 56

13 4 i ' xz/3 dx‘
(Exercise 3) e

See solution [3] for our reasoning.

1/

u=x"'7 we have u3=x and (3u

With the substitution

dn)\ dx. The mtegré

becomes
./1/33 /(u )(3u du) 3u du
’ u, +1 u3+1

If we now. follo: the procedure for ratx.onal functions, we

obtain

o el )>du =/<3u.
ul . uz-u+1 \

For, the third integral, we set w

fsu du,fm fws/z (w+3/2) dw
Ze(sray

/(Su- Su )du =/<3;. 3“2 du
u3+1 F___" - (u+l) (u”-u+l)

-
Ty 2

2w\
B w34

= (u - %—). This gives -us

(continued...)

Y

95




) . » Splutions, Chapter 3, PART I1. 15 * Solutions, Chapter 3, PART i1 20
: - <

a . ) ( : 7 _ ‘
f ; dw 3’ dw ' i 16 (Exercise ’10)- L. /—dx . :
3u du .. -fh— - = —— o - )
B ] i I S X * X
u+l w2+(3/4) 2 w2+ (3/4) . ) . / ec x tdan x
. - P See solution [6] for our reasoning. Multiplying numerator
L ! -
- _.;»_u.. < Injus1| - { lnlwz 3' 1( ) o ana Jenominator of the above integral by [sec x - tan x],
. ) - ‘5 ; : we obtain . . S
. - i - ' \
- %u . ln|u+ll _ —‘lnlu -u+l' /_ tan I<ZU- R | [ [sec x - tan x] dx R fsec x - tan x] dx f
~ ) { J [sec x - tan x][sec x + tan x] . secl tanx
. ' . X - X i
< 1/3 : ) : ) '
2/ 2 -1/2 . . .
= -23-x /3 + ln|xl/3+1| lnl 23, /°+l l(‘x_l), c [sec x - tan x] dx X .
/3 .= = ﬂsec X - tan x] dx .
1 N
s B ) v ' .
. P ® ’ L) )
' . . . . ‘ » s 7 = 1~r§.|sec x + tan x| + In|cos x|+ C
14‘(Exé'rcise sy ° - f_Xdx —-
b . , - ﬁ+x +J1-x L ¢ " NOTE: As“usual, there is more than one way to approagh this
. 4 V

To ratwnallze the denonnmator in this problem, we fultiply problem. ‘If we don't notice that we can multiply by the

- both numerator and'denonnnatOD by [/T+x - /I-x ]. This yields conjugate of the denominator, or if ve feel uncomfortable with

" .sec x and tan x, we can express the integrand in terms of ~

+ ) [y1+x 1x ].x dx - / tx - /1-x] x dx sin'x and cos x. This gives us 5
- °
[,/m /1 -x J[Avx ¢ V1x ) (1+x) - (1-x) ‘
. . dx _ /cos x dx  _ . ,
[f;f—] : (—'" R e /l , sinx sinx*l_m'smx’”’\c.: .
.- _ Irx - /1-x X dx _ f cOS X COS X : .
) 2x = o7 J 1-x ] dé . .
Tl * - . We can shoﬂeasily that these-are the same answer. In this
& - '3-((1+X)3/2+(1-x)3/2 ) . c N . case the second altermative gives us a Easte; solutxon than
st 'y s SAARIY gl ) - the use of conjﬁgates That can happen; the 1mportant thing
N » ) ;& - N . go have is an organized, logical procedure for approaching .
. - ’ .ot LA S ) integrals. \ N ‘ .
: o -~ * 13 . .
i 15,(Exercise 1) I H ' ' - i - .
. o X -3x7+2 ' &w; T T - :

. | N . ' s .
See solution [S] for our reasoning.. With the substitutions ° F517'(Exercise &) .‘:/V/—f,g.dx— " - s
u = “2" du = 2x dx, this integral becomes - . ' 1ex 3

\See solut1on [7] for our reasoning. With the substitutions

3
1 xdx - .1 ’ 4 . 5
- . 2 f(x2)2-3(x2)4:2 2 2_3‘”2 = ‘2\/(‘]_2) (u-l) u 3x dx, thxsamtegral is ,' .
st [ : v T lfx )(3X dxi {u du e R
- 1 1 1 1 v ] .
o= -,j/(u_z o) )du = .‘z‘(anU-ZI' l‘n,u-bl)f c e l”‘ - ‘.d”“ ; .
oa . /‘. 2 .o ) Ly The uhstxtultrons v = (l+u), dv = du, reduce this to
R Y e TN P L) ) P T '
Q v2 u-1 2 x%-1 ‘ . .

- el %6 . . ‘j.E," } : g PR
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4

) Solutions, Chapter 3, PART IY - 21 s - " Solutions, Chapter 3, PART II 22
ok ‘ Y (o R )
v

[(v-l! dv _ (JV . > /} 172 ‘,‘1'/2 ) These substitutions transform the integral to . ~
‘ - ~ :

‘ J v v - 270 . Y \ !

. 2 (sin"9)(cos 8 do) _ 2 [{sin 2] ( 1 de
. ' . 4 cos 8/ \cos o) 5
cos 0 .

= 202 512, ¢ ‘=‘§(1+u)3’2 c2aet e , C Y
: . 2f:an 0 sec 0 do = 2f(sec29 - 1) (sec 0) do

g 3

. = 2aahH? 2 aedh2 =2 fsec®0 do - 2 [sec 0 do.
finally, we can .see our way to ﬂl end of the Eroblem The
. M first mtegral can be done by parts, the 'second by formula 15
v { ¥e obtain ¢

dx -
18'(Exerc15e 7) —_— : '
(x+4)»/x2¢8x . 1 .
— 2 5(sec9tan9+ In |sec O + tan 9|-2(1n[sec9+tan q)+c
v

s See dolution [8] for our reasonmg Conpleting the square in .
the denominator, we obtain ' . < ='(sec @ tan 9)- lnlsec 0»tan 0] + C

. . 1 u 1 u
dx . | =( X ) ) ln’ ‘+
. ' . ~a2f\J1-u2 - -
A/('x+4)‘/(x+4)2-42 , and the substitution u = x+4 yields _— 1-uf/\1 u_ . u 1-u

4 . R .

r.
-
. I 1 ~1{x+4 -
d_ . Decosgee (B e u Ly |l

, f e (4 4 4 > 3 -
. - . . 1-u u
: - ; . s J . J

A S
- S /o 2 .
/ X ' (Exercxse 2) /tanxdx .
X+

o 19(&3(:1% 4) T 9%’ T o sec x + 2
T . . X . See solution {10] for our Teasoning. Multiplying numerator and
. This is the hardestoproblem in these uterials, :lon't get : denominator by (sec x) and making the substitutiop u= sec X,
. "d15nayed if you hgd a lot of trouble! With the desperatmn ; we obtain : ' ; ‘ .
. . , . ( . sec x tan x dx - du
] ° §ubst1tut10n /’ T ‘we obta.xn u :*;:-F , S0 u (x+1) = 'x. . (sec x)(sec x + 2) ~ u(u+2) .
; 2 ' ‘ * :
. 1s "\\‘ Solving for x, we obtain x %(1—2-), so dx -( 2u duz)\ The A . b : .
4 _ , e (¢ A < _1ffr. 1 1. ju
s integral becomes - .. 8 R A brilbrro s du = 3 (lnlm- In |u+21)+ c = 3 In|—{ + C
. . . = _ ., - [} .
w X ‘ (1-udy (l-uz)‘ - NI B :
4 d . . M : ¢ ’ \: —l- ln'—iec“; + C -
_ The term in the dénominator suggests ' . . ) _L sec x + 2 T . .
) the gubstitutions v1-uZ = cos 0; - ‘ n
- u = sin 9‘ di = cos 0 dO, which.we -
Yo / R L . P ' ) . 1
24 derived from the triangle to the right.« . e : ) !
\‘l ) 4 ) ’ ’ l-u ) J ° [N ’ ’
- - . , : 39
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Intermodular Documentation Sheet: UMAP Unit 206 ) - "Discuss the advantages and shortcomings of the Hercator projection.’

" _ Discuss the historical need for and development of the Hercator
Title: MERCATOR'S WORLD MAP AND THE CALCULUS v ’ map and [sec x dx as interdependent problems.

- From Section 4: -

. e

» Author: Ph\ilip M. Tuchinsky Three calculations of‘fsec x dx. - .
b Department of Mathematical Sciences ) - Explain why vxZ = |x|, not x.
. - Ohib Wesleyan University _ - / Integrate’using both radians and degrees,
’ Delaware, Ohio 43015 - Lo Confidently use the easier trigonometric identities.
Review Stage/Date: IV’ 6/26/78 - From Section 5: E ' ) /
- ‘ . Approxinate fsec x dx, [tan x dx and ar x nurerically.
Classification: APPL CALC/GEOGRAPHY . Imtegrate a sefies term by term. g ) .
. . . . ! From Boxes: . .
Suggested Support Material: Nofie is essential. A #ercator ™ Briefly discuss the’achievements of Gerhardus Mercator, Jaces
wall map and globe are helpful. A spherical lagk- . Gregory, and John Wallis.
- - ¢ board (a globe painted dull black on which chalk Iimss ) ‘
can be drawn)'is an outstanding classroom aid For :this _ T e Suggested Uses: The unit can be done all at Qnce or in several
module. Physics, geology, angi/or geography departments - - . pieces.. Section 1-3 plus 4.1 and exercises Ib, 2, 5, 6 are ap-
- often have such a globe and will lend it. , propriate as soon as [sec x dx is discussed. Section b.2, 4.3
. - . - © and exércises 1, 3, 7, 8 call for more knowledge of integration. .
, References: See Section 7 of text. - . . Sectionm 5 and exercises 9-13 require knowledge of the series
. L . — . Pportion of calculus and might be done much later than Sections 1-5.
. Prerequisite Skills: : . v The unit is also appropriate for independent reading by honors
- For ‘the basic application in Sectiong 1, 2, 3:° . . - _ "students and for seminar presentation- by advanced undergraduates.
Y Definition of the trigonometri¢ relationships in A tranglke. e . . .
. The identity sin2x + cos2x = 1. ‘ - . Other Related Units: . .
Recognition of integral sums and the Riemann integraks -they T - )
- apprpach. . . \ . .
L Defigition of the natura) Iogaritﬁm-functign,zbasix: «now bedge oo f S : i o :
latitude and longitude. .. . ' ___ UMAP editor for this modute: Nllllaﬂ: U. walton ‘.
. . v b R . . ’ .
For Section'4 add: . I - The author is iddebted to V. Frederick Rickéy of the
Integration of x-1 to In [x|. <L \ Mathématics Department at Bowling GreeA State University in
Partial fractions ingegl:ation. . \ . . Okic for much of the materidl in this paper. His first ’
Change of Vvariables in integration. introduction to this'application was through Professor. )
F Derivatives of the trigonometric functions. *  Rickey's presentation ''An Applicateon of Geography to
. Trigonometric relations like sin-(3-x) = cos x. ; Mathematicg: fsec 6d6 and its History' at the May, 1975
o Double angle formatas from trigonometry. - mearing: of{ the Ohio Section of the Mathematical Assoviatign .
. s In ((ﬂb) =1n (3) + In.(b). N +  —— , of America, and he has generously helped the author with L
IO ,Eor Section § add: N .~ source material. - L
" .Convergence and sum of geometric series. - - . , ,
7 Integration of fcos % sin® x dx. . R
. For the exertises add: @ . ' . .
- ‘Chajn‘rulg. . - . i . .
* Difficult frigonometric iflentity work (you might.give -hinss). - . .
. 5 .
gutgut Skills: From Sections 1-3: . ' ) - ) L
Describe an application which ) -~ - -
a) caused,‘]sec x dx to be galculated before calculus was i \ . " * a
. b) leads /to an, ?Proximation sum“for [sec x dx. '
Sketch thie basi€ frame work of a Mercator map. -
Show a“rhumb 1ine path between any two cities on A "METTATOT Magp . ’ 1978 . ,
Describe the mathematical principles that make -the Mercator map - © 197 _EDC/Project UMAP, .
» . useful to sailors. . . ) . A1l Rights Reserved
‘, . . . . , : .
\)4 ) . -
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- ( ' S ’ ) ‘ \ : MERCATOR'S WORLD MAP AND THE CALCULUS

MODULES AND MONOGRAPHS IN UNDERGRADUATE'
A ‘ : . : Philip Tuchinsky
) w r . .
. ETH’EMATICS AN? ITS’/ APPLICATIONS PROJECT (UMAP) N Department of Mathématical Science (
. > : Ohio Wesleyan University
The goal of UMAP, is to,develop, through a com:hunity of users - . Delaware, Ohio 43015
’ and de\{elopers, a system~of instructional modules in undergraduate 6./26/‘78
mathehatics and its applications which may be used to suppleMent . . ’ ‘
JJ existing courses and from which complete courses may eventually be |* N : . ’ .
' buile. « N . 1. MERCATOR'S ACHIEVEMENT
The Projec; is guided by a National Steering Committee of ~ * . *
mathemsticians, s&ientists, and educators.” UMAP is funded by a P . . .
. gramt from the Nalional Science Foundation to Education Devejopment ' 1.1 A Strategy for Navigation with Map and Compass
Center, Inc., a publicly supported, nonprofit corporation engaged : . , - . . .
‘ ingedut’:at?on;l research in the U.S. and abroad. T Imagine yotself piloting a ship.at sea~-hok can you
= P reliably get to your destination? Suppose you have brought
PROJECT STAFF . . . . . .
] - . thev most basic of navigational aids: a magnetic compass
Ross L. Finney Director b and good maps. The sfmplest way to use your compass
. .+ Solomon Garfunkel Associate Director/Consortium ., . . . .
. : " coordinator . would be to hold its needle still by keeping your*shlp s
L - N . he -
Felicia DeMay , Associate Director for AdminlStl:a 1on moving in a constant compass direction. Thqs, if you :
-Barbara Kelczewski. Coordinator for Materials Production o i
' Paula M. Santillo Administrative Assistant travel steadily northeast, your compass needle {which
Zachary Zevitas .+ Staff Agsistant L . "points north) ~ wiil make a steady ‘459 angle with your,
NATIONAL STEERING COMMITTEE © SN direction of motion’and the needle will sthy still. *
W.T. Martin M.1.T0 (Chairman) ' : i § Fig}rg‘s 1-5 show such a northea$tward journey (an
- Steven J.-Brams ' New York Unjversity . - ' . airflight from the Galapagos 5slands in the Pacific Ocean*
la Clarkson* ' Texas therm Universit ) S . .
o \gnz;:"‘]. :;nl:\; - Un)i(verz?ltjy o; Ho::;‘tlon" Y s to Franz Josef ‘Land in the Artic) as it would appear on
T William Hogan Harvard University ’ - £five types of Ymap. The airplane's course makes a2 45°0° )
o Donald A. Lars T, SUNY 4t Buffalo, ' X g . .
N?T”am F. f\::c(a)rsl Cornel | U:iversity : » angle with 311 the meridians (the north-south 1lines, great
R. Duncan’ Luce Harvard University . circles through the north-and south poles) on each map. ,
* George Miller Nassau Community College. . . . / ‘ .. \
Frederick Mosteller Harvard University . Whigh map would be the easiest one on which to lay out
Walt E. S : Universit faMichigan Press , . . . . ,
: G:or;; Sprisggi A I:(‘i‘ilar:a U:iSe s;(t:ylg " the couyse? Figure 1 may give the best overall yiew of \‘
Arnold A. $-assenburg SUNY a; Stony Brook . .the earth as a sphere, but the Mefcator projection in
- - - . . . ’ [y fe
Alfred B. Willcox . Mathem&tical AsiOCIatlon of An3er|ca Figu;‘é 5 is the b:ast for navigation because your ship's
This material was prepared with the.support of National e T J . » . /
. Science Foundation Grant No. SED76-19615 AD2. Recommendations L 5 -
- expre§§ed are those of the authors ar_ld do not nec ‘ssari.}y reflect [} . '|n truth, the compass points to the north magnetic pole, not
the views of the NSF, nor of the National Steering Committee. ’,éhe North (geographic) pole. Diserepancies of this kind are
(\ , .- ‘° L ‘ . ; discussed later in the Special Assistance Supplement. [S-1]
\ . o - / 1
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Figyre 1. A flight with a.constant bearing of 45° £ of N from the

Galapagos Islands in tHeVPacifiSrt_o Franz Josef Land in‘the Arctic
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The flight of Figure 1 plotted od onesform of conformal
map.” (The-angles to the meridians are constant but because the *’
mefidians converge the path is curved and would be difficult to
and niasure.)
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"Figure 3. Plot of flight on '"plane chart" such as was in use for

charts of small areas in Mefcator's time.
a straight line would not give a path of constant bearing.

Angles are not true and
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Figure 4. F;/ight-c‘)n a cylindrical projection, a map often confused

with Mercato

straight Hn[. See' Exercise 5.
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's. Again, the path of constant bearing is not a
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Figure 5. Flight' at constant bearlng on a Mercator projection.

Straight line path is easily constructed, measured, and followed.

»
-

course appears there as a straight line, not a curve. It's

easy to construct the course with a protractor (compass

‘rose) and straight edge because it is-a straight line course.
¢ ‘ .

-® ’

,1.2 Rhumb Lines

.

Sailors have used the .compass and followed lines of
constant compass direction since at least the thirteenth
century.2 They called such paths on a map or chart.rhw@
Cartographers and mathematicians found that the

saflors'rhumb Tines becgme §PPral-like curves on the globe
T " and named them "loxodromic curves" or loxodromes (from the
Latin loxos--slant and drome--running) because they, cut: all

lines.

"< . the meridians they cross at the same slant angle (See
-y Figure 1). You should trace a loxedrome On a globe to see
: that it spirals.’ As a rhumb line moves north and the '
;f meridians get closer together," the 11ne must turn steadlly
- { + toward the ?ole to.cut all the meridians at the-same angle.
;- NN ¢ spirals toward the pole without ever reaching’ it. .
- : >
‘ 2Hlstorlans disagree as to the originc of “the magnetlc ' .
. compass. You will find an interesting account of the compa ‘
" . and its history under "c0mpass" In the Ercuclopedia Brittanica. ‘
. 4
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1.3 The Ne d for a Map On Whlch Rhumb Lines Are Stralght

If you 1sh to follow a ‘rhymb line course, you must
know what constant compass. direction to use from Yyour
starting poi t S to your destination D. If you had a map
on which the rhumb line path between any points S and D was
simply the sq;alght line between those points, you could
draw that lin w1th a ruler and read the compass direction
by measuring, (w;th a protractor) the angle at which
meridians are’ cﬁt BeforeaMercators tlmq sailors attempted
to use plai;/cha{ts (charts in which the lines of latitude
were equally spaqad) for'th1sapurpose. Figures 6a and b
and 7 show the elror that arises when a straight line on

a plain chart is ’ssumed to be a rhumb line course.

,A1.4 « Mercator's Sipccessful Map

In the SlXtee¥thocentury, Gerhardus Mercator recognxzed
. that such a map, d& which all rhumb lines would appear as
straight lines, wodld be very useful to sailors. He )
succeeded in creat1 g such ‘a map--his famous world map
ﬁJblished in 1569.: \This map was recognized as a gigantic
achievment, the first signifidant improvement in map design
in 1400 years. A standard reference on cartography calls
‘the Mercator prOJect1on a "radical departure and 1mprovement
over methods existing b&fore his (Mercator's) time. In ~
contemporary judgment he was styled as 'In cosmographia .
In cosmography
104)

. longe primus?, wh&ch, translated, means:
. by far the first." (Deetz and Adams, p

The Mercatéx world map has become such a fixture in‘
< our culture that it is familiar to every school child.

* \ remember th1s map as a‘very unsatisfactory early view of
our planet ‘because my teacher convinced me more of its

- shortcomings than of jts value. The’ shortcomings are segious:

Hlstances are hard to measure on the map because: northern
reg;ons appear grossly exaggcrated in' area (compare Greenland
to Africa on a\globe and on a Mercator map--or in F1gure 1
and Figure 5); the polar regions cannot be shown at all but

2. must be inset as separate maps; distances are hard to

’;i' , . : . S
IR -, 109

.




k G . Figure 7. The naviq:;i:i'onal advice obtained from charts 6a and
Figure 6a. A straight line ¢ourse joining the Panama Canal to '6b leads to different results. The solid line shows' the course
Land's End, England drawh: on a plane chart. It advises-us to use from 6b, & rhumb‘line that does join the Panama tanal and Land 's

a compass bearing of 50° as shown. ‘ 4 . End. |f we obeygd. the plane chart in 6a and followed a constant

, . - . - 50° compass,bearing we would be far off course, as the dashed
\ @/ . . path shows. ‘ ’ ) ,

é"‘\ GERHARDUS MERCATOR is the Latinized name of Gerhard Krémer,

born in Flanders in 1512. He was the expert engraver of map-

sections for a globe made by Gemma Frisius in 1536, a crafts-

man of mathematical and astronomical fnstruments, and a land

surveyor. His major achievements as a cartographer include

a globe in 1541, a large (132 x 159 cm) map of Eufope (1554)

which made his reputation and was reprinted with corrections

in 1572, a map of .the British Isles in 1564 and the great world

map of 1569. His major wbr"k was' done at Duisberg, Germany

o where he was cosmographer to the Duke of Cleves. Mercator spent

. his final years creating a collection of maps of west and south

=0 > Europe, of high accuracy for the period. It was published in

] \y . 1595, a year after his death, as Atlas - or Cosmographic Medi-
L4

] tations on the Structure of the World, Thus the word "atlas"
{ . ] was firstapplied to a collection of maps. He .should not be

confused with Nicholas Mercator, 16141687, mathematician and
4 astronomer, nor were they related. (Source: 'Dictionary of
;71’ N\ Nt - Scientific Biography Vol. IX, Am. Council of Learned SQcie-
Ay =1 . ties, 197k, p. 309. . .
’ B o . . - ' 4

v+ Figure 6bs The comparable straight lineicourse on a Mercator map. ‘ ..

’ The correct compass direction to follow is 56° east of compass

north. ; .- .

.
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’measure because the scale changes as we looR along vertical
-

11nes , *

a

In the schoolroom where studentsiare 1earn1ng about the
relat1ve sizes and locations of ceuntrres the map is at its

sworst As a navigational, aid, the map has been un$urpassed,
for. 400 years because loxodiromes appear as ‘straight lines
and angles measured on the map are the sam@ as thosé‘measured

\

oni the globe. ) .

1.5 Modern Navigators Use Mercator Charts

y 0y -~

The shortest, path between _two points on a sphere is the
great circle route [s-2].
naturally prefer, to follow that shortest route.

Modern air and sea navigators
To do so, -
they beﬁin by plotting the course with a stra1ghtedge on a
‘gnomon1c map (Figure §) on which all great circle routes
appear as straight lines. However, the compass d1rect10n
changes continually along the great circle route (wh1ch
except.1n special ‘cases- is not a rhumb line), and pilots
still expect to be told to follow a f1xed compass direc-
tion. It is thu§ convenient and usual to replace the

great cirtle route with a sequen;p of rhumb lines.

Becauge angles cannot be measured readily on a gnomonic
or great circle chart, the navigator selects convenient
.1ntersect1ons with the meridians along his great cirche
course and plots these points on a large scale Mercator map .
) Stra1ght lines drawn between these points on the Mercator
prOJect1on give rhumb lines which are easy to follow as a
course and which usefully approximate the great cirgle path.
Figure 9 shows the Tegulting course on the Mercator
' extra distance involved 1n following the rhumb line p
instead of the great onrcle itself is minor in comparison to

the improved ease and certa1nty of navigation.

1. 6 The Integral [sec¢ d¢ Is Invplved\ . -

In this paper we'll explore the construction of the
Mercator map in some detail. We will see why, a century
before Newton and Leibnitz created, the caldﬁlus,

ERIC o112
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Mercator

’

4--

Figure 8. A great circle route appears as a straight tine on this
gnomonic projection. (The path appears curved because of an optical
= illusion; sight along it to verify that ¢ s a straight line.)

found himself ih need of the integral i
- 6 d S —
fosec¢ . \ -

-

}

We'll briefly cover the mathematical history of this integral"
as well. For~all prasctical purposes this integral was .
evaluated long before the invention of the calculus although
no proof appeared until 1668, when the calculus was newborn

-but known.
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.Figure 9. A series of rhumb line paths (straight Line segments on
this Mercator map) approximating the great circle royte of Figure 8.

2. CALCULUS AND THE MERCATOR MAP

1

.

2.1 The Framework of the Mercator Map

‘turn out to be straight lines on* the map.

<

Let's begin to create Mercator's map. The %quator is .
a thumb line in the east-west direction and will have to be
a straight 1line on the map; let's place it horizontally
across the middle. The meridians of langitudé are the.

‘northzsouth rhumb lines and must also appear on the map as

straight lines.

*evenly. This gives us accurate right angles betwepﬁ the
t

Let's place them vertically, and space: them

north-south and éast-west meridians and the equally divided
equator on the map. The other east-west rhumb lines

include ‘the arctic and antarctic circles, the tropics of
Cancer and Capricorn and all the other parallels of latitude.

:As we will see; our main pyoﬁlem is. to place them as

horizontal lines with such a spacing that rhumb 1ines will

t

1

‘Two of our §§sﬁﬁ§fioﬁ§*§ﬁ6ﬁid"5é"ﬁhdéféigiibifif' I
© Our map is in "one-to-one" scale: we will dup- °

. licate distances along the equator mile for mile

*  (although other distances will be distortéd).
That does not yield a ﬁbqket size map but scaling
it down to printable size is an easy matter. Thus -
we'l; soon talk of "strefching" earth distanEes,to .
put them on the map! -

We take the earth as a sphere. 'Cartographgrs .

can include the planet's equatorial bulge, but we

will not attempt to do that here, r

2.2 Horizontal Distances at Latitudé ¢ Get Stretched

o«

-

;tcrldlan

ot

Ra

So far we have placed a family of parallel meridians
on the map at right angies to the horizontal equator. Our
troubles begin when we try to place the pafallels of
lgtitude on the map.
parallels of latitude between specified meridians are seen
to ;hrink to zero as we mbve toward the poles, but those
distances w;llf ve 10 Ge equal on the map because, thgfe,

. sllel lines. Thus horizontal distances on:
the map will have to be longer than the true earth disﬁ%nces,

In Figure 10, distances along the

meridians are p

and the stretching will have to increase as we move towarg
the poles. The vertical placement of these stretched hori-’
zontal lines will have to be skillfully done to keep the

thumb lines straight.
North Pole

G’

c L

Al

)3
Equazor

¢

. { !
Figure' 10. Corresponding points on meridians and map: EF on the .

globe stretches to E'F' on the map.
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. ) ‘ ‘ ] 2 t
‘The horizontal stretchlng an now be understood. ﬁi\n .
exmwesg lengthNPQ (R €0s ¢) ¢+ ‘at ]atitude ¢ must be
stretched into P'Q' ='Ro op the map. (Why does P Q=
M = Re”) We must stretch PQ by the factor % to*

comvert it mtg P'Q" for the map, because

) o .‘P'Q' L ]pq.. .

.

L

Simee - ~ .
!Z' l
PQ (R cos ¢ )8, "cos¢ = sec o
wel get as the length of P'Q’ on the map,, i
) . 'P'Q' = (PQ) sec¢ . ¢
2.3 Mercator's Insight: Vertical Distances Must Also :
Ee St'retched o X . 14
\iercator s gfeat 1n51ght was that each piece oj' vertical
eridian at latltude ¢ must be stretched when put on the map, ¢
byr the same factor sec ¢. As we shall see,_he thus succeeded
v imr preserving angles from the earth onto the map. That is,,

iff any tio lines meet ,at an angle on the earth, their 1mages
¢ copied onto the map w111 meet at that same angle. This
. willll beé true for all angles ever e on” globe and map. (A
map that preserves gngles is calleds ’conformal; -the study of
Jm wluch glabe-to- map functions yield conformal maps is S
ar: mpurmnt part of advanced mathematics and cartpgraphy.)

.,v ' . . : Wity _\daes making the map conforgal cause the rhumb lines
Figure i1. W wedge of the earth and its norrespondhtgmt;ffdhe for appear as straight lines? On the earth, recall,ea . )
. ~map. ‘ . . , L. . ) , rhumb’ ine cuts all the mendlgns at a constant angle. 143 -
- i - thie: mapr is<tonformal, the rhumb line on .the, map will cut *
Now consider &’Q at ¢ rad1ans north latitude. 540 ussaa ) adll]l the vertical parallel meridian lines at that fixed angle
- " part of a circle centered at T, where T is ﬁIne:::ﬂ]zyuuntth ' . arrd widl t:ﬁus be a straight 'Iine, for straxght lines are
. . , of the earth's center C, inside the éarth. Bince QT aand - mca:m:l_}'\ ‘the curves that cuf a famxly of parallel lines all
. BC are parallel, the angle ¢ of ‘latitude appears in thrbapdke ' aitt tiree m& angle in plan® geometry. Thus to have thumb !
QTC: where sbown. Since QC is an earth-’radils.lneseze et - ! Bums;xlnt as straight lines, the.whole secret is to space
PQ is a part of a circle of radius QT = R.xos %. mtem:nrr ont: thé& horizontal lines correctly, placing thém at such
PTQ has the same central angle 8 as does sertor WEL; tfhus  ° distances: from the equator line on the map that angles will
the actual length of *PQ is . bee preserved. (0f codrse, stretchmg the merxdxan 11nes and
- . PQ = (QT) 6 - T —spacing the garallels of latitude around. the equator are two
- . or PQ = (R cose)a ° A Cm - Irammesss Ein‘;"the 3ame task. ) ' ,

R A
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2.4 The Vert1cal ena¥Hor1zontal Stfetch1ng at Lat1thde ér -
Must Be Equal ) . AN o ~
“Let's explore the stretchiné ﬁhriher Eigu;e 12 shows -~
‘ 3
a *rhumb 1ife” cutt1ng a meridian aﬁ angle a. It chts the* .
-
hor1zontal parallel of latitude at the complementary angle v
’ B--Z‘a -

Y RN .
Suppose we move a small distance Az along thls rhg;b line
'away from the crossing §b1nt This movement is the combined- °
effect of simultaneously mOV1ﬁ}_Az cos g units horazontally -
What .
will this movemenstlook like on our Mercator map? If an -
1n1t1aI/;a1nt was . at lat1tude ¢, the Az cos B8 horizontal )

.portdn of the movement is stretched by a factor sec ¢.

(eastward) and Az &in B unlxs vertically (northward)

1f
- the angles a and B are going to be preserved oh the map,
the vertical component of the motion must also be strefhhed

by the same factor sec ¢, becoming (Az sin B) sec ¢. Then Az . T
(See Fig. 13)~

, on the earth is mgpped as Az sec ¢ on the map.
s . v

o . ) ~ -
_ Pl ‘ . e L - —~
2.5 Summary: How We Get Straight Bhumb Lines - ]
A concise suﬁmary of our logic nqw&reegs as follows:
1. To get rhumb lines-ie appear'as straight lines on
the map, we need fo preserve angles from the earth
(onto the maﬁ.“ ~ : .
2. HOrizontal 'distances.at latitude ¢ are stretched-
by a factor sec ¢ as th&y are shifted—from globe
to map. b
3. To-preserve angles, we must also stretch the
vertical lengths along the meridians by the, same
factor sec ¢ a§ latitude ¢ A .
2.6 How To Place The Parallels of Latitude o Yoo

. interval from 0 to ¢ into many small pieces:

N ‘_'/ . S .

As we move north along a meridian, the latitude changes
continually. What will it mean 'to stretch the vertical

lengths along.the meridian by the same factor sec ¢ at latitude

<

[4

¢l|? ’

-

Integral calculus 3rov1des a method.
calculate D (¢0), the distance on the map along the meridian
(If we knew

Let's try to ;

from the equator to the parallel at latitude ¢0.
the number D (¢0) we would know how:to locate the parallel
at latitude ¢y on the Mercg;g; map.) First, we cut the

let Aé
represent a bit of angle located near ¢, where 0 < ¢ < ¢0._,
This small bit of latitudinal &ngle subtends a bit of

¢ /’ On Earth ~ ‘ meridian Raé on the globe (Figure 14), a length of
. Figure 12.. The local ‘scene on a globe at la)htude ée - meridian locz}ted‘}zrougﬁly-ét latitude ¢. As:this . .
d ' N, north )
- - ) i M h " pole . g
oA wilf.need .
; o (a2 sinB) sec ¢ parallel at
Je ? latitude b0 .
,/ A== | . . latitude ¢,
y ! (] . . 9
; _{ B ) latitude ¢ ) > . Iatliudp ¢ + Ad
/ R ed__— (a2 ) sec e ° Tatitude ¢ .
SNlenlarged cos B) sec ¢ . 4 . ;
= ™ C, center - . .
* : of earth D(¢0) RA$ * sec ¢
/ - . ) . e . after stretching
: - Elgure 13. S$3me local’ scene on the map - AU equator -
loca ] . B -A' B! equator
v : . k Y On‘Earth On Map

3Recalllng that cosze + slnze
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= | may help here.
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Serting up the interval for D(q;o).
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make his map.
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bit of meridian is shifted from globe ‘to map, it is stretched

-

by, the factor sec ¢ and has length RA¢ sec ¢ on the map

Thus D(¢0) is approx1mate1y the sum of such b1ts of
length Rsec ¢ A ¢ as ¢ moves from O .to ¢0.

1y ' D(¢g)

)all the 4¢ lengths tend to zero and use more and

=7 Rwsec ¢ Ad.

1f we let
orevof them, we get better and better approximations of

. ] - \

= R IO sec $d ¢.

D(¢0); in the limit we get
(2) D(¢ ) = IO Rsec od¢ =

To blate all* the parallels of latitude oﬁ the Mercator

’
map, we will need D(¢,) for all values 0 FEN % . Thus we

need 4sec ¢d ¢ to construct th Mercator map!

: 3.

MORE HISTORY* .

Cartography In His Time

1 )
3.1 Mercator's Map:

~. Mercator did not knoy that he needed the calculus to
He did know that he must place the equally-
paced-on-earth parallels of latitude further and further
apart.., His map conta%ned’minor errors in the placing of the
parallels of latitude; it also contained misplaced mountain
ranges, rivers and continents, as the sketch (Figure 15) of
the original 131 x 20§ centimeter map shows very clearLy
Mercator's sources were the written 1t1nerar1es of travelers
and thé older maps of his day, both notorlously 1naccunate
Where modern. mapmakers spend their energy on the accurate
ccumulation of data, Mercator's™ai ask was to recongile,
the inevitably contradictory reports that reached him. =

One severe example will show the 1naccurac1es of
mapplng at that time. Mercator's- map constltuted the f1rst ¢
use ful, dramatlc improvement in mapg;ng the known worldy
since the time of Ptolemy (the great astronomer and
geographer) 1400’ yYears earlier. An,important error
on those early maps resulted from taklng 1° as 56.5 miles

bThe cartographic hustory in this section is taken from Crone (1966).
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Figure 15. Sketch of Mercator's map of 1569. ,
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on the earth's surface. An almost-correct value of 68.5
miles per degree was known to Eratosthenes (200 B.C.) but not
‘accepted by Ptolemy. ﬂhus distances were stretched across

too many degrees of latitude and longitude. Ptolemy took

‘the east-west length of the Mediterranean “Sea as 620.

Mercataqr's value of 52° was a substantial improvement but a_
correct value of less “than 42° was not known until after

1700 A.D.
geographers of the generation before/Columbus had’stretched

One result®™f this error is worth mention:

the Europe-Asia land mass.much too far around the globe;
Columbus had reason to believe that a journey of reasonaer('
length to the west would'bring him to the orient. Maps_of
modern quality. did flot appear until nineteenth century )
exﬁﬁbrers begah to carry sophisticated instruments into the £
. field.

Mercator, facing’ these complex problems, spaced his
parallels of latitude as best he could.on the map of %;69

His exact method is not known. And sailors, properly

distrustful of mapmakers, did not adopt the Mercator map at

The mathematical history is drawn from the notes of Professor V. F. Rickey - * 1
and from Cajori (1915). 16 h .
~ , . p - . . -
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7. *~to the work df Edward Wright.

‘. integration as an anti-differentiation’ process,

- 4
tional corrections,

once. By 1600 or so, Mercator maps of portions of the earth
began to appear. These were of larger scale and incorporated
corrections ift the placement of the parailelé of latitude due
Acceptance.by sailors grew
steadily. The first atlas of Mercator projections wds the
Arcano del Mare of Sir Robert Dudley, published in 1646. By
that time Mercator maps were. the _navigator's standard.

3.2 Edward Wr1ght S D1scovery

1

- . The mathematical history that arose from Mercator's
achievement is astonishing. As mentioned earlier, we do
not know whether Mercator really understood where to place
the parallels'of Tatitude to straighten the rhumb lines.
By the time Edward Wrighb published Cez'tcnne Errors in Navigation
in 1599, the secret was out: . .
"the parts of the meridian at every poynt of latitude
must needs increase with the same groport1on wherewith
the Secantes or hypotenusae of the érke, ‘intercepted
betweene those pointes of latitude and’ the aequinoc-
tiall (equator) do increase,.. by perpetuall addition
of the Secantes answerable’to the latitudes of each
‘point...we may make a -table which shall shew the sec-
tions and points of latitude in the mertd1ans of the
nautical planisphaere: by wh1ch sections, the parallels N
are to be drawne." [From Wright (1599, PP- 17-18). as
quoted in Cajoti (1915, pp.-312-313) ] .

£

Wright recognized that a sum of secants was needed; by his

" "perpetuall addition" we assume he meant the~c0ntinuous

He could not have known of
but the

summation of integration.

“intuitive notion of a limit of integral sums- was afloat in

the intellectual seas of .that time. - provide the naviga- °
Wright published & table of summation-
approximations of the integral (2) for ¢ between 0 and 4S°

at 1ntervals of 1 minute of latitude. .
< .

A
7y

.
'i-.

3. 3 Later Mathﬂhat1ca1 H1story

\Geographers really needed an integration formula for
the 1nxegra1 so that lengthy summat1ons could be ‘avoided.
The following f1fty years saw a search for such a fqrmula
through “hon-calculus techniques. In 1614 Napier published
tables of sines and logarithds of sines, although these,
were not quite logarithms as we know them today. In 1620
Edmund Ginter published a table of log(tan 8). By 1645,
Henry Bond discovered by chance and published'in Norwood's
Epitome of Navigation, as Edmund Hal}ey tells us half a century
later,' !
"that the Meridian Line was Analogous to a Scale of
Logarithmick Tangents of half the complements of the
—=Latitudes." [From Halley (1698, p.202) as quoted in

Cajori (1915, -p.314).]

Bond's discovery is that

(3) . f: sec ¢d¢ - 1n tanE- - ¢)]

a correct formuIa not usually seen by calculus students

Bond did not prove the ermula, but led a number of prom1nent

mathematicians, 1nc1ud1ng John Collins, N. Mercator,

William Oughtred and John Wallis, to attempt the proof.

ﬁand's conjecture came from comparison of tables and graphs.

= During the 1660' s, Newton and Leibnitz produced a
systematic calculus and by 1668, via a nast11y complicated
geometric argument, James Gregory proved the truth of (3).5
Buring the™next decade or two, simple calculations of [sec ¢ d¢

Throughout this"period, mathematicians were quite
at they were providing the theory necessary for

an accuyrate Mercator projection and they consistently

rega?ﬁed the task as an important and worthy ome.

were found.
conscious

_Thus fseCsds is one case where an integral was first
treated by -summation long before the birth of the calculus

5l cannot resist mcluding 3 quote, ascribed to Edmund Halley quoted
from Cajorl’s article. Halley, in reviewing-the research on our problem,
says about Gregory's®proof that it involved 'a Tong train of Consequences
and Compllcatlon of Proportions, whereby the evidence of the Demonstration
is In a great measure lost, and the Reader wearied before he attain it."
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- .. and was eventually med.e' part of the “calculus mainstream.
P This integral is one of the most esoteric that calculus‘

student‘ts are asked to handle because the usual integration

D methods given seém unmotivated, and "mag1cal“' - But the.
integral's 1mportance for app11cat1ons makes its study N
worthwhile, and we will next examine several techniques for
calculating it. (If Sections 4 and/or § are omitted, it is
still appropriate to ;read Section 6.)"

¢
13 o v

Exerci ses . : v ~ ‘
1. Differentiate to confirm that . . ¢

E Y
o a). Ix sec x dx = - In tan (-%-(%‘- x))
0 - >

P - -

. X
ab) . j sec x dx = In (sec x + tan x) for 0 < x < 11/2
° 0 ve P
x -
c). [ -sec x dx = In tan (-(-+ x))
ol
2. Starting with blank graph paper, make part of a Mercetor map, .
330° latitude, and parallels of latitude at 10°, 20°, 30°, 40°,
50°, 60°, 70° and 80° north and south. (Arrange the scale so‘that
e

.. » these parallels“do Fit. Now, using a glonbe or non-Mercator worled
; \ v map as a source of data, sketch in Greenland and Africa. . Do your
M’ results look about Jlke Flgure 57 Do -Africa and Greenland\have

e . roughly equal areas, as the map seems to say? (look up the actual
area in the almanac or atlas.) - ) C e

L '
i 3. The formulas in Berclse 1 are for x measured In radians. Convert
any one-of them so that it gives Y

\' : ) I _Sec y-' dr .\-’

for y measured in degrees.

I3
]

. . v .
k. lt is probable that Mercator constructea‘hls map grid by using a
ta le of secants-at one degree lnte;vals. Adding up the secants

from one degree to 30 degrees would give him the approxlmate

spacing of the 30° line of latitude in terms of the size of one
' . 20

“ . - ‘ +

as followg: put in the equator, the meridians at 0°, 30°, 60°, -.

-
>

o
1

———

: ' \t :

degree at the equator. Without knowing it, he was using the

-
~

approximation
~—

(14

30° . i=30
J' “secdd¢ I secod. Ap..

0 . i=]» ! !

A

Try this approximation yourself to find the distance in earth radii
(radians) from the equator to 30° north latitude on the map. First
use steps of 5% and then of .1° (Remember 1° = TE'G' radians), Cofmpare
your results to the exact value given by equation 3. Do you
think Mercator's probable method was sufficiently accurate for a
a smal) scale world map? Nhen you have completed Section 5, compare

your result to the value glven ,by the series approxlmatlon of
Exercise 12, v

r |

| was taught, erroneously, thét a

Mercator map is obtalned when a ‘paper °
cylinder is wrapped around the earth, o

tangent 4£. the equator as In the ~

sketch, and points on earth E‘p,

projected onto the cylifWder as though "o .
Al

by a point-size light at the earth’'s
center. What spacing of the
longi tude-circles does this

projection involve (instead of the ’

¢ B
D(9) = RI secdpdd
0

5 N

placén\ent of the circle at latitude ¢

on the Mercator map)? Are the
CYLINDRICAL PRPJECTION
Point A is mapped to A'
Figure 4 shows a map. made with .

longltude llnes more spread out on
this map or on the Mercator map?

this cylindrical projection.

E}

(Hints for Exercises 3 and 5 may be found on page 32.)
v ' .

: ‘ : 21
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. hAn’swer each question,: supporting your answer with specific ,
evidence from the unit:
%)~ Do we know enough about integration when we have <
learned to calculate fntegrals by antldlfferentiatlon?
b) Did Newton and I.ejbnltz create ‘the calculus in response
! ’ toscientific questions as part of thegintellectual
growth of,thelr age or did they create it out of thin .
air because.of its internal logic and beauty?
Can fsec (x) dx ,be calculated between limits x = a and
x = b without the use-of a closed lntegratlon formula?"
What is the advantage of salllng a rhumb line course’ as
opposed to another course? Are there disadvantages in
sailing the rhumb line and, if so, what are they?
On -an accurate Metcator map of the world, how or where
is-the north pole located? *
On an‘ accurate Mefcator world map, does an inch of map
distance along the parallel of latitude at 40° north
represent the samk. eagth-distance as and Inch of map
dlst;nce along the paraliel at 300 north?
g).. 15 the Mercator map an easy one to use to measure the

dlst9n-ce between Chicago and QNe.w Orleans? N

.
¢ i
-
» PR ¢ ¢

4" SEVERAL CALCULATIONS OF [sec x dx

5 2

padr R - .

4.1 The Usual Integration

A typical, sneaky calculation of this integral is

< .
sdc x + tan x
= . ——————————————————————————

fseqx dx = [secx’ . Sec X+ tanx dx

d s
(secx + tanx) '~
ax dx

secx_ + tanx

= 1n-|secx+ tan x| +c

+

*This. sectlon may be omlttqd. See Suggested Uses on inside
of tltle page. -

22

-
i

and no motivation other than "look, it works' seems possible.
We have used the well-known result

'[%,Xe 1nly|+ c.

4.2 A Partial Fractions Integration

-

A little obvious trigonogpetry permits us to calculate
the integral by partial fractions. Some equal signs have
been marked for further comment:

¥
_ dx cos X dX
Jsecxdx k& Jcosx =l Jcos2 X

@ cos'xdx _ cos x-dx

I-sinZ x (I-sinx)(1+sinx )"’

The mu1t1p11cat10n by 1 = cos x/ cosx at [=] is done so that
thé next 'step @ can be done, a modest example of plannmg

-

ahead. Here are the partial fractions:™ ° .
. ,' ' ,/‘
1 = /2 . _1/2
(1-sinx) EL+sinx) = I-sinx l+sinx -
5 o

Seosx_,

dx

1 . COS X
fsecxdx Z Jl-sinx I+sinx

~

,lz [-1n (1-sinx) + 1n. (l+sin f)]+C,

1+sin x

1-\51n X *c

1
z-ln

[1+sinx . 1+sin x]+c

I-sinx I+sin x)
\ -~

&=

3 3 2
O} in s
©

5 2
(1+sin x)* , .

cos2x

+sinx 14
=1n ([itsinx % . .
cos X )

127,




., the ,.integral.

l+sin x
COS-X

A

| «c

In |secx#+ tanx|+ c.

Agaxn, the dec1sxon at E] leads to 1mprovements at the
following (5) steps.

?

.

The stgp marked A rests on the' fact fhat

(5) Yyl =yl oo

‘although you might think more immediately ‘of

) . /T - - 52

Both (5) and (6) are correct when y > 0 but (5) is- st111 true .

when y is negatlve\.

(-5)2 = |-5| = 5
- '
while (6) is not:

L (COER RN

Thus, the absolute value bars arise very
integration formula.

dturally ih the

®
ganometry more
=1 and 1/cos x =" secx, but
gamjzation. It was apparently
in abojt 1670 and may be the
ons: in.integz"ation..

The calculatien involves no t
sophisticated than sim?x + cos?
Tequires a little algebrz
first done by Isaac Baifro
earliest use of partial fr2

4.3 Gregory's Form Of] the Integral

- |
It is not difficult to derive (3}, Gregory's‘form of

. Cos x =°sin [;— - x]

and the double angle formula

-

\

;sin G-x)=2 éin[%[% - x)) cos [%- z - -x)).
' - A

The needed ‘trigonometry this time is that

dx
siny cos?
Zcos y ,°s

where y = (n/2-x)/2

") . = 1 { sec?y dx
: Z}- tany °

»

Now change variables to y, using dy
[ secydy |
tany

= -.1n - tan %(g--x)l}‘

snedkier,than one might like, 1 admit.

-%- dx, a?é get

/. 't - 1n |tan y|+c

L Y

The algebra at [5] is
The minus sign here is not unreusonable. For our basic
interval xe(0,7), secx >0 and the integral > 0. But (#/2-x)/2
is between 0 and 'n/4, its tangent is between 0 and 1, and the,
1n would be negative. The minus sign straightens that out. Q\

Another form of ‘the integral is given in Problem 7. ew
And 1t should be possible to- convert 1n (sec &+ tan 8) into
- ln(gtan(('n/z x)/2)) via tr1gonometry, should it not’
are asked to do so in Problem 8.

You
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JAMES GREGORIE or Gregory,. 1638-1675, treated muthmore
of infportance in mathematics and optn:s ‘than “he wias 3 iven corp-

‘“dit for in his own day. A great technological sclitevement off ql

that time was the design of efficient low-distortion ttdbescopss.
Gregony contributed etperimental designs that inT luenced \New-
ton's reflector telescopes; the Cassegrain design in JE672waas -
the ultimate successful result of this effm't :

T
»

Gregory put much effort into finding 'the lerggths, savess
and volumes associated to the conic sections.: These *resaitss
were needed for engineering work such as design of opfixdl
instruments. Difficult Integrations were involved, sand were
done by geometric methods using classlcal Greek «now bedge off
the conics, physical principles, etc. The calculationast
fsec x dx for use’ mgthe Hercator‘Pro_]ecmnn is xone examp be.
His later mathematics centered on calculation of mﬁsmfmw-
, homials. He used approximataon methods that were ed &scovered
“ by Newton, -Simpson,’ Taylor and Cotes some years tater., sawd
credited to them. He was also a pioneer in the ase 0f hffmbe
series; see Exerc:se 13.

His wo_rk was not influential because5regory, weeachibmgart |
"isolated universities, was too much out oF xommun jcat bon wi tbh
his proper peers. His generation saw its work absorbedaas
small portions of the deeper, richer, systematic :::ahnﬂnsd&e—
veloped by Newton and Leibniz. (Sourx:e' Dictwnmg;aﬁ';?cb-
entific Biography, Vol. V, pp 524-530 and T.3B. Bovyer, 4 Histomy
of Mathematics.) . - .

- ‘ >
.

JOHN WALLIS [1616-1703) was the greatest EngTiihmmatie-
matician of the generation that preceded Newton. -Heiasaan
important leader of the transition from Greek yeometricmeetidds
to modern algebraic methods. Two books published cby Hitm itn
1655, ene on analytic geometry, the other @g.i Tiresind]
methods, were both’influencial. He derivid many “Fundamertdl -..
results of the ' caleculus, including

I_L dx = '_‘i'_'ﬂ..r;.rj‘_J,_‘A .

by algebra-based methods that were a great* 5@1‘?@;@0&
the geometric derivations used earlier by Cavalieri smd axtherss .
Some of his ''préofs" were incomplete or -erroneous sandwweere
critized during his life even ;hough ‘the Tesulls aere ccoreedt;
he thus helped mathepatics.maké enormous Teeaving

the cigorous and most efficient derivatidns ;to e “Bound by

others later. s a clergywan, and in too KKingg
Charles M= {Source? C. B. r, A History yf Mathematixs,
-John Wiley, New York, 1968, Chap £ XViil.) 4
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Exesci ses: o « o

72. Uses ideas: close to those we used to 'derive Gregory's formula, P

SO i 4 -,
Isecxdx=-ln tan %(—g--x] +c, ¢ *

v - » \ )
inmsectiomr & to derive this formqla: . . .
- 3 .

[secxdx In tan—(;-l-x) +c. ’ .
’\

.~ 8. a. Showvia trigonometry that, if 0<x<w/2,’ ) .
ir. = ”
. tan (-é-(x-t Z)l = secx +tanx. , [~

D 14
. This may be done in many ways.' My own method ‘started from

the formulas for tan (A/2) and tan (A+8). o .
bz Now show cot (-% (—;—Lxh = tan %('2' +x). (Hint: dras
. graphs aof the tangent and cotangent curves and give"a R4
’ R geometric sart of proof ) Then ‘'explain why the two
integrations lasted _in problem 7 are ﬁmvalent. oo -
v P N
(Wit for- Exercise 7 may be found on page 32.) ) .
- . , . . * N .
— © 5. A SERIES FOR fsecxdx -
- ! . , .t '

Reecall tha.i; Mercét:.oz's need was to calculate .
. - .o o8 ‘ v
.. k sec¢d¢ T
foar many: values of ¢, even every 1/60 of a degree.  While . .
Qregory’s proof that a slogarithhick Tangent™ formula was o
correct: for this integral was valuable, it helped the task
""‘"“"qﬁ' computation only to the extent that tables of log (tan'®)"
wexee availahle. In 1685, John Wallls pubhshed a series °

form off the integral, offprmg a wholly new and. falrly ’
comventiert c’onputatlonal method .

s~

s

ik
- LB
*This: section may b& omitted. See Suggested Uses’ on inside of
td td ée page- . . .. -
¢ * . .
— . ¢ . .
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. f?i ﬁeriVation of Wallis' Series . : 5.2 Numerical Approximation of the Integral

This series is very easy to derive. From section 4.2, We can use (8) to approximate

in the-partial fractions derivation, we have Jx
: sec x dx

stecxdx . o cosxdx - ‘ 0

0 j" T-sin?X by getting y = sin x from 4 table and taking partial sums

cos x [1 + sin?x + sin%x of (8) until the desired level of convergence is obtained.

0 . . .
+ sin®x + ... ]dx. You are asked to do so on the computer in Exercise 12.

e ) The series is not an exceptionally fast-converging one.

All we have done here is to use the geometric series formula For x = /6 some partial sums are:

i Highest powéﬁ.of .
5=1+ta+ a? + 3% + a%* + ... if la] <1 sin x included . Partial Sum

.49999999
.54166666
.54791666
.54903273
.5492497s.
.54929414

13 .54930352
;gﬁ‘into an infiniie-sum-pf-integrals, which we calculate 15 .54930556
térm by term®. .Continuing: ' \ 17 .54930601

-

with a ;,sinzx, (Which does satisfy }a|< 1 for the xeT(0,n/2)

that concern us). .

.

The next step is to convert this integral-of-an:infinite- . 11

COOOOOCOoOOOO

< . The correct value, fdr comparison, is
I ’ cos x -sin%x dx +
0

X
I sec x dx cos x +1 dx +
0

n/6
0 . ° I -sec x dx = 0.54930614.
A 4

0

A T .

°®
ke .

. X . X . NI .
I cos x - sin%x dx + f cos X - sin®x é; ... Many integrations that lead to obnoxious formulas can

0 +0 be convefted into series calculations leading to conver-
gent, computable answers. Wallis published a series for
Itan x dx

(8) .y o+ z; . z; . Z; $ ... with y = sinx. in 1685, too, and we include this one as Exercise 9.as one
’ example. See also-Exercise 10. '

sinx +

sin’x . sin®x , sin’x
3 S 7

&

+...

“
' .

a .

v This series is convergent for any xe[O,p/Z) as Exercise
> 11 asks you to show. ° ' N 6. WHAT HAS CALCULUS CONTRIBUTED TO THE
- r—p - - MERCATOR PROJECTION?'
The reader should be warned that, in general, it is not true . -

that the integral of an Infinite sum s equal to the term=-by-term The map that Mercater published in 1569 was revolu-
sum-of the integrlals. However, as you will see proven In more

advanced courses, the ¢alculation here Is legal because the series tionary because it simplified the task of navigation at
inVolved Is convergent. fof all values In a closed interval [0,x] ‘sea -- sailors could plot rhumb line courges by the simple
wvhere 0< x< % and the functions' Involved, including the sum, are all . . .
cont inuous. . ) use of straight lines. By about 1600 corrected versions ¢
of Mercator world map were accurate enough to satisfy the
" practical requirements of navigation at sea and the map

133 &
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. soon came into wide use. But all of this was accomplished
before the invention of the calculus; what has calculus
really added to the achievements. of Mercator? &

As more and more detaileh(e'rcator charts of smaller
gﬁg/smaller parts of the earth's surface have been made
over the centuries, a more and more accurate-spacing of
the parallels of latifhde ha§ been necessary.
precise mathematical calculation of fsece do was known,
this spacing could be immediately accomplished to any
degree of accuracy. The only limitations in the pro&uc-
tion of Mercator maps were those imposed by the printing
'piocess}‘gize and quality of paper, and so on. Ngamath-
ematical barriers stood in the way of the cartographer,
because methods had been prov1ded to create the Mercator
projection both in theory and to any level of accuracy

in practice.

The influence of Mercator on the course of mathema-
tical develbpment was important. Along with many other
technologigal problems of that age, the problem of re- N
fining the Mercator projection to 2 h1gh ﬁivel of accuracy
inspired the mathematicians and guided their efforts 'in
developing the calculus. They did not q/}t working on
cartography-inspired problems once the Mercator problem
had been solved, of course. Singe 1600 the Mercator
projection ﬂas been further refined (to take into wccount L3
the equatorial bulge of the earth, for example) through {L
use of mpre mathematics and many other projections have k
been developed on” a sound mathematical basis.

.
Exercises - >

9. Use this start to get a serles-fo;m, also given by Wallis {n
1685, for . A

-Itan X dx = JL—SI" X _dx . )

cos X
- - I sin x cos x dx

cos2x

. v

Once the 10.

- 1
¢ = i ——

3 I sin x cos x { Tsinix ) dx )

The answer will, be .7 .
x
V2, sh, sb 8
- Io tan x dx = (s rTAF AT Y -

where s = sin (x). ‘

For what x does this converge and why?

What goes wrong when we try to carry out Exercise 9 for

x
! cot x dx?
0 - ©
Give a proOf that Val;ns' series

y+-z— -Y—-+7+ -

with y = sin x for some xe [0,1/2), is convergent
a) by a comparison test
b) by another test

c) For what y {and then what x) does this series converge?

A computing project: use Wallls series
[ X s? ss
sec x dx = s + =—+ =— + .., where s = sin (x)
Jo 3 5

to calculate on the computer successive partial sum aPProxuma-
tions.of the integral. Your instructor will tell you what
|ntefval {o,x] to use. Continue until you have.the integral
.5x107°

calculdted enough terms fo the series and are ready to get off

approximated within How will you decide when you have

the machine?

a) Derive Grgggry'sléeries:/ .

X 3 H 7 v
dx X x> x .
= - = .- m—— e s S,
arctan x !0 T+ x2 x 3 5 7 )
P ,

‘Hint: Replace 1/(1+x2) by a geometric series before
integrating term by term.

! . . . {
b) f;r what x does this alternating series‘converg

’

c) Use the computer and this series to get a tableugf arctan
x for x-values that your instructor assngns (Héw can you

easily decide when to get off the machI e, for xef0, 1]17

What is an estimate of the error if you.}étop after so%ny

terms?) ' 31



d). What does the serles tell you about a relationship between

* arctan x'ang arctan (-x)7 -ty . .
Hints for Exercises . g
3. Change vai‘lables using y = 1—8—0- x. The result wlll bgan integral

in x, where X Is-measured ln radians. ,
5. In Flgure 13, angle ¢ is the latitude of points A, A', and D, (¢)

gives the spacing of the parallel cf latitude just as D(¢) dld

for;, the Mercator map. “Try to find D,(¢) and then show

. D,(8) > D(9). ' )
-7. Start with [secxdx = I dx -CI L S
. cos x sln(x+2-) '

9. Reread the beglnnlng of Sectlon 5.1,
10. The lower llmit of Integratlon, 0, causes the Integral to be

improper. 1Is it finite? ¢ - -
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2 . 3

uick access to the literature for ’further research. 1 _\/ cosy _1f=
" 1 R k t - 2 sin y/ecos y wherg y 2|2
S In this brief paper, complex historical ideas have :
3 . [l
{, ma‘tural een compressed more than they deserve. Any L -1
. o ‘ly b_ n co ?re N Y Y "2 cosy siny  sin (2y)
.. inaccurate impressions that may be conveyed as a result

are the sole responsibility of the author ef this paper.

= esc(2y)

-
csSc [E‘ - X] sec Xe.

L]

b) ac-l’-‘( In (secx + tanx))

1 2
= ——————— , (secx tanx + se
secx + tanx ( ta sec” x)

1. * ’

L I e ———— +
“Secx * Tanx (séc x + tanx) secx

= S€C X .

o ]

3 for z = -;— [1—2'- +x] just as in (a) above.

2 sinz cosz

-
sin (22 2

1 x, )"
= csc [ +x| & secx., \

. 2.. The area of Greenland is approximately 840,000 square miles,
and the area 'of Africa is 11,706,727 square miles. -

’ ¢
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’ 3. Is«:cydy - [seé [—1-3-9- x) lg-g-dx -

- la—qi(s‘ec [m x} dx
x ) x

’

N
- 180 , —gb- In seé (-L?rg-x) + tan [«‘—ggx] +c
;"""’ b = In |secy +tan'y|+c., ’ -
, ’ Change of variables:
. dy = -1%0 dx : N e
* : L 0 - 30°
J L. With 5 steps, se\¢ d¢é = 0.5564789339.
N N ‘e 0 ’
. ’ /\ A Y -
’ o
With 1° steps, - Po sec$ d¢ = 0.5506730838.
. ¢ s 4

A O ¢=u
~,J__’ ‘Equation (3) gives ,Po sec$¢ dé = -~ In tan [—;—[;— -"¢D &

. 0 $=0

~ .
C o : = 0.5493061443.
o 5. From Figure 15,
g ‘ 0, (¥ I ) .
. K = tan ¢
R : ' T
- 50, 0,(¢) = R tan¢ ‘
* *  must be compared to
L : D‘(M"'%ew dé .
7’:” ' The easiest way to show D (4) > D(#) Is to notice that the
g L. derlvat!yes are easy to c re:
A " 2 Y . :
.- S D,(¢)= R sec” 42 Rsec ¢ ar 0(s). :

Since Dy(0) = p(0) = 0, we can conclude that 0,(¢) 2 0(¢) far *
oo . Aee 0.3, B ‘

. , Q’ - . . *

6. (Sample answers)

.a)

b)

c)

d)

e)

. f)

a)

The construction of the Mercator map leads us to discover
secx dx as a limit of intfegral sums; derivatives do not
enter thesproblem. The integral was adequately approximated
decades before an antidifferentidtion formula was discovered.

Ideas that are now part of the calculus and problems ga]ljng
for the calculus were "in the air'" long before Leibnitz and
Newton. For example: Cavalieri's integration ofl xn;
Mercator's need for fsecx dx y Gregory's geometric calculation
of Integrals. - ) o .

Yes, as a finite integral sum Z(sec x;)Ax or by use of
finitely many terms of Wallis' series. .

.
-

A rhumb Tine Is easy to sail because the pilot simply keeps
an eye on his compass. He wants to keep the compass needle
reasonably still. One disadvantagesef the rhumb line‘\Path ,
s its greater length in comparison to the great circle pdth.
Extra distance costs time, fuel, and money.

The north pole needs to be located a distance
L 0[12'4] = R{"/Z"slede =w
]
away from the equator. It is off the map!

If an inch of map distance a_t' 40° N represents A earth-
miles and an inch at 50° N rebresents B miles, then

A _ sec 40°

B sec 500 -
because of the ''stretching of earth distances as they -
are placed on the Mercator map Thus A ¥ B. .

The scale changes continually along north-south lines

of a'Mercator map. Thus a mostly north-to-south distance
like thit from Chicago 4o New Orleans is quite hard to*
calculate fl"om\the map. ' <.

-dx 1 ]
2sinycosy * Y ’2'{"*’2')

d 2
X - J secy dy
2 —1‘5_';:\1 c::>s2 y tany

=
»

.

= In tany + c,\done.
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. . \ ; s
s , .
- . . 8" . .
a) Eas!er.solutlon due to Ronald Shubert Chat rman, Department b) This is easy \to see in the form
“of Mathematics, Ellzabethtown Col]ege, Ellzabethtown, Pa.: - oy x
: A 7 A . . cot |- yj =tan fptyjy =7,
o .tan ﬂ.‘,\{l“ 7- 2 stn z =l - ::OSA / o when the graphs are drawn. A proof will drag you into
2 A sin A —SInA___ straight-forward use of formulas like (**) above in 8a.

A
-, 005‘2- 28]0-2- cos 3 slnA /

.Jtanxdx= ; p."‘ !

= cscA~ coth, & ' .
and thl:s # ) o= Jsinx cosx (1 + sljzx + sln"x + sln6x + ...)dx.
* - . « .
) = ' Putiny=sinzx: e
tan 2+ X = tand [x4Z . .
2 . 2 2 ! 1 2 3 .
, ' =ij(l+y+y +y + ...)dy m
. x - x
L g feed , 2
. ‘ ‘ - . 3 3+ ees) .
= secx + tanx. .
My own solution is longer: Recall that . ” =% (c + sinfx + —s-i;—i‘-+s—'%—i-+ ..
. . ) L.
(**) A+ tan B 10. The integral is infinlté and we get this absurd divergent series:
. ta“(A"'B)'IXtanA tanB " . T
. ! x -
J cotxdx=I
H 1 = cosA : . . 0
tan , ) . . , . R
[ - -J . s
’ . R . Lo ° )
tan--l-l - ‘ . N s ‘ )
tan [,‘%}—‘ - =J . - -
T .' 1- tan—.' N * ) ,{ 9 %o 4:
. . 14 II ~ cos X I ~ COs X . o e,
. N - 1 +cosx.’ T+ cosx . To=- Z thy*;cos X \ R
' II - C0S X 'I =~ cos X , . . - - ’ -
<, l i . )
.- . I+cosx + cos x ' . ] = - (/+y+y .,.y +..)dy i
LT . 1 < cosx I-cosx . «
- 1+ -+ 2, . - 2 ‘o3 ]
. S Y Txcotx: ‘N1 +cosx - . =.~l + ’+Y_ L + : .
o - e KX T S “ (c+y %’— v ) < .
s © ~b 4 cosx” j The left is + = and the right s&leJooks negatlvel ” .
2 L, 2/0 -cosx) (I+cosx) *’ ~ . e
) T m ltcosx M 1+ cos x 11. a) A term by term comparison with '
\ ) 2 cos x 3 59 . .
. - 1+ cosx . - . T
‘ ~ . Y+ y" + + + .eiea N . L
© e e ' ° ’ Y 4 ° . . ’ M »
2+ 2cosx C ety ) (a convergent geometric serles with y = sinx<l) shows °
) . 2 cosx secx +tanx.. : ° . the convergence .of Wallis' sepies. . o
— LT - 3 . : . - .39
¥ ~ ~ - ’ .
| . 142 _ : ¥ . ..
5 | 4 | T 143 .
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T b) The ratlo test tells us to caltulate, For cour sseritss
, - *
. 20+t y
- - L] z .
. . o BT T ‘ ‘
» ‘2""’3/ 2"‘8) ° 2
R=1lim pres] -,
) vy, [ 2n¥t) .
. ) &
Since R < 1, the series i3 convergent. Dther tegsts muyy
a also be used. o
; c) The mio-t@ne in (b) tells us :that “the serss
converges when y¢ < 1 (i.e., =1 < y < 1) sand dd ieenges wiken
y2> 1 (i.b.,y>10or y<-1). For y="lweggeta
- divergent series. For y = -1 .we yet = Tonvergent [trer—
nating series. Thus we have ctonvergerce “for ~i1 <yy <« T1
exactly. Now, what x gives -1 € sinx<:T? M1 reed] xx,
* except ....7
1 42¢ Computer results for x -”§°, 15°, 30°, 45°, 60°, 72, =and
. 80° are below.
R 4 HIGHEST POWER )
B , OF SIN(X) INCLUDED
IN*PARTIAL SUM FRART FAL SSHM
x = 50 , K D00B7ESTH
The correct integral 3 D O5ZF6L2
) is .08737743 3 DVEOBEITAS
. N e
: : 1 00 22588 0984
- 3 r OTIEESIRM
x 159 . S . . mmm%
= .26484224 . 7 .. 0ZEE
I, 9 0756684721
o0 A N -
‘ , 1’ @ 399999
i . N 3 . NBUEB66ES
* =300 ¢ . 5 80 5P 6h6E
7 00 5¥3773
. I = 54930614 3 g 05RIITES -
. . n COSSEG2S
. . 13 N 58930352
. ! 15 0 4936586
¢ N ¥ a0 536601
» . :, —— (] ‘
. i - ~
.. “ 3 - » .
. . J
i PR ¥i A ¥ »
Timse . - _'l44 J iy ?
- . ’ ’

A
—— RIGHEST POWLR \
. . OF SIN(X) INCLUDED )
IN PARTIAL SUM PARTIAL Stm
, 1 0.70710678 .
3 0.82435791
P 5 0.86031325
¢ . 7 0.87294015 *
! -7 9 0.87785062 -
0 =45% ) n 0.87985944
13 . 0.850709333
T 15 ) 0.83107751 -
[ = .ear37358 17 ) 0.83124009
R 19 0,88131278 .
21 0.88134566
23 0.83135067
25 ©.88136758
27. 0:83137078
- 29 0.88137226 . .
. 31 0.83137296
33 0.83137329
] 0.86602540
- 1.28128220
. 21 1.31163003
= 600 31 1.31608511
. 4y » 1.31678636 -
J = 1131695783 - , 51 1.31692435 °
61 1.31655185
F4] 1.31 -
79 131635757
1 0.96592552
- . 51 1.99537299
x¢0==T50. 101 202525779
7 151 2.02717058
I. = 2. 02758941 201 2.02753181 +
! : 251 L 2.0275%99
301 ot 2.02758%5
N L 335 2.02758%33
. ) r i ‘.
: g _— ——ar™
- i ) -t
L - 143 -, . @ LS}




HIGHEST POWER
OF SIN(X) INCLUDED

IN PARTIAL SUM PARTIAL SUM

M 1 0.98#80725

‘ 51 " 2.27986109

Joi 2.39058930

~ 151 2.42057205

; 201 2. 43044352

- ) ' 251 2. 43400011
301 2.43535054

h ~ . 351 2.43588126
x = 800 401 . 2.43609499

. 451 2.43618263

f = 2.4362L604 - 501 . 2.43621907
551 2.43623439

601 2.43624088

* 651 , 2. 43624365
701 2.43624482

751 2.43624532

801 2.43624552

811 2. 43624554

~

For x nearing 90°, sin x near 1, we need quite a few terms in

a partial ‘sum to get good accuracy!

13. a)

b)

Q)

-
<

x> 1, For x

X

‘are tan xﬂ[ T dx

+ x2
0 1 +x

x ° *
-I (1= x% # x* - x® +x% -+ .00) d4x

0
CONCI
X X
=x-E s E X ... .
~~ T3 5 ™ .
use thé ratio test: > ’ :

2

R=1lim x

xzn + 3/ n :_ '-
x2N + 1/ (2n + 1
L] - .
Thus the series converges when-xi < 1, diverges when

22l (x=21)weget a convergent alter-

nating series. Thus the series converges for - 1< X<
4

Plug in -x for x and show afc tan (-x) = - arc tan {x).

'

9. SPECIAL ASSISTANCE SUPPLEMENT o

4

[s-1] . - ' T
™~ The system of latltude and longltude is Hhseq
on the geographic north and south poles, but com-}”3
pass needles do not usually .point‘to the geogra ic?‘
north pole. Instead they point to the north maghe-

tic pole at '75° N. latitude, 101° w. longitude 1
far northern Canada, north of the Dakotas.

tors are used to correcting compass readings for g

Naviga-i

that discrepancy. Thus we will speak conveniently

of compass north as the north pole, 90° N. when

that is not true.

Compasses, in fact, must also be corrected for
deviations dueé to the magﬁetlc iron.in a ships hulkw
or cargo holds and even for iron ores in nearby Pdnd
masses. The Encyclopedla Brittanica arti€Te- ‘undey

<

"compass" discusses this in more detail.

'

’ 4

‘on the Sphere.

{s-21 S
A great circle on a sphere is a circle of the
largest possible circumferegce, like the Equator. All

the-menidians (northzsquth lines of constant longi-

.,

tude) a::‘also great circ;és. The circles of constant
latitude are {except for the equator, latitude 00)

not great circles because these east-west directed
circles get smaller in s1ze as we progress from the
equator toward either pole.

Notice that there is a full set of merldlan,
gteat circles reachlng from the North Pole to aﬂl the
other points on the spherd, an} that all of theh also
pass *hrough the South Pole, opposite the North Pole
Thus "there are infinitely many great
circles routes\between the two poles. If wg'need to

[}

{47 | ‘ /{‘ : .)4 .




G +

connect the North Pole Newith any other point P ex-
cept the South Pole, there is a unique great circle
passing threugh N and P. . The shorter arc between N
and P along that unique great circle is the shortest
path on the globe connecting N and P, the great circle

route between them. ‘
A\

‘Similarly, there is a full set of great circles
through any point Q on the globe. Between Q and its
opposite point R there are infinitely many great
circle rou::§é”63;;;cting Q and any other point R
{not opposite to Q) on the sphere, émere is a unique

great circle and along that circle lies the great
circle routg, again the shortest between Q and R.

v
e
)

7
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Title: - HANAGEHENT OF A BUFFALO HERD
Author. thp M. Tuchinsky . .,

, Department of Mathematical Sciences .
Ohio Wesleyan University , . ’
Delaware, Obio 143015 o o
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Classlﬂcatlon:y

*Suggested Support Material:

APPL LIN ALG/‘HARVESTING/LESLIE-TYPE MODEL

Key exercuses call for computer use.

References:”

PR R .
. .
v

See Section 6 of text. ' .
L
L]

Prerequisite Skills:

.

2.

—;—4~.——uat~F¥x—ml-tipllcation matrix- inverses; calculation of the

inverse by row (Gausslan) elimination (optional): over-

determined lineaf equatipns; elementary matrix algebra.

No elgentheory Is used No background in biology/ecology/
ranchlng is needed. . o N .

LR -

Output Skills:, : *
1. _Calcuiate with 1inea# difference equatuons on computer. /‘“

_a nonlinear reality.

Predicted J‘eachlng Time:

: Identify overdetermined Vinear equations and decide when

they have a solution. . .

Set up and solve matrix equations from word problems.

Sum finite geomettic series for matrix case. K

Desgribe an application that Gses lipear equations to model -
birth; aging and death_in a population. Specifically, detail
useof a matrixto transform that population through time.
Differentiate between matrix level and “entry level calcula-
tions :and give examples where both are helpful.

‘Explain cont\?t where polynomial functtonspf: a matrix - .-

inevitably arise. . I
Discuss major strengths and weaknesses of a linear model Ln
Simulate several policies of harvestlng-’by maklng, varied
use of a computer slmulation. ) o ‘ ->\
2- 3 class periods, including dlscﬁssdon ‘

2!

- Suggested Uses:,

. of computer project results. This assupes. that class time .
is mostly refated to the hath and studet ts read tﬁe‘blologjcal
coptent for themselves.» N

- ,c . . IR ‘. *

Sections & and 5 are independeﬁt of *each ‘other;
either can be done first. SectJons 4.6 and 5.2 are harder i
than the othep -three apBlication examples in 4.1, 4.3, 5.1.

Section k.2 may be* mitted., . ‘

s/ e .
A wlde range “of basic linear algebra skfils can be tied - :
" together by working Through this module’.’ Computer experience *

with a lineat transformation Is a key benefit of this *

‘module -- If at all possible, | 'recomnend use of some of
.exercises 3 - 8, Sectlon 2.6 N

- ~ .m
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This module Is suitable for a first 1inear algebra course .
or a post-]inear-algebra course in mathematical modeling. v

It is suitable for presentation by advanced students in a
semlnar. )

©

The matrix is not diagpnalizable: To' pursue the calculations

* In Section k.5 further, the natural path Is to seek the

eigenvalues of matrix M. But the more general

S faobooo) o1 -
* o a ob 0 of has 00 0 ‘
H_OOOOcOJordan a
1 00 00 0 ¢c| form x ’
©0do0oo0O0O0]f-: 0 u s o
0e 00 0-0 "

" where a,b,c,d,e are all €(0,1), and the eigenvalues are zero

twrce) parameter a, real x>a, and a complex conjugate pair
u, u. The characterlstlc equation that ylélds these roots is:

det(H - a2 a - (A3 ax s bee) = 0~ - -
The elgenspace of zero is unfortunately one-d:mensional, thus
the Jgrdan form above.. The.square, cube, and higher power's of =
this Jordan forrn are diagonal. ’

Y

‘ ; © 1977 EDC/Project UMAP K
\ All Rights Reserved.
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INTRODUCTION )

. S

1.1 What Harvest, Should You Take? .

Imagine yourself.as the operator of a buffalo ranch.A1
You have a certain herd on- hand, and each year you "har-
vest'. ‘a number of mature bqffaio for their meat. You
permit the remaining herd, for the next year, to replenish
The herd has

is made up of

itself through its own natural
it
portions of édult vs./immature
Here are some questions you' might ask while

simultaneouSIy tr;;ng to gain a EBEH"hé}veét and maintain

the ‘herd for good future harvests:

breeding.
a certain known structure: own\qro- .
animals, of females wvs.

males.

.-~ What harvest policy will lead to-‘a herd next \\\,_,/
) year
this

-- What
grow

that has the‘same size and structure as
year's herd? ’/’“/) s . \
annual harvest will permit the herd to .
steadily.so thdat in tem years it will
doubled in size while keeping the same
progofiional structure?

have
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A

-- Do substantially different future herds result .
.if more, the same number, or less females are
. .

harvested than males? . ; ’

-

1.2 What Herd Should You Sta}é Wifh?

Nex*;‘imagine yourself as planning to enter the
bdﬁfalo-ranching izdustry. You set goals’(based on your
costs, capital, desired income, etc.) for a desired -
harvest.

That is, you select, as a basic parameter of
your business, a number of mature animals that you g

intend to harvest each year. You might ask:

. - [y

IAlthough buffaio management is not a Major industry, this paper is
developed in terms of it because a widely available computer pro-
gram named BUFLO 1's based on the same model. The methods discussed
here are-the subject of research in human population dynamics; cat-
tle, sheep, and other ranching industries; forest, fishing, and
wildiife management. See the references.
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-~ What initial size and structure of herd Qill
provide the desired harvest? !

-- How should the quota be distributed among male
and female animals to achieve a herd pof smallest
size that will continue to yield the quota?

1.3 wildlife Management
- Finally, imagine yourself as the manager of a game
preserVe» Conditions here are quite unlike those on a

ranch because. the buffalo herd lives among its natural’
predators, such as thé®wolf. : You have a limited amount

of land, and its vegétation must support the herd. What
...~ . quotas of male and female buffalo should you license 7
. hunters to kill “each year to maintain the herd at an
“ - appropriate size? , ' - -
) !

1.4 The Task Ahead \

In this paper we will consider a mathematical model --
based on linear‘algebra -- of a buffalo herd. It will be

possible to answer the questions above using the model,
but the model is a much simplified version.of the situa-
’
. tion in nature. We will consider the underlying assump-
» A ]

tions of the model and their limitations to some extent.

&

While we.will look at the model mostly as a management
1 tool, we will also be in a position (in the exercises in
;_ . Section,2.6)..to study historical issues conGerning the .
f :destruction of the vast U.S. bufﬁglo populatiqpt that

?A:‘ thrived on the Great Plains in the early 1800's.
- . . ® . .

o 2. THE MODEL

¥~ 2.1 Herd Components afid Their Survival Rates

s of buffalo within the

.- herd: ‘calves are in their first year dfllife}”yéaiiihgi
in their second, and all older buffalo are adults. Each -
age group is broken down in male and fémale categories. |

Vo

Ke considerZ six ¢

v s X 2

. S

A wa

. - &
- & >, .
¢ \1 J“’ ¢ .
LY

Each 100 adult cows will bear approximately 48 male = -
calves and 42 female calves each year in/ late sprlﬂﬁ ~ v
This 90% reproduct1on rate is almost unrelated to the T o
number of adult males in the herd because male buffafo U -

Ny o
are polygamous. . N

[N

Buffalo néturally suffer different death raEes t
Because of deaths at birth and sdah
natural enemies as the wolf and coyote, only “about 60% .

different ages.

.of the calves survive to become next year's yearI;ngs . v
and about 75% of the yearlings become adults.- Once they
reach maturity, buffalo are quite safe from thefr‘enéﬁie§
until they weaken from illness, injury, or old age: 95%

We will

také these numbers to be the same for males apd females

of the adults survive from each year to the ‘next.

v ’ t

and the same year after year. ¢ .
2.2 Basic Model Equations X [
. It is easy to organ1ze this data 1nto a mathe 1cal
model. Let ’ . .t
. « f\ \ v
. AM = number ‘of adult males ™ - ,’ c Y .
. R L | .
‘1) AF-= number of adul't': females ;\ .
YM,YF = humbers of male yearlings, fema@e yearl|ngs L
€M,CF = numbers of male calves,- female‘calvdg . ' .S
or more specifically, let theée_gp the numbers of A *; 3 -

buffalo.at the end of,”this year" jut after” the harvest.j N

Let ‘AM', AF',..., CF’ be the comparable counts® for next
year's herdg also,at the complet;on of (next. year 's) : ) -*
harvest. - Let . . . -, ’ ] . .
M’ = numbe:xof adult males harvested "next year® ‘ ‘
QF’ = numbes of adult females harvested 'hext year" v e *?
(1t is our poliey to h;west only adult buffalo ) e P =

. el
+- Then, the breedjng process, followed by hﬁrvest,vxs
contained in these equations: - . -

.

!

» . 3

. . e
3Thus will be true in the wild. On a.ranch, survival to adulthood .
would be more likely. Data in this paragraph appliesito wildlife.
See Sections 2.5 and 3.1. The references offer similar data due .
to Fuller. 3 P
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v ‘the moded has taken' from computer program BUFLO. See the
;-'. references for fyll acknowledgement.

3 " X 2
skl [(:* e ) £ =~ G
ﬂ;miiﬁﬁﬂt . ‘lﬁi{i
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AM' = .35 AN+ .75 YH - Qi

. AP e 95 AF 4 75V - g : 2
* - ’ ™ -'_60’0‘ . P .
.. @ cyres0cr . ’
- CH' = .48 AF : - -
' ° - CF' = 42 AF ] . .

Let's' tead these equations in detail. Peoaisse off
. natural deaths, .95 AM represents ‘the surwinors meeott
year among this year s a;lult males and .75 Y/sttﬁeemum
ber of this year's yearlings who survive o L'!xe:zr:/cnmeaa:!dm.l:ltt
. males. Thus .95 AM +
. males just before harvest next year, (We Fwagiwe thuat thtee
h;rve'st takes place at one specific 'mcmemeaaz':hvyeear

.75 mrepmsmmmdluﬁaﬁﬂm

QF’ !
-8 0
.Q-] = (1]
a - * .
. a *
" ass am example of ' . .

. x . v

6: = harvest in jth

year (Ias't: Fomr entries are always
zero) .

With this notatmn ettablgshed, it is time to m-

) total, AM', is correctly given in “the :‘Ens:teemzm:mnaff
(2). The second equation treats the adult Femdbes sdimii-
larly. * The third and fourth equations 3y thisat 6600% off
tlus year's calves survive to becomeQe;xt pedY S5 visgar--
1}ngs. The last two equations say “that, Sor seath hhusdrsd
adult cows after harvest this year, the herd waill ggrow
by 48, male calves and 42 female ca.lvs o “bé' 2o neeott .
year ' - ’

. 2.3 The After -Harvest Model in Vecror :aml‘Ma:tmm

otation R
Now label "this year" as "year 0" “recct’yyeant™ ass
. " 17agd so on. Define the vectors‘
. Gj = herd structure after harvest Jdntthe | :thymr
(jv' 0, ] 2 3, ooy )
In our earlier notatmn the f_n'st of “these Smr-
" sional vectors are: ° . .
o am) ' A
", AF ) , AF )
- - yn R ’ . - - YM? ,
~- S || - . 5= e '
@, cM TM? R '
EN CF. ' F? :
* “ - NWe must gather the harvest quotas moxwgttum, tomo.
+ put Il . - .
3 . > #

~

¢ coemrts: tox wluch"ﬁ'e can app;[)r the fxamrestt
, @anmxtation of their own:

write (2). as . d , A
A %5° 0 75 o az«"‘ )
AR o .95 a .75 !
wl! _ 1o ¢ 0 Q ool
Ye 0 12 o ] e
fome | 0 48 o o " ®} .
el Lo <82 o ¢ {1@ -
. X . .
(3 & =~ #g -7 . .

wherer M is the 6 x 6 matrix just above. The ¥ear-to-
vear process is given more generaIIyr as

(8 t:. ;ns.-q or.zss,---

j+l® .
Th‘15~ is- t:he aftez- harvest model because nt involvwes Ihemil
counts: E taken just after the haﬂwest is completed.

We: may call M\t)le transfaz'mmtzam matriz of our .
modei for- it transforms 1ts mput,,,t:h:e Retrd StTmetmre
justt after harvest, inte the herd structwme that birth,,

agding: and: death v&ll -produce’ just befcnre harvest im the
f5d1owing yeir. h

L -

N
L4 The BTefore-Harvest Model ’ T

a

T, ©

The: model ]llSt dxscussed; is useful 2f we have a
herd? and. want to examine what next year"s barvest Wil
gdires uss as: a new herd. But suppase We are trying to
sedeet: this year's harvest so that mext year"s herd - ‘B
camn be: studied. Then we want before- -karvesteferd '
%semve'

.
» ) L
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. .

ﬁ} = herd before harvest-in the Jth year,
j=0,1,2,...

Thus ﬁj = H} - ﬁj and the last paragraph of Section 2.3
says that ﬁ5+1 = Mﬁj,-j =0, 1, 2,

The before-harvest-model relates H. to Hjtfi
Clearly, H, is diminished by Qj at harvest and the new

herd Hj - Qj undergoes the 3reeding transformation. Thus

(5) Hj+l = H(Hj - Qj)’ i=0,1,2,3, ...

\
2.5 Survival Rates Would Be Larger on a Ranch <

"

One more comment. The birth and death rates were
given for'a herd living in the wild, subject to its
natural predators. (The effects of man as a predator are
reflected in QM and QF, not the given percentages.)
of our effort, however, will be with questions that

relate to ranching, where herds are fenced and natural
predators dlmost absent.

Most

We would expect much larger °
fractions of .each category to.survive the year. However,
there are no accepted numbers to use in'M, and, rather

than arbitrarily pick some, we will use the same matrix

/M. for both wilderness and' ranch apﬁiicatioﬁé. The

results will be qualitattvely the same for higher sur- o~

vival rates (as the author has checked in some detail).

—

¥
2.6 Exercises and Computer Projects

1. _4n the week before harvest last year your rakh had a buffalo

7" herd with this struoture: --
AM = 200 YM = 300 CH =520 ‘
AF* = 1000 YF = 300 _ CF = 500

Your harvesting policy each year ¥ to.take 100 adul(|nales
and 200 adult females. Calculate th% structure of the herd

a. after last year:s,harvest
. b.. before this ygar‘s harvest '
c. after this year'; harvest
before next yedr's harvest .o

* e, after next year's harvest

r\‘l N -1 59

RIC

.
Aruitoxt provided by Eic: -

this policy into th¢ future, orjgan't you gell? Justify

your answer. . 4 . |

2.7 Use equation (4) rep tegly to show that,‘gver.sgveral years

- involving different harvests, an initial herd Go will ‘transform

-

into . s
A a ~
‘:H.. %
Gy =, o Y/ .
B = WG -G - W,
- 3A _: -‘OH-‘ t ¢
G3=MGO-Q3~ M, - Q‘.e_C-

. No&, provide a biological meaning for each term ip the equations.
For example, HZEL is the herd that result$ after two years if

no harvests are taken. The other terms in the second equatloQ

correct this to account for the harvests. What does the ﬁal

term mean?

. ) cLd

. o
The remaining problems in this se;t}on call for the yse of
a computer. :
3. WFite a computer program that will calculate next year's

herd size from this.year's, using the after-harvest model. ,
— It should cheive as Inputs? (1) the initial herd structure

Eb ; (2) ;the constant harvest; (3) the number of years the
herd is (o be studied. The program should loop to calculate - .

the herd size year by yegr for the number of years requested.
it should print out the successive years and the herd structure

X 4
that would result:for that year, using our model.

°

4. The U.S. Buffalo Herd in 1830. The authors of the,BUFLO
compdtérﬁprog?ém (from which_owt“model is taken; see the
referencés) state that the total buffalo herd in the Unjted
States in 1830 consisted of 60 million animals distributed

v

as follows:

Ebeware of this trap as you work your program: If you compute the
components,of next year's herd in their usual order, a new value of -
AF will be computed. before the old value can be used- to calculate
CM and CF. The old value of AF must be saved before it Is

replaced with the new one. 7
160
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303 male adul'ts 27% female adults

9% male yearlings 8% female yearlings

143 male calves 123 female calves .

(These figures should be taken as good historic quesses;
estimates of the total herd‘size vary widely above and beliol

60 million.) Let this data give your initial herd. Take a
constant harvest of & million animals annually for a period of
tén years. ' Distribute that harvest in various ways among )
males and females, tr§ing to find a harvest that leaves the
herd‘approximately unchanged after t:L years. That is, gplit
the harvest among male and female adults in a specific way
and trace the herdmgbr ten years using your computer program
for Exercise 3. Then try other splittings of the hanvest in
the same way. Several co&puter“runs can be used or you céh

- loop. A convenient way to get the number 60 m:%ﬁlon into the

machine is 60.E6 in Fortréﬁkor Basic.

Start with you computer program from Exercise 3 and the ,n.:.al -

herd given in Exercise 4. Take a 4 million animal harvest

annually for twenty years, using these strategies:

a. hatvest 1002 adult males
b, harvest 75% adult males, 25% females. o *
c. harvest 503 adult males, 503 females
harvest 25% adult males, 75% females
e. harvest 1003 adult females.

The results are strikingl§ different. Discuss the biological
reasgns. ' ’

Repeat Exercise 5, taking' a much larger harvest (saz 12 million

animals) annually. Compare to other results you have.

Let's examine the effects of a natural catastrophe (flood, ,
range fire, etc. ) on'a herd. Take the initial herd from
Exerolse 4 again pnd set the constant annual harvest to

" zero.’ Drastlcally,redqce the birth and survival rates in
the matrix M and transform the herd forward for one year, to
simulate a catastrophe.” Now put our usual nambers back in M
and trace the herd forward for nine more years,-still‘taking no

harvest~[\Hhat are the long-term effects of the catastrophe?,
8

161 L

4

.
8. Repeat Exercise 7, but this time take constant annual
harvests (in the catastrophic year and theﬁbthers) of 1|
million or & mjilion animais, splitting the harvest among
males and females in the ways listed in Exerci§e 5. Comment
on the combined effects of catastrophe and harvest. Which
harvest§ warsen the effects of thei;atastrophe? wpich
overcome it? ‘

“ -

3. ASSUMPTIONS STRENGTHS AND WEAKNFSSES
THE MODEL

3

3.1 The Model's Basic Strengths - .

The examples in Sections 4 and 5 will show that we
can really calculate with this modelf
It does reflect the basit processes
The equations

it is a worhkable

management tool.
of birth, aging, and death among buffalo.
1n Sections 2, 4 and 5 all have [easonable biological

orgeconomiC 1nterpretations/ ) ,

The actual numbers used as birth-and survival rates

are reasonably close to correct figures. One,piece of

evidence foR’this is that,.Zmong adult buffglof a life °
span of approximately 25 years was the ruleS at the =~
time when great wild herds " roamed the plains. Our model
predicts an ayerage' life span of 21.5 years (where we
count buffafsxzhat{die between their 2nd and 3rd birthdayi

as age 2%, etc.) .

In Examplé 3, Section 4.6, we will show that no more
than about 14% of a herd may be harvested annually without
evéntually depletlng the herd’. - This vakue would vary in
nature, but the model is qualitatively. cqgrect enough

to convince me that a steady harvest of (say) 20% of -

the herd would destroy the herd in time. Exercises 5 and

. v
.

6 provide strong eﬁigence of this. n ,

SSee E.D. Branch, The Hunting of the Buffalo, University of Nebraska

.Press, 1962, p. 1T. Branch's figure of 25 is presumably drawn
from Journals of the 1800's and may well be high.
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3.2 Limitations of the Model

T

v

! Whether one shou1d blindly accept advice
o, (model is another'mattér.
+, -~ of assumptions that do not correspond tor nature.

from the
The model is bu11t on a number
. The
;:. ' ‘'most important of these is that the birth and survival
T " rates used in M are assumed to be constant year after

N

year; this would not be true in nature. We can regard

~
.

the survival rates in M as averages for “normal" years
. that provide generally favorable weather and feed1ng

cond1t1ops. Apnormal *conditions like severe storms,

floods, and disease might temporarily

Our deer
a1though they
might not be r§ e 1n“{he wild or on a ‘ranch.

range fir drought, ,
.cause muc:fzzwer birth and survival rates.

does not provide for such catastrophes,6

> The constant birth and surv1va1 rates do not permxt
the study of overcrowd1ng or overpopulat1on “ Instead
the model assymes that unlimited land, food and water
In the wild,
herd would eat poorly and its birth and survival rates

rdTe available for.the herd.
would decréase. [t would be more subject to disease. ™ &

«0n a well-run rqnchewe'would not expect overpopulatien.
We will see in Sections 4 and 5 that the herd size "
can be related to the harvest in ways that make over-

rpopulatxon mandgeable In any case, the model is one of

Fa

*unlimited exponent1a1 growth for the herd

tempered by-
¢he harvesting process. . ‘

.
<

.- Another weakness of the model js that harvesting“ :

Reality was different: Plains Indian

L+ times yearly.
" tribes held lengthy summer and winter buffalo hunts.

On a ranch today, the herd vould be th1nned as~meat
LA prices and the ava11ab111ty of rangeland and water
. dlctateo . * ~ o

>
o

-

an overpopulated

'<6;e have considered an obvious way to simulate a:
thermode\ in Exercises 7 ‘and 8, Section 2.6.

catastrophe wlth

¥
Te ; N
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-

]
-
-

-is done oply once'a year, rather than steaj{ly or séveral

+ White mén slaughtered the buffalo cont1nua11y in the 1800's.

- Yet another weakness is that no‘economics ¥s in-
cluded in7the model. The dctual quotas harvested would.
*, . surely be re1ated to the price of meat and;the cost

of feeding the herd ;on any ranch.

The managé: ‘0f a game .
preserve might not be troubled by such questions (if
his graz1ng lands are- suff1c1ent for the herd so that
no feed is tP be purchased). There~ is no s1ng1e obvious
way.to extend the model so that\!conom1cs is effectively

included. N . . B

The breeding m hanisms of the model are not ideul.
In fact, buffalo begin to reproduce at ageg’two orjthree,
'we have assumeg that all two-year-olds are full adu1ts
And the. number of calves born has been made a simple

- % fraction of the ‘number of adult females. Th1s is
roughly true in a polygamously mating herd if reasonmable

numbers of adult bulls are in the herd, In,6ur model,

rd
0 would not 1nterrupr)the mating process,
In fact,

be in dangér of extinction if any of the six cagegor1es

a value AM =

as it wotdd in nature.

grew too smail. *This can not be included .in a 11near

model ~
»

"ext1nct" if any categoryxwere to grow too small.

i

In using the modél, one could .declare the herd

" -Finally, we have lumped all adult,buffalo into
two categories and declared them all equal in their

ab111ty to survive and breed, ignoring the obv1ous
- var1at1ons with age. “

Desp1te a11 these defects, and othé?!i#Hat I've un-
the model as presented offers a useful
Let s,put 1t xo’use

doubtedly missed,.
s1mp11f1cat10nﬁof the" herd

] Prd ¢ ‘

APPLICATIONS:

: ESTABLISHING A HERD

e

.
3 -
s 4.
d <

PR Pl e

4.1 A Herd "and Harvest That’ Contlnue Year After Year ‘

. Example 1. What size and structure of herd ﬁ
‘must we, have (or put~together) th1s year so that next
- year we may take a preqphosen harVest 6 and then have a
herd Gl such that ﬁ P - 8

D~
S
~
LIRS
.
-
“

e )

the actual herd would O

Mg o,

1

.

~
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N h . Afbusinéssman planning to create a ranch might
< ask this question: He choo§ésrhis annual "product”

‘ ) 61 and Wants to Rnow what "Qap1ta1 investment" 6 he -
G . should make so’ that it w1II ‘maintair itself from year

i = .to year' (ﬁ = § ) and y1e1d product 6
L cﬁ; ‘up with = Gy the process of harvestlng 6‘ and

A ﬂ"malnta1n1ng a he;J‘Sf*}ﬁe same “size and Qtructure ‘can

we' call the herd.and harvest C.

vectors steady staté ) . .

Since we end .

continue year after year:

’ AS the chosen notation 1nd1Cates it is natural,

) to use the after-harvest- count ﬁo, 6 for ¢ the herd
because the year-long study-period for the herd progresseg- e
from initial herd through the breeding process to the

4 ..pre-set harVe§t at the end of the period. T AN

16) -

G -

-

-~

6o

o

G, = H

Thus we know 61 and want to solve® for ﬁo in -

L)

e . ) QI [compare (3)] . )

We can replace 3i with db in the second equation of (6).,.
plate 2 ;
N getting, . . “

G, ‘ g -0 ? ¢« <
] [ ) O-HO Q] It
and rearragﬁg to read (I is the 6 x 6 1dent1ty matrix)

M wng=q,. i ‘
4 . -
Th1s is a.set of six linear equationgf{for the unknowus ’

0’ % 1 and Q are known. In fact we are asﬁpd to - solve
- . ) Y * N
: (.05 6 .75 o 0

0 -,05 0 .75 0 oOf° - .
("‘U?o' o 0 -1 o0 .6 of 2 _ﬁ\‘ .
“ 0 0 0 -1 0 .6
oo 0 48 0 o--1 of ‘
. L) T ] -

‘i N 'o .'iZ 0 \0 0 ‘J kt

- R 3
. , There is a un1que solytuon because M-I, 1$ non- .

singular. We will calculate M- I) in Sect1oﬁ 4,2, o '
below. In terms of it we can write our §olut1oﬁ‘to |

’

()D

*

\‘ .'l | 0. 1 5.} e

z’”um

s
’

.“‘1

. . - 4

& . F -

3
‘to thewproblem posed in Example 1 as .
D'\
. A;' > = - -] S .
(9) r Gy = (H-1)  q ‘ .

- ~

Notice that we've completely solved the problem at

matrix Zevel,&we can write the sglut1on in (9) ‘without
actually looking at any of the specific numerical entries
of M; we yse M as a single 1tem, not a collection of .

36 qwumbers ., Howevep, we do have to use the entries

of M to estab11sh .that (M-1)~
calculate the solution in. (9):

exists and to actually
that work is at entry .
level, not matrix level.

4.2 Calculation of (M-1) ! .

. )

We would need (P«‘I-I)'1 to proceed further with (9), °
so we have the opportunity to carry through an.,unpleasant

matrix pivoting Gaussian-elimination calgylation by hand,
in detail. s C
?

.

The reader who would benefit from such an eéample
is invited to follow along, eledtronic calculator in
hand, verifying each step.' The reader who prefers to
see how the answer is used in the rest of this section is
welcome to do so: skip to the paragraph containing equa-

tion (10) at the end of this section.

"Récall that, to find the inverse’, we list M-I
and adjgin to it a six- by six identity matrix to create

a 6 x L2)matrix: g
‘f05 0 .75 0o 0o o1 0 o0~ 0 o0 0
o -05 o .75'0. o|lo 1 o o0 o 9of- '
0y o -l o 6 0l0 o 1 o o of 4
0 0 0 -1 .0 6|0 -0, .,04+1 0 o0
0 W& o0 0.4 .00 o0 0o o 1 o
0 42 o o o -1lo o o o o 1 ’

o, KRS B
* Now we reduce the left side to a six- by-six

1dent1ty matrix using only elementary row operqhzons
We may (1) mu1t1p1y a row (all 12 columns) by a non-zero

X -

7)’here are other, less efficient methods.

e




‘scalar, or (2) add a SCalar multlple of one row ta

another -xow, or (3) interchange any two rows.. To work
© now: multiply the top two rows by -20 each (to convert
~ the, -.05's into 1's for the 6 x 6 I). Get \
| check +ft. o .-15 o o olf-20 o o o o o
ro::‘ +jo v o, -5 0 o0 joO .20 0 0 0 O
o o - -l o 6 o0 }0 o 1 o0 0 O
. lo o 44 o 6 {0o o o 1 o0 o
. o 48 o040 -1-610 o 0o 0 1 o
- L0 '&3 , 0 0 0 - 0 0 0 0 0 Ij .
jf» * The'f1rst column on the left is'fine. Make the second
:ﬁf - colimn fit the goal of a 66x 6 I by subtract1ng .48
k +  times row 2 from rew 5.and .42 of row 2 from row 6.
.+ These two elementary row operations give us
T . ‘ P W ——
W . (1 0 -5 0, Ouwwej-20 0 0 0 O
o o 1 o -5 oVo |o -2 0 o o
X o o -1 © 6 o Lo o + o o0°
o 0, 0w -1 0 .6.|l0, 0 0 1 0
v ::::‘; o 0 0 72 - o |6 96 0 0 1
ov(s -rLO 0 0 6.3 *0 -1 -{ O 8.4 0‘ 0 0"

check -
. -these
- FOWS . ..

~ - .
6 0 0. ¥
. o
1> 0 -5 0
‘ 0 ’tl 0 ".6,‘ .
‘0 ‘0 -1..0 .
v ..
0. o 7.2 -1 .
0 "0 63 0 =1

The first-three columns now. match a 6 x 61.
notice that what' we are about tb do in column 4 does not.
dis:urb the first three columns. + We gain this because

o oM O O

Mu!tzply row 3 by —1 and usefthat new row 3 to k111 the -+
- -15 (m the 1,3 slot) by addmg 15 of the new.row 3 &

= .
20 0 -5 0 0 0
o -20 0° 0.0 0O
0 0o <1 o o0 O
o o o 1 0 o
o 96 0 0 1 0
o 84,0 o0 o 1]
Please

; we woTrk from left to rzght,,leaV1ng friendly zeros

as.

'q\behind.u Multiply Tow 4 by -1 to get a new'%ow 4.
) appropr:ate mn}tlples of this new row.4 to Tows 2 5, and
6 S0’ that the rbst of column 4 1s ;eroed

. Add

Reach .

>

-
v

-~

The matrix

. The first,

t

others are

that has appearedson.the right is CM—I)'I.
third and fifth columns are exact and the
correctly rounded to five szgn1f1cant digits,

which is more than we can make’ good use of below.
Keeping four significant digits, our f1nal result for

the inverse is:

{10)

(-1 =

\

.
~20 -

0
0
.0,
0
0

31.08
7.194
T 2.072
1.813
3.453

* 3.022

8

<

8

~

515 2331 ¢ -9 13.99
0 -53% ' 0 3.237
1.554  ~.6  .932
o -.3%97° 0. .2%8
0 2.5 -1 1.55k
0 2,266 0 .3597
= 1

{ - ’

- f - * -
1. 0 o0 o -3 o0 {-20 0 -5 0 o0 O
0 1 0.0 0o -9 o -20 o0 -5 o0 of-
new N
fowl 1O 0 1 o -6 0'lo 0o - 0o 0 o0
gotten . - . -
Lo 0 0 1 o -610 0 0 i o o
~/]o0 0. 0 0o -1 A432{ 0 . 9.6 7.2 1 0
slo o o M o 278 0 8.4 6.3 0 1]
'You should be able to decide how we get to the next
matrix. The result is: *
—+f0°~ 06 0 o0 o0 -38.88 |-20 -86.4 -15,—_6'»:8 -9 0]
o 1 o o0 0 -9 0 -20 0 -15 0 0
+.0 0 0 o0 -2.592{0 -5.76 -1 -4.32-.6 O
o o o 1 o -6 |o o 0 -l 0 o
-
€ +Jo0 o o o 1 4320 -36 o0 -7.2 -1 O
) to*o o o %o 278 o 84 o 6.3 0 1j.
Firfally we multiply the 6th TOW by 2—7§ and clear the
sixth column to_reach he
j «T/ )
+( - Vs20 31.080 - =15 23.310 -9 13.986 )
. . . [ -
+> lo 7.1944 0 5.3958 0 3.2374
T 0  2.0720- -l 1.5540  -.6  .93237
+{ I o 18130 o .35972 . © .21583
<0 o - 3.4533 o0 , .2.5900 -1  1.5539
s +{ 0 3.0216 0O -2.2662 0 .35971
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4.3 A Steady Harvest Plus Controlled Growth of choose the herd G0 so that, a.fter growth and a harvest

’ ot the Herd > next year, we will have a herd that is 12% darger. It

.z .7 N 2

D Example 2. Our ranch-planning businessman now wants is to have the same structure as G (i.e.~be 1.12 Go).

= -

. a herd that yields harvest 6 next year .(and every vear- b. Solve your equations from (a) at matrix level for Go. '

thereafter) while it grows by 40% during the first two
- years. The larger herd is to have exactly the same -
) proportional structure as the original one.

10. A buffalo herd G will be ‘allowed to grow until next year, when
. harvest Q will be taken. The resulting herd Gl will be .
allowed to grow another year, when a larger harvest I.lQ will

Again we regard Q as known and use the after- ’ be taken. Calculate '50 so that this process leads to a final
s harvest model. After a year's growth and next vear's ’ resulting herd ‘5‘2 such that '(;‘2 = Eo, o \)
harvest, initial herd §, (which we will calculate)-will ’ a0 e
11. From this year's herd (;0 3 harvest Q will be taken next year.
become = ’ ‘ ~
- s~ A v s After another year's growth, a harvest 1.2 Q will be taken. __
., (11a) 6, = MG, - Q. ° . The final resulting' herd Ez is to be 25% larger than '50
-» .
. The next year's growth and eventual harvest yields (i.e. G =1.25 G ) Y
, 2 = HG - Q (same Q each year), * ‘a. MWrite equations for this situation comp'arable to (11a,b,c).
-
b. Soive for G,.
(116) -ne€ 0D - 3 ve for T
HZE H-Q‘- a ) 12. A herd EO grows for five years with no harvest being taken. .
0 ' . In the f¥fth year, h’gest a is subtracted. The*resuitjng .
: -, . S R - .
and we want 40% growth (plus the harvests) after two years: herd Gg is exactly double G,. Find Go- *
']
-
(1ic) '(;'2 = (],A)Eo, . . 13. Find Go if, after 5 years during which the same known harvest
P k
From (11 b,c) we conclude 3 s taken at the end of each year, the herd is to double:
2, o a S . GS =2 GO' . .
. - WG -M-0Q =lhs - . - ’ ’
. . . 14, Find GO if the herd is to double In six years (G =23, ) a
and we rearrange this to ) . N Assume that the same known harvest Q is taken after the second,
(12) ("2 - 1.4I) -Gso =(H+1) a ) N fourth, and sixth years of growth. d N .
—_— » .
‘ known 6x6 \ a known . - 4.5 Mathematical Insights ° ’
) matrix unknown vector . . ., . ’ . .
I ) . . The example of Section 4.1 and 3.3 and the exercises
o ) . In (12) we have a set of 6 linear equations that have a »of 4.4 should have provifed you with experibnce that makes '
unique solution. (We won't prove that Mz - 1.41 has an these comments believable: :
* inverse, but it's true. *problem has thi ti s . .
. r » o i , : 1) Our’p has this solution, - a. When calculating with matrices, we find that algebra
. written at matrix level:
) . u . 'z ] arises that is much like the algebra we learned long
. - -
- (13) 6 = M -1.8I) (M+1) T - . -t ago for numbers. Most of -what we can doathh numbers
td ~
4 N , y. . is alsé correct for matr1ces (Key exception:r matrix
- 4.4 Exercises . i '
i - - R v . multiplication is not commuta\nve } Ve can even sum
) 9. a. Vrite equations comparable to (6) or (11a,b,c) for this ) geometric series -- see Section 5.2 below. It pays
- situation: We'are given an annual harvest Q. We want to | ) . .17,
- , ) - . . B .
. y . - 16 '
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N
to think of a matrixz as the analog of a single wanihen.

b. We may naturally need to calculate high ’:pma\e\ﬁs (@ilee
Mlo) of matrices. An easier, way to do “this weorilid Hee
very welcome. There is or;e: when you learn idhoart
"eigenvalues and eigenvectors" you will -see Sthat
technique. -

c. Expressions like MZ ~ 1.4, M+ 1, \1:9 ~+ ﬁs-r‘Mvﬂ
+ M2 % M + T (see Section 5.2), called -polymomidbs
in the (square) matrix M, enteTr our work im ia mftundl
way and are worth study. They aTre polymomimks<tn'M
in the same sense that ax® - 3x + 5 is 3 poYymon il
in x, i.e., they are sums of Pnteger pm&e‘r(s Jf‘M 0T,
equivalently, linear combinations of I = M MO ‘*\f’,,
qtc.

d. All our calculations in the example were &t MLLTRIX. .
level and at ‘that level we got a lot dome. 3Rt
further progress with expressions like (9) xor .[$3)
requires that we go to entry level (eauztion ikewdl).
Matrix algebra is a powerful tool, but by :dedhimg
with the matrix as a whole we are out of “touth wiibth
the individual .entries, and theiT information may
ber critical’,,

4.6 An Efficiently Small Herd

Example 3. For any specified harvest quotas QM
and QF, we have found an appropriate -steady<stdte hearid
(wluch w111 y1e1d those quotas) in Example 21, Bt

-~
d up selecting a harvest off\ 75%
= .75, ¢ = .25.) We wish to

(Fear example, if we
madkes: and 25% females
c:ixum P and q.-

B Thus, in (9), using

harvest is- % : [
p
S 3 -ch -0
! = - )
.(“:‘) Q‘ = g T and 0 (H I:) T.
0
1 ‘ 0
Ther herd 'C"o is now a multiple of the total harvest T.

Wee camr think of

(153 -1

cCo0n T
<~

. as~ the: "“herd structure per animal harvested™ or tie mdimi-berd

f’m&&dsd.a,to produce one harvested animal, Becazuse wiem mmul-

2 taplied by T, it becomes,,.t:hé"tutat herd G‘m

Rl

‘-1
.

e ~

- (11,700, 0)-(e-T) "

(66d; (1,1.1,1,1,1)°G

EEELEEE

i ing 1 ,1,1,1,1) siupl
becanses mxltiplying by this vecter (1,1 1 b nmga‘)y

perhdps our real goal is ‘simply to hu'rvest T waniimdbs,,
with T = Q4 + QF. Naturafly, we wish to ido “this waith
the smallest possible herd (which wduld Tequiye thive [Passt
land, feed, fencing, handling by employees, —paperwork,
etc.) 'Is there some way to split up T iwto OM zand QFF

so that the herd is smallest? . ’

We set up the algebra in this way: QM »wil Hee ssowe
fraction of T, say QM = p-T where 0<p<l. Iimikanily,
QF = q-T thh 0-<q< 1.- Since T = QM+ OF, p ~+#sq= L.
v © 188

171 - .

& - . <

addss upy the entries in € . Since this is a multiple of
a- T5,, wee sinplify by studying .
HS = "herd size per amimal hamested”

Yherd size"/T ..

g
~h
RRARRITCE VR

- M .
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S

Again: our goal is to select p and q to make HS as

small as possible.

-’

To this point, we have dealt at matrix level,
aside from setting up 61 with scalars p, q, and T.
From here we must work at entry level, calculating the
We plug in (M-I)'l from (10),

Section 4.2, and calculate

individual equattons.

-20 p + 31.08q
7.194q
072q{ .
(]7) HS = ('1]!]7]71Yl) ? 8?3: -
, - ) 3.453q
3.022q

-

= -20 p + 48.63q.

Here we have rounded to two\Secimal places.
The goal was to select q and q such that

0:p<l, 6;<qz<1, p+q=1; and HS is minimal.

as p increases,

That's

q must decrease and HS grows
p.=1, 4 =0 is the "rlght -
ans‘er," and. the correct herd size per animal harvested
is HS = -20!

easy:
steadily smaller; thus,

Clearly’nonsense!

- We have ignored two biological restraints that will
-~

correct this nonsense. -First, the herd size per animal

harvested ust be positive: HS>0.

This imposes another
PR [
condition on p,q:

HS. = -20p + 48.63 q > 6

> p<£'%5-6-i = 2.4315 q° P
Since p + q = 1 we have 1 - q < 2.4315 qeoq ’> 1/3.4315
.2914 and p < .7086.

is ruled out.

f€u§ our nonsense value p = 1

-, .

© A Sécondly, all six conponents of the m;ni herd that
produces one animal for harvest [see (15)] mus t be
positive. Onge we.plug in P and q, these components are
‘given by the column vector shown in (LJ) (Trace the
calculations until you.see this. f@ All %1x will be posi-
tive if we 1n51st that

& .20

to become 7.90 animals and yield a 176.90 or 14.5%

=20 p + 31.08q > 0

£y

@ p <31
o> - q <1.554 q \
« q>1/2.554 = 39154  ° f
« p < ,60846.
Conclusions: by takirig p < .60846 but close to that value,

and q =|1 - P, the herd size may be taken close to minimal.

In Table I, various values of p and q are used.
The resulting values of HS and the resulting herds are
shown. The percentage breakdown of the herd into its
six components is given (or equivalenily, an actual break-
down for a herd of 100 animals is given). Rectall that
HS is the size of the mini-herd that yields one animal
for harvest; thus \I/HS is the fraction of the initial
herd G0 (investment) that is harvested after a year.

Example: in the first column, each 6.90 animals breed =

"output."” These figures are given as "% harvest.”
. Table 1. Structures of Sever Herds -
. - of Various Efflcuencves -
® -6 0 ® 6 6 @
P| .608° .606  .605 * .600  .580  .550  .500
q .392 .394 .395 .4oo 420 :450 .500
HS | 6.90  7.04  7.11  7.45  8.82 "10.88 14.3
% harvest [14.5% 14.2% )kalz 13.4% 11.3%, 9.2% 7.0% - .
Te (M| 343 1.8y c 2.5% 583 1653 270 38.7%
<3 |[AFlho.g  4o0.3 39.9 38.6 34.2 29.7 25.1
¥ YM [11.8 11.6 11.5 11.1 9.9 8.6 7.2 .
=9 YF [10.3 10.1 10.1 9.7 8.6 7.5 6.3
= cM ] 19.6 19.3 19.2 18.5 16.4 14.3° 12.1 -
—~ao |CF {17.2 16.9 164} 16 2 14.4 12.5 10.5-

Here p = fraction of adults that are males; q = 1 < p = fraction
of adults that are females. Herds of smaller size HS (animals
per animal harvested) result as p is taken closer to .60846,

‘which it cannot equal or exceed.

The structure and size of a herd that will yield a
harvest of T animals’ annually ydries considerably as we
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apportion the harvest\aifferently among adult male and
female animals. In a polygamous herd, there,is no need
to have anywhere neﬁf one bull ber cow to achieve the
birth rates for calves we have assumed. In this regard,

it is common in cattle ranching to run 1 bull with-20-30

cows. The first-three herds in the table above have cow-
_ to-bull ratios of 120 ( = 40.9/.34), 22,-and 16; the
other herds have much lower ratios. Thus herd(2) appears
to be practical and is fairly close to minimal size.

~

~4.7. Exercises B} -

. \
15. a. In Exagple 3, show that a 25:1 ratio of adult cows to

bulls‘arises when p = .60624 is used.
b. What value of p leads to a 30:1 ratiq}

16. Check our work in Example 3 as follows: take a herd of one
million animals structured like.herd(2)in Table 1. (Thus there
are 18,000 adult males, etc.) Use the after-harvest model as

. . programmed in Exércise 3, and take a 14.2% harvest, using the
values of p and q given in the table for herd 2 to calculate

' _ the constant annual harvest. On the computer, trace this
initial herd for 20 years. It should remain roughly constant

in size and Structure.

.

‘e 5. APPLICATIONS: CALCULATING THE HARVEST®

We will now ast:hat harvest should be taken from a
herd already in our possession, if it is to be pre;érved
in size for the future. We also will discuss harvests
that provide for controlled groﬁih of the herd. This is
in contrast to Section 4, where we "designed" herds to
prgvide specified harvests. Entirely different difficul-

ties will appear. i
3 ) woon .
5.1 Steady Anndal Harvests and Herd

Example 4. Given "this year's" herd By, what harvest,
Qq should be taken from it so that next year’s herd H,

‘

5 will have tﬁe same size and structure as this year's

s o - { .22
JERIC 5. L
:}Wiiﬁﬁn 1ﬂ7‘) . : . ‘ -

-9 . .‘ \

-

. ! ’

k4
herd, i.e. ﬁﬁ ] ﬁo? (The process can then go on for

* many yedrs, yielding steady-state harvests and herds.)

. This question arises before we harveét, of cohrse;
thus .we use %he éount-be fore-harvest model. Then we'must
solve | ’ < ?

Q

H
- + ‘
1 0 - -

Wy = #(y - Q)  [compare (5)]

i

v

for 60, when HU is known. Simplify the notation to
6 = 60 and R = RO = ﬂl end use algebra to rgach

(18) M= (M- 1) H.

.

(Here I is the' 6 x 6 ﬁdentitfematrix.)‘ Thef"obvious"
next step is to multiply through by y'l and get the -
“"right answer” Q = M 1M - ‘1)R. Unfortunately, M1 does
not exist! : : T

So far we have wogred at matriz level, i.e., we have
used matrix algebra to calculate with the matrices as a .
whole, not their individual entries, To make more pro-
gress we must go down to entry level and look at the in-
dividual equations that make up the matrix level fuli‘
system. - . i . A

N .

Let's examine (18) in detail. We appear to have siXx

“linear equations for the six unknowns in\?e (The right
- side is known.) However, four of the six

entries in 6
were set as zero ‘from the beginning. (We harvest only

ts

adult buffalo.) Thus, in (18) we have six equationms in
‘two unknowns, QM and QF. The equations are overdetermined.

Usually, two conditions (equations) sufficg to determing
two unknowns. Only if we are lucky, by~having tite ext

four éonditiops here add no contradictory requirementsqi.
for QM and QF, will w?bhave any solutions at all. TN

» ¥

when are we lucky? The six equations say in'aetai‘lz’8
L - 'Y

8

.

Up to now we have used AM, AF, etc., as components of the hgrd,
after harvest, QM and QF as the number of buffalo Just, harvested.®
14 Section 5 these variables are components qf the herd bgfore
ha?§TSt and{quotas of buffalo about to be harvested.

R >

L3

s



Y o.

L os . )
s, " . A v ¢

.95 (AM;QM) + 75 vn} :
.95, (AF-QF) + .75 YF

(.95 Q}t; -\“OS‘AM + 75 M ;\HY-
¢ (1%) {95@:,-05 AF + .75 YF}“’{Ars

.,

' - fo.= -YH + .6 CM YM =<.6 CM ‘
.. {19b) N {o-= YF + .6 cr} ke {YF = .6 CF} .
.48 QF = .48 Aad CM = 4§ (AF-QE)} .
» (19¢) {.kz QF = .42°AF - cr *=> 1cF = 42" (AF-0F) .
- Now, the values. df AM, AF,/YM, YR, CM,* assumed

. to be known, so we could solve for ouf unknowns,
. QF, using equations (19a) alone. Then equat1ons (19°b

. females. and *they !3111 give~birth to .48(AF. - -QF) new calf
males and -42(AF - QF) new calf females by next, year. .
72 .  Equations (19¢) simply say that these bitths, formin
" the calf populatlons of Hl’ mﬁst exactly replace CM and
*CF 111 H . :
Thus the foixr extra conditions in t‘he overdetermined vl
system (19) simply reql.'ure that the herd have a natural ag% t
' balance so, that, cons1der1ng the surv1val rates, it wlll
réplenish itself desp1te the harvest. :

N ‘;;r,,;l"??“:

- . R . M )
. - . ‘ . -
f‘- A oo e . o Y R A ' . ' .
0 . ™ " N M

RN c ) ) .

]

'3

- like' a geometric, series"

T . P
d .
-] - . . e . - .
o -
o B
[

"Constant Harvests From a-Growihg Herd

Example 5.

taking the same harvest every year

5.2

We}want'to‘select a harvest 6 so t at
the herd will double
‘in ten years while reta1n1ng the same proport1onal struc- ~

°

ture Thart is, if H\O is our 1n1t1al herd befoTe harvest
th‘1s yedr then at the end of ten years<we want to have
-H a5 the herd structure.. . . -~

¥ We use the before-harvest-count because, again, that «

lead to a‘*ontradiction unle‘Ss the values of AM, AF,' -1s when the question of selec;tmg a quota arises. --let
. YM, YF, CM, CF, QM and QF° already . known happen to satis- Hj be the herd before haW?St in, the. i*" year, 3 =01,
- Y
© fy (19b,c). °Any hetd for which these four equations . - 2, ..v, 10, Then R adhet .
(19b [3) al:e fot satrsfi'ed ednnot,’duplicate itself from \ T T \ ﬁl‘a M (HO ) S,
this'year to" next o matter “what ’fzarvest is taken } . ' ‘? s 3 -FM @ -0 =i o ] I
(Recall that -we are requiting H! = HO ;uth the strict. - : 2, \ i ! . ’
mathematlcal meanmg pf equal1ty for vectors. ). T oo . =M (HO Z 0 - M ‘. ;
- - T L : i Y 2> ‘- . “ L.
_This makes sense 1f we read equations (Igp,c)‘ bio- ¢ ) = “2H0 - MQ- M 3 : v
" logically. Conmsider (19b): to have H = 7 y this’vear s v . ‘9‘3 = M(‘g‘z -0 ., . »\ i
yearlings (whlch if they surv1ve, are adulbs in H. ) must . 33 3o 22 v
e - : L = MH, - M°Q - M°Q - 'MQ, etc. /-
- be-exactly replaced in* Hl by the sur\rlvors of th1s year' s * c 0 . : .
calves. ' Equations (19b) say that ‘Y™ and CM YF and CF L Thus: Co / . *
in our herd R = ﬁ = Hl must be in the natural balance . . ' /\ 2, = HIB -7,4'?;,’0‘ M 0'6 96: ) ., :
of six yearlmgs per ten calves for each sex so that o . ) . L
o ‘ - LA
' the survival rate of .6 will cause this year's:calves to . ] o ‘ = H Hy - (T+H+eu s s M9‘)NQ . "
exactly. replace the yearYing \populatlon as’ the year : N In this equatxon we. know ﬁ ‘ind want 6 'I"herefo‘i‘e %
passes. . L, ) ,
s . write it as.the set, of l1near equations . - C
‘Now mterpret' (IQC) Th1s,year s calves must also Be , ! (I+ 8 e 9)M (M'o ZI) i
. + M+ L+ = - :
. S predisely replaced by newbofn calves if ﬂ = ﬂo is to‘be 20 - y o k ; "o P )
- true. After the harvest, there will be AF - QF nadult ,’ B o Bx 'matr:x ali-known .-, .

~ ’ .

unknown

A11 of this h.as\bee‘n at matrix level.

We push ahead
in that spirit. . : . ’ )

X

+ M”. 1o0ks
When numbers are 1nvolved we _°

v

know how to add up such expressiohs: .

9

-] -
Have you noticed that I + M + M% 4

' -
.

2 .7 n=i Qi -,an .«
dT+a+a +...%3. = - ifadi. .
R . 1 --a X
/ . o .
o ’ |l
’ . " . . 2\5 - .
( - . L 4 .
o _ oL 178 )
P e woew -~ a

4




L ]

: d:;iﬂ?ﬁﬁon of *‘convergence”
our first task., = ° :

? {!

}? .systembls overdetermfned

. (21)

Can we do soﬁethiﬂh similar here, When Mand 1 areisduare
matrices? ¢ ’ ' ' ,

Put S = L+ M+ Mo o w,

Thus S is a 6 x 6 matrix, and MS makes sense: MS =

Mo+ 2. ven Mlo. .Subtraction leads to the familiar
massive cancellation: 3 .

10

- L)
Indeed we can.

. (I-HS=S-HS=1-H

In fact, (I - M)'1 does exist for our 6 x 6 matrix M.
We calculated ™M - I)
(I -M° M - I)

in Section 4.2; of course .

TK?S
\9( (1-m a1 -n'9.

S = | + H +~u + ...+

:The analogy- to the numerical gzometric series formula:is

striking. It might tempt #s t

geometrlf setdes formula:
I

jelieve the infinite

a M -d_
s He e = (I-H) analogous to "T—

Indeed, this'formyla' is valid for certa1n families of .
maxraceS"M and 1nf1n1te series. of " matfices is a fascinat-
ing squect in.its ownlxlght° We wlll not exolore in
that direction now but one ,thing is clear: a sensihle

for such series would be - )

.
. . . -~
. .. i noa

Wecuere interested In solving theflinear equations
(20) fof“a. using SZl) in (20)
we obtain: ., s
: (2 W) gl - WOt ' - 20y, J
We can multiply through by I - M, and by (I - 10)°1
which-does exist jpfoof omitted):’ . .
. (22) W = (L-w'N7 - - 2D,

Tbatgls as far as we can go at matrix levgl in this L ]

example; because )1 does not eXLst The right side of ¢ .
' (22) is known (althougﬁ unp. éaSant to ¢ lculate). The
Some herdgocan be doublied in
1n the way‘We suggested but most cannot.,

. We havé nade:progress:

H)(Hlo

ten years

P %?

26, . -
¢ - . @
.\) ‘. ‘n . A €~~»..
IC P
¢ M T

~
.

-

we can approzimately double»the,herd,‘and
(22) will help us see how. We' have examined whether we
can precisely double it.. w0

0f course,

5.3 Exercises

1A

17. a. Is the Injtial herd given in Exercise 1 a “natural" one’.

’
.

which, ,if. a proper harvest QH and QF were taken, cou\g

exactly reproduce itself next year? Explain your answer.

b. Repeat a. for the initial hetd of Exercise 4. .

Show that M
dd this?

does not exist. In how many ways can you

*

b. If we replace the #. 0 entries in M wlth arbitrary numbers

- b,c,d,e f,g,h, we get

o crc:crm.
. an ocon o
cooooo
crc>f: ogo
Oood oo
- N -K-X=
.

0

A . TR
Show that (M) ! does not exist, either. Thus the over-
determined’ nature ‘of Examples 4 and 5 does not depend on .

specific birth and sunvnval rates. (The reader who knows, >

- about determlnants will have an advantage in th|s problem )”“

19. a Revise Example 5 so that the herd will grow byASOZ ln -
&
ten years. * That is, set H)O = l 5 H and carry through NN
‘s the algebﬂa of Example 5 for this hew casey . Reach eQua-
s LY -3 .
. tions analogous to (22)
b. Repeat a. wnth 502 growth over elght years. Y,

—
20. Check our geometric serles result |n (21) by carefully .
o rnult*lplylng out?the left side of "(I M) (I+M+H +. +H9l = I‘H
, to get the rlght side. (Why does thls*conflrm equatlon (21)?)
. ldentnﬁ’rall the algebrait! properties of matrix multlpllcation .

b and‘aﬁdltlon‘that you use, such as the assoclatlve law of -

m&ltlpﬂlcatlgp, left dlstrfbutlve law, etc

BT a ].ES() . L e
e et

’

«
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o
t

Q e y ;
I first met this model when Karl Zinn of the Center

.  for Research on Learning and Téaching at the University

Iy

IS

%

Y

N

of Michigan introdqua me to & computer program named
BUFLO; written by L. Braon and R. L. Siegel of the
Polytechnic Institute of Brooklyn and distributed natiofial-
1y by the Program Library, Digital Equipment Corporation,
Maynard, Massachusetts 01745. The érograp and’i}s.dOCU-
mentatidn are part of project EXTEND ‘and the Huntingtor
Two Computer Project. Program'BUFio interadtivefy ' '
permits one 'to follow a buffalo herd throﬁgh mény years

while applying a vaitéty of management policies.

[

While -equations’ (2) are taked directly *frim BGELDaZ o

_.I am solely Tesponsible for the méthématics that follows - <«
in this_paperf : '

L]
« .

»

An alternative discuss&onaof exaétly the same model +
‘with different survival rates based on an actual ‘modern
buffalo herd may be found in:

-

- Watt, Kenmneth E. F., Ecology and Resource{ - .
- . Management’, McGraw Hill, 19 , p. 358 ff: .
, 1S 1s an excellent book for all readers '

, in applications of undergraduate-level math °
. to biology. ’ ’ '

The bﬁffalq modglvdiscussed there is drawn froﬁ:.

Fuller, W. A., "Biology and Management of the Bison
of Wood Buffale National Park,” Canadian

Department of Northern Affairs Nztural Resources .
-a 1 1xe¢ Mapagement Bullefin, Series Yy
& 0. N . . ., :

1]

: Af,I read Watt, the'survival coefficiengs matrix used-
.. " by Fuller and Watt is: ) Y )
Crtfe 0 s 0 0., 0) ~
: 0 .9 ,°0 .75 0 -0 )
o H= |0 O 0 0 .4.-0 w
. . 10 0. 0 ‘0 0 .4
R ¥ |o 3 0 o o o ,
2 Lo 30 0 0 o .
5 . o . ‘. : o~ h
' aqdﬁtheir "guesstimated" 1830 herd a¥~40 million buffalo L
. . : .
-.is-struptuged as: e : . .
' “e B 28
. . . ) . (A oy S
.. - . N A . ry L4
S 4 181 .o

k]
5l

4
. s
-

AM = 16.8 million. YM

=1.2 tM=2.0
+ AF =16.8 . YF=1.2 (F=2.0 .
‘ . - . - - ¢
“Our model is a simplified variant of the more .
importént L!;Ijb modéls for populations with age struc-

ture. The original papers are?

Le;Iie, P.H., ”Thé uses of matrfces in certain
population mathematjcs," Biometrika "33 (1945),
. pp. 183-212. . .

Leslie, P.H., "Some further notes on &ye use of
matrices in population mathematics," .
Biometrika 35 (191§L PP~ 213-245. '

Much research-by Lewfie and ‘others has followed, with the
goal of overcéming ‘the limitations of Leslie's original
mgdels. Th§§e l;mfp;:ions areiﬁuch the same as‘the_'
“ones we have disCussed -for our simpler” model: use of
constant éoéffig}ents from year to year and linedrit{ of
the model. In addition, the Leslie approach has been -
" applisﬁ to much more than buffalo herds. The interested

’

Feader might start with: . o

Pielou, E.C., An Introduction to Mathematical
Ecolo Wiley-Interscience, New York
4 ] »
1969, Chapter III covers the Leslie model.
Pielou is a leading mathematical biologist;
her pooks are among the basic advanced ‘
work§ in the field. - :

Usher, M.B., "A matrix approach to the management

+ ¢f renewable resources, ,with special’reference
to selection forests," Journal of Applied
Ecology 3 (1966), pp. 355-3¢7. . B

Usher, 5.B. A matrix approach to the management
of renewable resources, with special reference
. 'to selection forests -- two extensions,”
« <« Jodrnal of Applied Ecology 6'(1969), pp. 347-8.

Usher~NM.B.,"A matrix model for forest manaéémeht,“
) Biometrics 25 (1969), pp. 309-315.

Fowler, Charles ‘W. and Smith, Tim, "A matrix-

method for determining stable densities and age
‘distributions and its application to Africar

elephant populations.” University of Washington
Quantitative Science Paper N6. 31, Seattle, . )
January 1972, (Write Fowler or Smith at
U. Washington, Seattle, 98195 for more o

. .information.)

"




A vell-written discussion of the Leslie modgl with- -
- application to harvesting of herds (including d323~£qr~—
sheep ranching) is -

Anton, Housrd, and Chris Rorres, Applications
4 of Linear Algebra, John Wiley E Sons, 1977,
Chapters 9 and 10. b -

8. . ’ -
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S 8. ANSKERS TO EXERT TSES

. - /.

1. 111 write vectors horizontally to save space.

. . N

We are given

‘ﬁ‘o =.(200, 1000,300, 300, 520, :500) and Q = (100, 200,
< 0,70,0,0). -~ *#_ - % ‘
. - - - . v e, » .
ra. Gy=Hy - Q ' L. .
. = (100, 800, 300, 309, 520; 590) PR .
. o L. .o Y I . 30,
o . \ . ! :
[C RLNETE \

5,6.

P
-
-l N . N
b. H) = MGy = (320, 985,%312, 300, 38’0.'336) .
c. B =H -T= (220, 785, 312, 300, 384, 336)
d. n‘z = nc = (443, 971, 230, 202, 377, 330)

(Decimal results have been rounded.) .

- ES - N o
e. Gz =H, -Q= 43, N, 23°‘2. 377, 330) L
f. The herd is shrinking slowly 'the key category of
adult females. This will continue for a while, causlng

the whole herd to shrink slowly .

Over two years Go, zleft unharvested, would become HZG

harve’st Q, IS subtra He@lso subtract, not
Ql' but the desc (:s of the harvested sub-herd Ql at the end
of the tyo year perlod HQI

0° The
ed, of course.

that these sub-~herds can all be- superlmposed
A FORTRAN program is -listed in Tablé 2, pages 34 and 35.

This may I'\ave been a frustrating problem -- it has n’:: sc:lution.
The herd is inherent}y unstable because, in 1830, it was
growing expon&iitially ‘(or would have beeri, had not white man
int'er,fered). A harvest of 1.4 m_illlc;n males, 2.6 million, fe-
males will convert the initial herd &f 60 million into a herd-
of 59.984 million in ten years, but the herd stfucture. is
drastically changed. The new herd.has many,fewer calves than
ihe‘original, and the*herd is in fact headed for extinction.
Other harvests: of 4 million lead to herds that grow rapidly

or decline.rapidly, but this herd is inherently unstable. @

And that's the wholﬁolnt. -
Computer printouts dre dnspl‘ayed in Tables 3 and &4 (pp.36-42).
The point is that, by slaughterlng females we .also slaughter
their potential progeny. gThe effect of harvesting a lbt of
femates is to dest’roy the herd. Alsa, all of the herds that

involve 203 harvest (Exercise -6) meet a fast extlnctnon

N

One example 'is shown in Table § (page 43), with conmentary

You should try others. . .
Y al .. ., S .
a. Gl = M(;0 Q i

-
&, = 1.12 Gy,

The l:nearlty of the mod'el assures

.




- r .
e . . @ . T . - .
T ola -1 ' N ‘ ’ . >~ LS ’
) b. Ty = (- 1.12D70 S W Enuations. & = MG
. & . - » o -
PR . 10. Equations E] = 0 -Q _\’%HGT -Q -
. - A - . . N .
. SR ek L N : - 5 =g
. . D G. =G i . " < ) . . . .
2 0 . . _ P El; = H—[;; - b‘_ J
v, Jead to §olution eq . > ‘ N -
o S (A -(n 1) (e 131G , S5 = Moy °
‘D' : ) : ' é;‘ﬂ&; -‘i ¢ .
. 11. Equations’ c‘ - nc - ] A 7 é .8 ¢
- . 'i;‘z-nc‘-lzq 6 -8 . -
. - & =1.25¢ condense. to .
. E3 % . 5 0 . ) - - 6“ '* 2’ -
lead to solution R ' - qu:'a Gg = M6 ~ (" + M+ MY~
* ’so - W - 1.25,1)" (M~+12109 . . . " Thee saducion 13 \
. .'f.s a2’ . L= - 4 = (H6 - ZI) (H’ - i "’%\Q-
12. Eguations \G} = K5, (harvest is =2) Gy .
A u;-‘l' © ., 185 bx = 60661
) o I3 ‘-'/‘.'EZ ) o 164 A computer printout appears as Tahle & (page W) R‘ESW"FS
.3 - ~ Y " ares right om target.
. \ G, = MG, v - ) :
¥ ) 2 - --Q\ (fin;f‘ha ) < . . 177. as° Nog to glve just one reasarr amam_g mamy,, equetions (D)
- 5 _:‘ " 3 .o ‘ ares nat satisfied hy = 520),, Y = FA0. .
A - -
S G =2 .
- b 5 ‘io .. : bs * No; agaim, equatldns (19h) are notr stiisfied by 2 Hendi
A have solution - . with- 122 female calves and & Femmﬂe yesariiimgs..
N -
. - ¢ Go = (HS 21) Q‘,.a . ¥ . , A 19 ~ cban e ’ ,
. ' ' RS . N v . au ge: t equations to > .
~ °  _ 13. Equations G, = M, - Q " ‘ . =n G - z ,,,3)) ‘ B
. 1 . B =M Hy -~ M{E " W i-......* Q .
-, . . - - H‘E -a , , e - N .
. . Gy = M6 X o Bige= 1Sy . S
. D S 3 - . e . -
- ‘ ) 53'"5.2'0- . N . - j ‘Then.-‘ézz) is replaced by the ovenditemmimed! system .
~ . .- -3 <N o Y .
- i B C c 0 R =@ e - iR, 2 g
. fap S — -
E‘"n ¥ Es ;'ﬁ-ﬁz -Q ~ Bt Nowk. r ’ ‘. R
. o T et + N P S | .
, Gs = Go &;’. HEE o ML+ -~ Q‘
) p condense to , coe '_‘ . FBiE Q"S-';t; o T ’ ’
"« L, zfo = _G\S = HSEO- (ﬁl‘, 4?#“&2%&%&&?. - T . lead: to: this replacement far ()= . .
. ot - P . _ \ c . .
. Thus, . - K Y. ™ : . R &(m fa - H);'Oi)& ~-H-5HJ)%- .
o _ N . . . . - _ y . o
‘ CRNCEE ) AT B e - : , ) _ o
% o . - . - \ ) : 33
N . %~ ° ' 185— . - . . ) . ) . lgﬁ .
A S R - o 186 .
ERIC . - - : : o AT ¥ e
- EEETET o v . -t e o . oL 4 é - .
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.

(fake data-card-pair to terminate program)

(initial herd)

¢
7.2

8.4
(harvest of males, females; years traced)

Many pairs of data cards can

GE DISTRIBUTION OF HERD'}

11,002
4 LNO0ENGAL HARVEST 1S 'Fo.2¢ WALES, * F6.2° FEMAL
les.

Q
5.4
20

+ 18Xy tPERCENTA
CONS
1)

ERCENTS

OF P
04)
HO

iOZl
L

-1

19

06)
0, *
ONS

X -
cP N & W metd

20X 10>x00x0O.
=Ru EL0Z Fu OB DOW
—_

o
-

blank card

-
0
~”
o
o
[
(=3
-
Laal
LY
—
L
0
-
Y
o
&
2
o
Lo
c
-
(=3
[
£ o«
-
-
o
1%
]
©
o
=
(=3
-
Q
£
&
%3
©
s
L)
v
()
&
L)
©
L]
L
-

are these, given as samp
precede-the fake pair.

€
%
e

B

It does more than Problem 6

in'percentages and in actual
if 1 fail to sav

.V will not hav

ANl of fhis

code simply sets
up the nitial

herd proserly

PERCENTAGE
Note

1

TEHPO 15 used to avoid 3 key
lue of H(2)

IBM.1130 computer

trap i1n-the program

the ofd va
o it to use in the correct calculation

af H{S) and H(6}
pige..-...

>
Note

used to create all the
THIS PROGRAM ACCOMPANIES THE 'ABPLICATION PAPER

°
- . i

.

et -
0
VEIKK, LY

2

The program wassrun on an

..continued ni

.
u

.
\
.
o

{IOI‘L'lOO

L)
VETIST

s the results
g

NYEAR, TGTAL H

4
A
K=],LON
[
LeHIL) * °
3)

s

e
P
- - )| d-ango
ONEA ~ monomonon
w 2. ox- A0 WE~NMENO- b
WO b > AT x0 AOLAALOVE(I(‘((OOOR“A
,AFM ~2’ oau—Xu XU\ O XU NOIMA_OZ=ITIIII O ENw
—_ z -
~ o

o = ~x
Trmo DA -

A= JOZIX~ O F= O

A listing of my FORTRAN program,
*MANAGEMENT OF A BUFFALD MERD'

printouts that follow, is given below.

asks, because it give

but should easily adapt to any standard FORTRAN.

mitlions of buffalo.

rururur&rufurur.r.r.r.r.rur.r.rur.r.r.r\

o !

l C )
Aruitoxt provided by Eic:

IE ©




TABLE 3 (Continued)

. . TABLE 3, . ,
Ywenty-year' printouts for the five cases Case b) R . i
“ - ) called for in Exercise 5 follow. 9 MILLIONS OF BUFFALO N -
se a YEAR TOTAL AN AF. N~ YM ye cH CF .
, - e o HILLIONS OF SUrFALO ¥ o ce 0 59.999 18.000.< 16.200 * 5.400 4.800 ’ 8,400 7.200
. LY . . 17. .0bo 4, .75 6.8
S 0 50.999 18.000 16.200 5.400 4.800 , 8.400 7.200 ; 22%? }2&2‘2’ 1'5333 . 150.665 -2'(3);(2) §Z§§ 7.52;
1 60.079 17.150 18.990 5.040 4.320  7.775 6.803 3 B5.158 17.620 20.425 ° 5.181  4.533  9.278 8.1"8
.2 +63.191 16.072 21.280 4.665 4.082 9.115 7.975 4 68.251 17.625 21.804 5.567 “:87] 9 804 8.578
3 67.453 14,768 23.278‘ 5.469 , 4.785 10.214 8.937 5 71.941 “17.919 23.367 5.882 “5.147 10. 466 9.957
4 72.276 14,13 25.703 6.128 5.362 11.173 9.776 & 6 76.300 |81'35 25.059 6.279 514910 ||-2|6 98”0
-5 78.165 14.021 28.440 6.704 5.866 12.337 10.795 : 1 81.324 19.223 26.927 6.729° 5.888 _ 12.028 10.525
<76 Bs.2l2 1b3i8 317 7.h02 6477 13651 11.9kk : 8 87.075 20.309 28.398 7.217 6.315  12.925 11.309
7 93.521. 15,183 34.704 . 8.190 7.166 |5.0& 13.195 - 9 ‘93.63| 21.707 31.284 7.755 6785 13-919 12.|79
E 8 .103.112 16.567 38.344 " 9.048 7,917 16.658 14.576 10 101.063 23.438 33.809 8.351 7.307 15.016 13.79
N 9 1414} 18.524 42.365. 9.995 8.745 18.405 16.104 1} 109.452 25.529 36.599 9.009 7' 83 16'228 Ihlzoo
R 10 .126.736 21.094 - 46.806 -17.043  9.662 . 20.335 17.793 P -~ 12 118.830 28.010 39.682 9.737 8.520 17.567 15.371
* 11141039 .24.322 1.713 12.201 10.676 ° 22.467 19.658. o 13 129.480 30.913 43.088 10.540 9.223 19'0u7 16.666
. . 12 157.210 28.257 -134° 13,480 11:795  24.822 21.719 . N 1 141.332 34.273  46.851 11.%28 10.000 20682 18.097 *
13 175526 32.854 . 63.124° 14893 13.031 27.424 23.996 1S 15k 574 38.130  51.008 12.409 10.858 22488 15,677
15 218.803 W489% 77.053 18.175 15.907- '33.476 29.29) . 17 185.788 L7.520  60.677 14.690 12,85k 26689 2335
16 244,425 52284  85.131 20.085 17.575  36.985 32.362 18 zoz.:oaz. :)66 66.283 16:013 |l.'on 29'1210 25'45810
17.273.018 60.734  94.056 22.191 19.417 40.863 35.755 ) 19 224.417° 59 518 72.478 17.47h 15.290 31.816 27.839
304.879 70.341 103.916 24.51p 21.453 45.146 33.503 - - 20 246.995 66.648 79.322 19.08 203 V34989 30
/ 0338 81, 217%34 810 27.088 23.702 49.879 43.64k4 ) 2 73.322 19.089 16.703 " 34.789 30.4k0
" zo .759 93. *u68 126.846 29.927> 26.186 55.109 48.220 . N .
" . , ) . PERCENTAGE" DISTRIBUTION OF HERD .
- o g . PERCENTAGE DISTRIBUTION OF HERD . ’ YESR T&T,AB QH o - zAFo mo ;Fo ”fno ' IZCFO
) YEAR TOTAL ~  AM, AF YM 'YF cH cFo- . | . 30. 7. 9. S .
0 1000 "30.0 '27.0 9.0 8.0  14.0 17.0 T2 ey 302 299 83 7 2.9 3
11000 28.5 3.6 8.3 7.1 2.9 113 Poo) 0 s 310 7k s 7138 2.
; - 3 100.0 - 27.0 31.3 7.9 6.9 1.2 124
- . 2 100.0 25.4 (33.6 7.3 6.4 Wb 12,6 4
’ 3 100.0 21,8 BL.5 8.1 o+ 7.0 15 3.2 ¢ o= 3.9 258 3l.9 8.1 7.1 4.3 12.5
: 5 100.0 195 3557 84 74 54 13.s 2, 100.0 " 2h9 P32k 8.1 7. Wb 127
, 5 1000 17.9 363 8.5 7 57 13.8 - 100.0 24,1 32.8 8.2 7.2 4.7 \ 12.8
6 1000 6.8 368 8& 7.5 160 1h.0 7 99.9 23,6  33.1 8.2, 7,2 167 12.9
- 7 100.0° 16.2  37.1 8.7  7.6.7 16.1 _ w1 : 8 100.0 23.3 . 333 g2 7.2 4.8 .12.9
8 100.0 36.0 ° 37.1 8.7 7'.6 16.1 ~ W1 ‘ Ll 100.0 23.1 33'10 8.2 7.2 14.8 - 13.0
‘9 100.0 16.2 7.1 8.7 7.6 161 Wy » 10 100.0  23.} 33.4 8.2 7.2 14.8 13.0
10 100.0 16.6 36.9 8.7 3 7.6 16.0 IIIO.O 11 .100.0 23.3. 33.4 8.2 7.2 + 14.8 |2..9
. M- o999 172 3.6 86 % 159 139 - . 12 100.0 235  33.3 8.1 7.1 4.7 12.9
. 12 100.0 17.9 .36.3 " 8.5 7.5 15.7 13:8 . ’ 13 .‘]00.0 23.8 33.2 ¢ - 8.1 7.1 14,7 12.8
“ 13 .100.0 18.7 35.9 - 8.4 1. 15.6 13.6 14 ~-100.0 24.2 33.1- 8.0 7.0 5.6 12.8
M 14 100.0 19.6 35.6 . 8.4 7.3 A5.4 13.5 15 100.0 24.6 32.9 8.0 7.0 Lb a5 12.7
- 157 1000, 205 35.2°  8.3- 7.3 5.2 13.3 ) 32.8 I -
16 . 100.0 - 21.3 34.8 ‘8.2 7.1 5.1 13.2 17 100.0 2525 32.6 7.9 6.9 14.3 2. 12.5
17 99.9  22.2 34.4 8.1 | 2 5.9 13.0 K 18 100.0  26.0 32.4 7.8 6.8 4.2 .2 12.4
T,oe 18 100.0 23.0 /.00 8.0 7.0 4.8 ~12.9° 19 100.0 26.5 }2 .2 7.7 6.8 4.1 12.4
2 “13 1000 238 337 7.9, 69 1€ 128 : 20 100.0 26.5° Tml T 67 0 )23
20 100.0 k.6 334 738 6.8, . auls. 12.6 - -~ - !
. ©oe s : . CONSTANT ANNUAL HARVEST IS 3.00 MALES, 1.00 FEMALES (MILLIONS)
- CONSTANT AmwAL HARVEST 1S 4.00 MALES, 0.00 FEMALES (MILLIONS) / : ) )
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' TABLE 3 (Continued) ' ) - TABLE 3 (Continued)
Case ¢) + ~ . . Case d) ~ t .ot
MILLPONS OF BUFFALO ' / ‘ i HILLIONS OF BUFFALO :
YEAR' TOTAL MM AF YM YF M CF YEAR TOTAL AM AF YM YF CH | CF ] L
0 59.999 -18.000 16.200 5.400 4.800  8.400 7.200 0 ?4‘999 18.000 16,200 5.400 4.800  8.400 | 7.200
. I 60.079 19.150 16.990 5.040 4.320  7.775 6.803 1 0.079 20.150- 15:989 5.040 4.320  7.775 { 6.803 :
2' 61391 19.972° 17.380 4.665 4,082  8.155 7.135 2 60.49% 21.922. 15.430 4.665 4.082  7.675 6.715
3 62.863 20.473 17.573 4.893 4,281 8.342 7.299 3 60.568 2§.325 1L.720 4.605 4.029 . 7.406 6.480
b 64.226 21.139 17.905 5.005 4.379  8.435 7.380 4 60.200 24.613 14.006 4.443  3.888 7.065 6.182
< 5 65.717 21.817 18.295 5.061 .. 4.428 8.594  7.520 5 59.493 25.715 13.222 4.239 3,709 %723 5.882
6 ° 67.359 22.522 .18.701 5.156 ~ 4 512 8.781  7.684 6 58.417 '76.609 12.343 " 4.033 3.529 6.346 - 5.553
7 69:126° 23.263 19.151 5.269 4.610  8.976 .85k 7 56.928 27.304 11.37h .3.808 .3.332 5,925 5,184
8 71.038 -24.052 19.651 5.386 4.712 * 9.192 . 8.043 8 55.002 27.795 10.304 3.555 " 3.110 5.459  4.777
3 73.120 24.889 20.203 5.515 4.826  9.432 ' 8.253 ) 9 52.610 28.071 9.122  3.275  2.866  4.946 4,327
B 10 75.389 25.781 20.812 5.659 4.952  9.697 8.485 0 bs.715 28.125  7.815 2.987 2.596  4.378 3.83|
’ 11 77.864 26.737 .21.486, 5.818 5.091 9.998  8.741 o Y277 27.94 6372 2.627 -2.298  3.75%  3.282
12 80.571 27.7647 22.230° 5.994  S.244  10.313 9,024 12 h2.251 27.517  4.778  2.250 1.963  3.038 2.676 T
13 83.533 28.871. 23.052 6.188% S5.414  10.670 9.336 13 37.587 26.830 3.016 1.835 1.605 2.293  2.006 .
4 86.781 30.069 23.960 6.402 5.60Z ' 11.065 9.682 ) . 1h 32,229 25.865 1.069  1.376 1.204 . 1.447 1,266 '
15 90.344 31,367 24.964 6.639 “ 5.809 11.50] 10.063 I5 26.115 24,603 -1.080 0.868 0.760 0.513  0.449
16 94.257 32.778 26.072 _ 6.900 6.038 11:982 10..48k o 16 19.174 23,025 -3.456 0.308 0.269 -0.518 -0.453
17 ,98.559 34.314 27.297 " 7.189 6.290 12.514 10.950 17 711.329 21.105 -6.081 -0.311 -0.272 -1.659 -1.451
18 103.290 35.991 28.651 7.508 6.570 13.102 11.465 18 2.495 18.816 -8.981 ‘-0.995 -0.87 -2.919 -2.554 .
19 180.496 <37.823™30.146 y.861 6.879 13.752 12.033 , 19 -7.423 16.129 -12.185 -1.751 -1.532 -4.31) -3.772 -
20 114.230 39.828' 31.798 8.251 7.220 i4.470 12.66] . 20 -18.533 13.008 -15.725 .-2,586 -2.263, .-5.849 -5.117
. ¢ o N T . .
. PERCENTAGE DISTRIBUTION OF HERD : : PERCENTAGE DISTRFBUTION OF HERD .
YEAR TOTAL ~ AM . AF YM YF M CF YEAR TOTAL AM T AF YM YF ° CH CF
0 ,Jooso, 30.0 27.0 9.0 8.0 140 12.0 0 100.0  30.0 27.0 9.0 8.0 1.0 12,0 ° .
| ‘100. 31.8 28.2 ., 8.3 7.1 12.9 , 11.3 . 1 100.0  33.5 26.6 8.3 7.1 1279 11.3
2 100.0 ™32.5 * 28.3: 7.5 6.6 . 13.2  11.6 2 100.0 36.2°  25.5 7.7 6.7 12.6  11.1
3 Joo.0 325 27.9 7.7 6.8 13.2 1.6 3 100.0  38.5 24.3 7.6 6.6 12.2 10.4
4 g 9 32.8 27.8-+ 7.7 6.8 13.1° L11.4 4 l%.o 40.8 23.2 7.3 6.4 1.7 10.2 .
5 a 9 33.1 -27.8 7.7 6.7 13.0 1.4 5 100.0  43.2 22.2 7.1 6.2 1143 9.8
‘6y 100.0 33.4 27,7 7.6 6.6 13.0 11.4 "6 100.0  45.5 217 6.9 6.0 10.8 9.5 )
7. 100.0  33.6 27.7 7.6 6.6 12.9 11.3 . 7 10070  47.9 19.9 6.6 5.8 10.4 9.1
s . 87,999, 33.8 xt37.6 7.5 6.6 12.9 11.3 8 100.0 50.5 18.7 6.4 5.6 9.9 8.6
9 “100.0" .0 27,6 7.5 6.6 12.9 11.2 9 «100.0 53.3  17.3 6.2 . 5.4 - 9. 8.2 .
S 100 10020 $34.) 27.8 7.5 6.5 12.8 -11.2 i 10 100.0  56.5 15.7  .5.9 5.2 8.8 7.7,
1 - 99.9 = 34.3% 275 7.4 6.5 128 11.2 B il 100,0,° 60.3 13.7 5.6 4.9 8.1 7.0
X 12 1000 _ ,34.4 z7.5{\;} 6.5 12.8 " 11.2 ™% 12 00,0 65.0 11,3 53 b6, 7.2 6.3
3 ,100.0% 34:5° 27,5 b 6.4 1247 - 11,0 13 100.0 71.3 " 8.0 4.8 4.2 6.1 53 ¢
14 "100.0" 34,6 27.6° 7.3 6.4 1247 nh : th 100.0 , B80.2 3.3 4.2 3.7 4.5 3.9, -
< 15 100,07 34.7 27.6 7.3 6.4 12777 a0 g L. ) ‘
16 ,100.0 «34.7 27.6 7.3 6.4 12,7 1%, _CONSTANT ANNUAL HARVEST*1S 1.00 MALES, 3.00 FEMALES (MILLJONS)
17 100.0 34.8 27.6 7.2 6.3 12 6 M. . The date for years 15220 is nonsensncal, and means that}
18 100.0  34.8 21.7 7.2 6.3* 12,6, 1.0 - . herd is extinct: after the lith year, the required harveft of
19 + 100.0 34.8 27.7 7.2° 5.3 1256 1.6 . adult females is not avallable
fo , 100.0 , 34.8 27.8 7.2 6.3 12.6 11.0 . . . .
CONSTANT ANNUAL HARVEST 1S 2.00 ‘MALES, 2.00- FEMALES (MILLIONS) . , ey " . . "
> ~ © Lo . _ T, < " . : 39
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TABLE 3 (Continued) = ity 4
Case e) ' - - ) "““xN%
. ©  MILLIONS OF BUFFALO
*YEAR TOTAL AN AF YM YF T OCM CF.
0 59.999 18.000 16.200 5.400 4.800 = 8.400 7.200
-Y1 60.079 21.150 14.989 5.040 4.320 7.775 - 6.803
2 59.591 23.872 13.480 4.665 4.082 7.195 6.295
3 58.273 26.178 11.868  4.317 ,3.777 6.470 5.661 .
4 56.175 28.107 10.107 3.882 '3.397 5.696 4.98Y
5 53,769 29.613 8.150 3.418 2.990 4.851 4.245 .
6 49.475 30.696 5.985 2.911  2.547 3.912  3.423 £
7 W4.730 31.344  3.597 2.347 2.053  2.873 2.514 0
8 38.9%5 31.538 0.957 1.723 1.508 1.726  1.510 p
9 32.099 31.254 -1.958 1.035 0.906 0.459 0.402 y
- PERCENTAGE DISTRIBUT!ION OF HERD v ;{'
YEAR TOTAL A AF YM YF CM CF i
0 100.0 30.0 27.0 9.0 . 8.0 14.0 12.0 /
1 100.0 35.2 24,9, 8.3 7.1 12.9 11.3
2. 100.0 4o.o 22.6 7.8 6.8° 12.0 10.5
3 100.0 44.9 20.3 7.4 6.4 <110 9.7
4 1q0.0 50.0 17.9 6.9. 6.0 ~ 10.] 8.8
5 100.0 55.5 15.3 6.4 5.6 9.1 7.9 y
6 100.0 62.0 12.0 5.8 5.1 7.9 6.9 ., ’
7 100.0  70.0- 8.0 . 5.2 4.5 6.4 5.6 « S
8 100.0 80.9 2.4 ~ u.% 3.8 4, 4 3.8
ey
CONSTANT 'ANNUAL HARVEST 1S 0.00 MALES, 4.00 FEMALES (MILLIONS) -
Extingtion occurs as a result of the hanwest fo)lowing the.
eight§£§ear
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\"=u' YABLE 4 ’

Twenty percent harvests lead to early extmction in all fi
cases requested in, Exercnse 6:

¢

“‘Case a), > i . ~
P MILLIONS QF BUFFALO '
YEAR TOTAL AM AF YM YF CF
0 59.999 18.000 16.200 5.400 4.800  8.400 :
1 52079 9.149 18.990 5.040 4.3%0. 7.775 67803
2 47.591 0,472 21.280 4.665 +x4.082 9.115  7.975
3 44.633 -8.051 23.278 5.469 4.785 10.214 8.937
PERCENTAGE DISTRIBUTION OF HERD
YEAR TOTAL AM AF - YM YF CH CF
« O 100.0 30.0 27.0 9.0 8.0 4.0 12.0
1 100.0 17.5  « 36.4 9.6 8.2 14.9 13.0
2 100.0 0.9 44,7 9.8 - 8.5 19.1 16.7

CONSTANT ANNUAL HARVEST IS 12.00 MALES. 0.00 FEMALES (MILLIONS)

Case b) \\\\\\\-_\\7T
o NS

ALO .
YEAR TOTAL AM AF YM YF CH CF
0 59.999 18.000 16.200 5.400 4.800 8.400 7.200
1 52.079 12.149 15.989 5.040 4.320 7.775., 6.803
2 L4891 6.322 15430 4.665 4.082 7.675° 6.715
3 37.748 0.505 lh 1720  4.605 4.029 7.406 6.480
4 30.522 .-5.065 14, odé 4.443  3.888 7.065 6.182
Y - PERCENTAGE DISTRIBUTION OF HERD
YEAR TOTAL AM AF YM YF CM CF
0 100.0  30.0 27.0 ., 9.0 8.0 1.0 12.0
1 100.0 23.3 30.7° 9.6 8.2 4.9 "13.0.
2 100.0 14.0 34,3 " 10.3 9.0 17.0 14.9
3 100.0 1.3 38.9 127 10.6 19.6  17.1

CONSTANT- ANNUAL HARVEST IS 9.00°MALES, 3.00 FEMALES (MILLIONS}

Case c) ;
P MILLIONS OF BUFFALO a

YEAR TOTAL. AM AF .NH YF [of,} CF
0 59.999 18.000 16.200 5.400 4,800 #8.400 7.200
1 5§2.079 15.149 12.989 5.040 . 4.320 7.775 6.803
2 42,191 120172 9.580 - L.665 4.082 6.235  5.455
3 30.863 .9:063 6.163 3.7 3.273 4.598 4.023 v
L 18,446 5.415 4 2.310 2.759 _2.414 2.958 2.588
5 L.627 1.214 -1.994 1.775 1.553 1.108 0.970

- PERCENTAGE DISTRIBUTION OF HERD

YEAR JOTAL AM AF YM YF CM CF
0 100.00 30.0 27.0 9.0 8.0 15,0 . 12.0
1. 100.00 29.0 24.9 9.6 8.2 14.9 13.0
2 100 0 28.8 *22.7 11.0 9.6 14.7 12.9
3 100,00 29.3° 19.9 1241 10.6 _1“.8 13.0
4 109 0o 29.3 12.5 J14.9 13. 0 16.0 14.0

CONSTANT ANNUA} HAkVESTIlS 6.00 MALES, 6.00 FEMALES. (MILLIONS)
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‘Table 4 (continued)

.Case d)
| MILLIONS OF BUFFALO

YEAR TOTAL AM AF YM YF CM CF
0 59.999 18:000 16.200 5.40 4.800 8.400 7.200
1 52,079 18.150 ., 9.989 5.040, 4.320 7.775 6.803
2 39.491 18.022 3.730  4.665 4.082 4.795 4.195
3 23.978 17.620 -2.394 2.877 2.517 1.790 1,566

- PERCENTAGE DISTRIBUTION .OF HERD

. YEAR TOTAL AM AF \C YF . CM (3
0 100.00 30.0 27.0 -+ 9.0 8.0 14.0 12.0

w 1 100.00 34.8 19.1 9.6 8.2 14.9 13.0
2 100.00 4.6 ~ 9.4 1.8 10.3 12.1 10.6

CONSTANT ANNUAL HARVEST 1S 3.00 MALES, ?/.00 FEMALES {MILLIONS)_
]

~

t  Case e) . . )
MILLIONS OF BUFFALO

YEAR TOTAL- : AM°‘ & AF YM YF CM CF

«+ 0 59.999 18.000 16.200 5.400 4.800 8.400 7.200
1 52.079 21.150  6.989 5.040 4.3200 7.775 6.503
2 36.791 23’.872 7-2.119  4.665 4,082 3.355  2.93%

' T » ' ) ’ '-'

i . PERCENTAGE DISTRIBUTION OF HERD -

YEAR TOTAL AM AF YM YF CM CF
0 100.00 30.0 27.0 9.0 8.0 14.0 12.0
1 100.00 40.6 13.4° 9.6 8.2 14.9 13.0

CONSTANT AN)fUAL HARVEST 1S 0.00 MALES, 12.00 FEMALES (MILLIONS)
I - -~

-

-

2

’

> 1 !

Data }or Exercise 7.

- {60 0 \.40 , 0 0 ©
g 0 . .60" \O .40 0 0
. o o 0 .15 0
X o o 0 o .5 °
v 0- .25 g\ 0o 0 0
0 .20 0N 0 0 0

and then transformed further for 19 more ye\\rs using the usual

00 MALES, 0.00 FEMALES, (MILLIONS)

136 -
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«

oy

matrix M. The resuits: . .
MILLIONS OF BUFFALO \ '

YEAR TOTAL AM AF YM JYE O\ CM CF

0 °59.999 18.000 16.200 5.400 4.800 Y\ 8.400  7.200

1 34.229. 12.960 11.639 1.260 1.080 "4:050 3.240

2 39.973 13.257 11.867 2.429 1.943, 5,586 4.888 ~

3 44113 b M67¥r2.731 3.352 2.933 5.696  4.984

i 48.370 16.200 14.294  3.417  2.990  6.1\1 5.347 .

5 53.526 17.962 15.823 _ 3.666 3.208 - 6.86Y 6.003 |.

& 59.212 19.814 17.438 ~ 4.116 3.602  7.595\. 6.645 .

7 65.418 21.911  19.267 4.557 3.987  8.330 ' 7.324

8 72.286 24.233 21.295 5.022 h.394 9.2k 8.092%

9 79.885 26.788 23.526 5.549~ 4.855 10.221 8.943

10 88.275 29.611 25.991 , 6M32 5.366° 11.292 9.880

11 ¢7.543 32.730 - 28.716 6.775 5.928 12.475.10.916

12 1p7.783 36.175 31.727 7.485 6.549 13.784 12.061

13 119.095,39.980 35.053 8.270 7.236 15.229 13.325

14 131.593 44184 -38.728 9.137 7.995 16.825 14.722

15 145.400 48.828 42.788 10.095 8.833 18.589 16.265

16 160.655 53.958 47.273 11.153  9.759 20,538 17.9711 -
*17 177.507 59.625 52.229 12.323 10.782 22.691 19.855

\18 196.126 65.886 57.705 13.614 11.913  25.070 '21.936 “.
.19 216.697 “72.803  63.754 15.042 13.161 2698 24.236
- 20 239.423 80.445 +70.438 16.619 14.541  30.602 26.777

N PERCENTAGE DESTRIBUTION OF HERD .

YEAR TOTAL AM  AF —YM > YF (M CF

0 100.0 30.0° , 27.0- 9.0 8.0 4.0 12.0

* 99.9 37.8 " 34.0 3.6 3.1 11.8 9.4 ™

2~ 100.0 3 33.1 . 29.6° 6.0 4.8 13.9  12.2

'3 99.9  32.6 28.8 7.5 6.6 12.9 N4,

_ 4 1000 - 335 . 29.5 .7.0 6.1 12.6 1.0

5 100.0 33.5 . 29,5 6.8 5.9 12,8 11.2

6 100.0 33.4 - .29.4 6.9 6.0 12.67 11.2 ,
s 7 —400.0  33.4  -29.4 6.9 6.0 12.7 1. ¢ °

8 100.0 _33.5 29.h  6.9. 6.0 2.7 1Ly

9 « 99.9 33.5 29.4 6.9 6.0 . 12.7 1.1 N

10 100.0  33.5 29.4 6.9 6.0 12,7 111 e

11 100.0  33.5 29.4 6.9 6.0 2.7 1A

12 100.0 3§.5 29.4 6.9 - 6.9, 127 111

13 100.0  33.5 29.4 6.9 - 6.0 12.7 1.

14 100.0 7 33.5 29.4, 6.9 6.0 12.7 1.

15 100.0 33.5 29.4 6.9 6.0 12.7 1.1

16 100.0  33.5 °.29.4 6.9 6.0 12,7 411!

17 100.0  33.5 . 29.4 6.9 6.0 % 12,7. . 1.1

18 100.0  33.5  29.4 6.9 6.0 12.7 1.t

19° 100.0  33.5  29.4° 6.9 6.0 12,7 1aA

20 100.0  33.5 29.4 6.9 , 6.0 12,7 -1

&y

ANNUAL HARVEST IS 0. 43
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TABLE 6

Data for Exercise 16. The herd does indeed Femain very stable.
There is some roundoff error: the barvests taken were .086 and .056
annually (males, females, in millions), rather than the .086052 and
~055948 that the table's data for herd 2 indicates.

\*} MILLIONS OF BUFFALO
YEAR - TOVAL' AM AF YM “YF CH *CF
0 0.999 0.018 0.403 0.116 0.101.  9.193  0.169;
1 1.000 " 0.018 0.402 0.115 0.101 0.193 0.169
2 1.000 0.018 0.402 s0.116 0.101 0.193  0.169
3 1.000 - 0.018 0.402  0.115 0.101 0.193 0.169
4 1.000 0.018 0.402 . 0.115 0.101 0.193  0.169
5 *1.000 0.018 0.402 0.115 0.101 0.193 0.169
6 1.000 Q.018 0.402 0.115 0.101 0.193  0.169
7 1.000 0.018 0.402 0.115 0.101 0.793 0.169
8 1.000 0.018 0.402 . 0.115 0.101 0.193 0.169
9 1.000 0.018 0.402 0.115 0.101 ~ 0.133 0.168
10 0.999 0.018 0.402 0.115 0.10% 0.193 0.168
11 0.999 0.018 0.402 0.115 0.101 0.193 0.168
12 0.999 0.018 0.402 0.115 0.101 0.193  0.168
13+ 0.999 '0.018 + 0.401 0.%™M5 0.101 0.192 - 0.168
1% 0.999 - 0.018 0.401 0.115  0.101 0.192 0.168
15 0,998 0.018 0.401 0.115 0.101 0.192 0.168
16 °0.998  0.018  0.401 . 0.115 0.101 0.192  0.168
17  0.998 0.018 " 0.401 03115 0.101 0.192 0.168
18  0.997 0.017 0.401 0.115 0.101° 0.192 0.168
19  0.99% 0.017 0.401 0.115 0.101 0.192 0.168
20 0.996 0.017 0.401  0.115 , 0. 101 0.192 0.168
PERCENTAGE DISTRIBUTI0N %OF hero ,
YEAR TOTAL,  AM AF YM YF . (M cF
0 100:0 1.8 40.3 11.6 10.1» ° 19.3 16.9
1 100.0 1.8 40.2 11.5 10.1 19.3,  16.9,
2 100.0 1.8 40.2 1156, 10.1 19.3 16.9
- 43 100.0 1.8 40.2 11.5 10.1 19.3 16.8
4 100:0 J.8 4o.2 11.5 10.1 19.3 16.9
5 100.0 1.8 40.2 11.5 10.1 19.3 6.8
6 100.0 1.8 40.2 11.5 10.1 19.3 16.8
7. 100.07 < 1.8 40.2 11.5 10.1 19.3°  16.8
8 100:0 ., 1.8 %0.2° 11.5 0.1 19.3 1638~
9 100.0 1.8  ho.2 _11.5 10.1 19.3 ~-16.8
10 100.0- 1.8 40.2 11.5 10.1 19.3 -« 16.8
11 100.0 1.8 40.2 11.5 10.1 19.3 16.8
12 100.0 1.8% 10,2 11.5 10.1 19.3 16.8
13 100.0 1.8 40.2 11.5 10.1 19.3 16.8
4 100.0 1.8 40,2 11.5 10.1 19.3 16.8
15 100.0 1.8 40.2 11.5 10.1 19.3 16.9
16 100.0 1,8 402 1.5 10.1 19.3 16.9
17  100.0 1.8 40.2 11.5 10.1 *19.3 16.9
18 100.0 1.7 40.2 11.5 10.1 19.3 6.9
19 100.0 - 1.7 b.2' 1.5 0.1 19.3  1%.9
22 100.0 1.7 §0.2 11.6 10.1 19.3 16\9
44
P ' ~N




’ o ' : Return ‘to: *
) S?UDENT FORM 1 EDC/UMAP - -

. ~ ' 95 Chapel St.
Request for Help

.

Student. If you have trouble with a specific part ofﬂthis unit, please f£ill
out this form and take it to you? instructor for assistance. The information
you give will help the author to revise the unit.

Your Name Unit No.
Page ’ ' . .
g Section N\ Model Exam
\C) Upper OR : OR Problem No. '
' OMiddie . Paragraph . Text
gg Lower | . ¢ PFoblem No.

Description‘Qf Difficulty:. (Please be specific)

B .
. — . . .
, .
3 .
. N N .

. .

2

,Instrgétor: Please indicate your resolution of the difficulty in this box.

e .
,‘<::) Coerected-errors/in materials. List corrections here: . o

<::) Gav studentﬂ‘etter explanation, example, oF Brocedure than M unit. :
Gi¥e brief outline of your addition- here. e ,

(::) Assisted student in vauiring general learning and problem-solving
skills (not using examples from this unit ) :

No— : . A .
. lC)j ; ,

. : {/, zlstructor s Signature _  « S

¢

" Plehase use reverse. if necessary . *
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1. How useful was the amount of.detail ims the Gnit?
Not enough detail to understand the unit
‘ Unit would have been clearer with more detail .~ :
' e ppropriate amount of detail
i Unit was occasionally too detailed, but this was not distracting
. —__ Too much detall; I was often distracted : . e
2., How helpful were the problem answers? — l
Sample solutions were too brief; I cdhld not do the intermediate steps A
’ Sufficient information was given to‘solve the’problems .
Sample solutions were too detailed; I didn't need them
3. Except for fulfilling the;prerequisiteslfhow much did you use other sources (for
example, instructor, friends, or other bBooks) in order to understand the unit?
____Alot Soméwhat A Little 4 Not at all
N 4. How long was this unit‘in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?.
: Much® ‘Somewhat About Somewhat Much
“ Longer __Longer the Same ___Shorter - Shorter
5.. Were any of the following parts of the unit confusing or distracting? (Check

. as many as apply.)

g
’ . " Prerequisites ' . .
Statement of sfills and concepts (objectives) ' Ve
‘Paragraph headings~ ° .2
. Examples . s

'I I

Special Assistance Supplement (if present)

Other, please explain v

~

oy

e

Were any of the following part

:\BS the unit particularly helpful? (Check as many

as apply.) *
Prerequisites

Examples .
Problems "
Paragraph hehdings,

|

L

.

Statement of skills and cOncepts (objectives)

’

0

Y

____Table of C

tents

Special Adsistance Supplement (1if present)
Other, please explain

"

2

£}

Please describe anytﬁqng in the unit that you did not particularly like.

LY

» . .

Please describe anything that you found particularly helpful.
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“"  ECONOMIC EQUILIBRIUM: SIMPLE LINEAR MODELS o

. . t

« PART¢I: SUPRLY AND DEMAND FOR & *SINGLE PRODUCT

Y T d © . ™
'l. Price Equilibrium &

»

A product is "in equilibrium” or “af its equilibrium ~
price" when supply equals demand for it. This means the‘
amount of the 'product available from,sellems equals the
amoufit that purchasers want to buy.s (We include any
commodity, service or manufactured product under the

general umbrella of "products" here.) e

, Of course, supply and demand are seldom exactly equal
for any produtt and even ,if: ach1eved, equ1l1br1um s
momentary. If supply exceeds demand, sellers lower their
prices to attract: buyers i.e., prices tend to decrease.
-If demand exceeds supply, the buyers who' most want the
product bid up its pr1ce, and pr1ces rise in response
It is exactly when supply equals demand that these: two
opposite economic forces are bafanced leaving “the pr1ce
That balanced stafg of oppos1ng forces

is exactly the usual meaning of "equ1l1br&um "

at a stand§t1ll

- -

2. The Purpose o} This Paper

.

We wi1ll study §evenal vers1ons of a Jery elementary
-mathematical model of price equilibrium ih this paper.
Hopefully,the eco m1c content is clear and intéresting,

We will discover that

but our main goal is m' ical.

.

mathematical econom1sts ingivitably find themselves using
» ’ v

linear algebra to express fheir ideas. 1If we went beyond

our simple model to some of the mult1tude of economic
models proposed in recént decades we would find more
advanced mathematical tools in usej queueing theory,
d1fferent1a1/d1fference equat1ons, t1me series forecasting,
linear programm1ng, etc A11 of these use linear algebra

and l1near121ng methods to ach1eve practical results—so
204 v .
' 2 & -/

.
. ~

L J
G

.-a very simple linear algebraic introduction to mathématical

economics is appropriate.

£

- Our work here can serve as one i1nstance of an ' .
important phenomenon: 1linear algebra is a basic tool
uéed in virtually all areas of applied mathematics. =~ .

- /

3. Assumptions about the Economy
«
We will assume an economy that is grossly simplified

from reality, a classic, compet1t1ve, capitalastic
economy of thesAdam Smith variety. Prices are not
controlled by government, buyers or sellers in this
economy-—they fluctuage freely in response to supply and
demand. There aré no monopolies, no cartels, no collusion -
the

entire discussion is in terms,of 1967 dollars'" or some

" among buyers and sellers.. Inflation is not modeled;

other standard monetary unit of purchasing power.

Buyers and seller® in ,our economy haJe "perfect ‘
information." This means that they all know the current
supply, demand and price, as if all buying and selling

were done in one large auction room with all potential

o
buyers 3nd sellers participating. v e
4. Supply and Demand depend on Price )
Let's analyze supply and demand for one product. ,Let
.D = current demand for the product (in dollars)
(1) t S = cutrent supply of the product (in dollars) Y
. b -

current price of the product (dollars/item)

We mignt havé
and supplied in production-units (bogcar loads, dozens of

expressed D and S as the amounts demanded
eggs, etc. ). Hbwever, we will want to compare one} product
to, another 1ater, so we'll express D and S in dollars

from the start. Once the current price P is known we
convert the amounts demanded and supplied into dollars to

calculate D and S. (If 4 million dozen eggs are demanded
. 2
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. facturipg) such that no supplier will make the produét

3 . ! .

at a.wholeéald!price of 0.5 qularsédo;en, we have a. ’ )
$2 m?1l)ion_demand D for eggs.) C

In fact, it is natural t r;gard D 'and S as funections ) ‘
of the price P. ; This goes band- anwhand with our assump-
_tion of a purely capitalistic economy of vaTue conscious '
buyers and prof1t5%fnsc1ous sellgrs (In reality supply -
and demand depend on price as welL_as such %not1onal
elements as style, fads, and the effects of fantasy- N ’
oriented advertising.) . i .

B

S. The One-Product Model . N

The simplest way to make D and S functions of P . i °
s to usg straight lines. That is, let's- take as Sur
ﬁnathemat1cal model Lt

D a + bP- - v

(2) . . ‘
S=c+adp -

<

. » N
where a, b, c, and d are real constants. What can we

say about a, b, ¢, and d on qualjtative grounds?N\ As the

Figure 1.

price*P grows, we expect‘demand to drop (at a highe).
- » -~ i
%D and S

price there are fewer buyers), so slope b < 0. Since
D >'ﬂ we know a > 0. And as P grows, the supply S will. >

groy because more companies find it profitable to make

the product, hence slope d > 0. -Figure 1 sketches this -
situation and shows ¢ < 0; let's see why. There will be

some pricénof-first-supply Ps (nanely, the cost of manu- < -

®

Dollars .

equilibrium

v

. . . * = Dk
if P < P52 Thus our straight'line must cross the price S D
f
axis at positive P. and c, its intercept on the vertical :
. . ' -3 ! )
axis, must be negat1ve -
Y
Figure 1 also shows -the pr1ce -of-last-demand Pd at : ot

G\T

which the demand line' reaches zero: at prices«P > P
one is interested in buying the product. Only non-

d

negative yalugs of D and S make economic sense,_ of course.
fThus we'll consider P only in the domain [Ps,Pd], as
shown in Figures 1 and 2. .

206 ‘ ;
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} 6. Equilibrium in the One-Product Model " Exercise 3. Equations (2) with a >0, b < 0,.c < 0,:d > 0 give C .

1linear functions of real P.

N . The p‘rice equilibrium occurs when S = D (supply
) equals demand). As theé*sketch shows (Figure 2), there 3. How do you know that these lines meet exactly once’
' , > is one price P* for which our model predigts equilibrium - ‘ ) somewhere in the plane? _ e
‘(see Exercise 1). The corresponding dollar amounts S* ) b. How do you _know that the point of intersection .
e ‘and D* aré also sketched. Wt-i can calculate P* by setting N , (P%,S*) = (P*,D*) satisfies Ps: Px <, Pd and $* > 0, T ‘
. S =D in {2) and solving to get D* > 07 (This requires an economic argument. Show that
" ’ \ ) -it is mot true based on the mathematical facts alone.) - .
(3a) P* = 5. 4\ =
. LY ‘ . ) ' v 4
By plugging P*.back in for P in either equation of (2) ) v f .

’ we also find the"qui-l\uﬁ;um demand/supply level: PART II: THE ANALOGOUS TWO-PRODUCT MODET £
h et . .
da - bc T, - . Co. : !

(3b) S* = p* = TF ) ""':f:j-., 7. Modeling Two, Interrelated) Products

In a real eco}lomy, the supf)l)’ and demand for a R

) L product depepds on its price and on the prices of other *
. algebra? Under the crude assumption that simple equations

. . Ao
like (2) hold, we can predict the prite P* a prodict . can substitute/ for each other, this is especially.clear.

* = p* 3 : -
should sell at and the amounts S D* that people should For‘exa!ie, s large cars have become expensiye to buy
e

and op e, ;/)eople have substituted smaller cars. It

related products (and on other factors). When products

make and will buy! Our next: goal is to extend this model
to more complicated cases of general equilibrium where is logical to think of the supply and demand amounts for

many competing.products are in equilibrium simultaneously. large cars as functions ofboth large car and srfxall car

% . prices. The demand function for cars of any sigze might
© . kD, S s—for supply—anddemand—— . . )
. Exercise 1. Find P*, D¥, S* if the fornula also depend on the price of labor for having the car
are ' serviced and repaired, the price of gasotine, the 'price
D=22-1.50 of auto parts, etc. It does not depend on mosit other
. § = ~5 + 5.25P. g ) ) ,:v o
prices (like that of perfume) but there are i portant
Use these three methods: ’ . intefrelationships amoung products and, to make our
N a. algebraically solve for PX, Dt. Sk - . ' mathematical model more realistic, we should finclude mamy
. » DX, S%,
' "b. identify a, b, c, and & and sibstitute them in (3a,b) ) of those relationships. - )
c. - graph the lines and read the equilibrium point off As a first step, let's study a two-prodvlct market,
- . * * I
the graph. 4 Put , . i
. . - s . ¢ . :
i v \ . ' ’ ! .
Exercise 2., Repeat' Exercise 1 for ) . W 1’ Sl, Pl = demand, supply, price for the firs‘t product
. T . (4) . (large cars, say) L} ‘
D= 30 - 4P “ g : — 4
S = 6p - 2. . 2 Sz, P2 = demand, supply, price for the second proéuct
5 (small cars,; say). . . " 6

| Q n * ) ‘ : «::mﬁ%‘%
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We assume D S

-D2,482 all ‘to be functlons pf the two
r1ces P, P and all are expressed in dollars. Again
p 1 2 p

we assume the simplest functions [compare notation with

-(2)}): T .
. 13 \ 1] :
ot [P1 =g by Pyt bGPy . .
- Dy = dp * byyPy * byPp - AN |
%) - .
Sp= ¢t dngPy 4P
. . = ¥ \,
©t{S2 m c2 * dgpPy ¢ 4Py ; ,

The a's, b s, c! s and d's are all known real constants.
In the context of our large cars——small cars exanmhple, we

can predlct the signs of these constants The demand for

large cars, Dl’ should be positive, should decrease as ,

P1 increases and should increase as P2 1ncreases (i.e.,
as small cars‘become more expensive angd hence less *
>0, by <0, by, > 6

< 0. The supply S of
large cars should grow as P1 increases and also grow as

attractive to buyers).. Thus a;

Similarly, a, > 0, b21 > 0, b22

P, increases (because higher pr1 es for small cars should
sh1ft~demand to their compet1t1ve large cars and hence

Thus ¢, < 0 (for -

stimulate productiop of large cars). 1

-~ —the spme threshold- ofvmanufacturing costs reasops as

before), d > 0 and d 12 > 0. Slm11ar1y, c, <0, d21 >0,
d,, > 0. § <o U . -
—~8. The Two-Product Model in Vector and Matrix- Notation
‘of course we will set S = D; and §, = D2 (supply
‘equals demand) and try to calculate the equ111br1um prices
Pl*, P2 . But ‘that will be easiexr to do after we arrange*
(5; 'asl ‘. .
’ . -
. i Al ‘\ 210 . .‘. , . . 7
Q ° ‘ . . X ) .
RIC .~ . .- - o e

Compare (2).

through the
demand" equ

“(9) s
-
- The eq

of P we get

1 P12

‘ §1 -_o[21] L [P braPa
7 . T ! ‘
b "2 T[22, {Pa1 Boz]|P2]
(6) R A ,‘-‘ h v ’
1] 72 [e1] L [%1 4az2] [P ]
C52) LS2] 921 daz) iR
P N < Iy ' -
and shift to the oby}ous matrix notation. Define
~ ] .+ T[S -~ T ,
p= |, s= |1, -1
. LDZ_ S,| . P, ’
(7} . “
LN fa, ] ¢ N c d d
IV [bil 12 2 F1]’ 0 [ 12] ’
\ 32] |b21 bzz |°2] 421 da2f
’ : T .
and rewrité (6) As R .
. : -
; - ¢ - : ‘ >
D= a.+bP - * . te
(&3 - - - \ PR
. S=c-adp. ) ¥
. s, L T

Notice how Haturally (2) has been generalized
use of 11near\Q1gebra . The "supplw equals R
ations are now S v = jﬁ and S2 = Dz, i.e.,

N | .
. vy, . * .
uilibrium prace vector 5* - pl; is the value‘

by substituting (8) into (9):

- 5.

S oa - i - )
T c + dP* = a + bP%*, .. ‘
) EIementary‘matrix'aléebra leads to , °
(10)? (@-p)prt 3¢, © .
- < . ‘ N ,ﬁ 8 o -
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>
which is a set.of linear equat1ons for P*.‘ We'll assume

thdt the 2 x2 matrid ¢ - b has ap 1nverse and we'lT .
multiply through by (d- b) from the left:

- e

- (=
. - * .

Exetcise' 5.

a equations to calculate D* = ¥, \ .
]

Substitute yout P* so‘lution from Exercise 4 into the

- i
) ——— - - — ) . * ¢ - ¢ '4 ! l
(11a) *Px = (d-b) (a-c). . C . -
" . . , : o ‘ . Of course D* an‘d- S* in (lLb) are equal, a+¢ we should
. Compare this to (3a): multiplication by the matrix ,expect from.the way wetalculated PA—B*and S*. A ligtle
1nvqrse of d-b here very naturally replaces mu1t1p11cat1on matrix algebra will show this: -~
- B} by the rec1p!:oca1 of scalar d-b there. . v N .
‘ N - : D* = a + b(d-b) !(a-c) ’ '
i L] . ) [
Exercise 4. Find the equilibrium prices if . a1~ 2] - ”
=== he equi . = (d-b)(d-b) 12 + b(a-b)d(aT0) .
- X Dy =12 - 1.5% + P, - Py . . ¢ . .
v . " ; {because a = 1Ia-= (d-b)(d-b)'1§
. D, =20 +2p -p '8 o7
L 2 2 o 1 2 > -1 -1 ’
s . - = d(d-b) "a - b(d-b) "a :
Ce J 5y =6+ 1.6p +2p, . . ] RO 0
L . . . + b'(d-b) a’ - b(d-b) “c.
R e A MR N o J ' - -
-\ b . After the.cangellation: ’
by .~ ! -~ - N -
' CH oDt (d b)Y La =B {aEby e
a. direct caléulat:l:g? from Sl = Dl "and-- -Sg-mBym o - —{1ic) —d “B(d<b) “c.
. ’ .
: b, * identification of 3, b, ¢, d and Substitution in (1la).
- N . ! . b Exercise 6., With thisstart
- v v, lad . - * - - _' —_—
] e _ ' S* = ¢ + d(d-b) L(a-c)
d /\ N ° 1= L) - —
N 9. Emnhbnum Supply and Demand in ‘the Two- Product Model = (d-b) (d-b) "1 + d(d-») 1(a--C),
PR : Seqkmg\ a complete “analogy between- (3a,b) and the ’ show that p ~
" - * two-product model’, _we next subs.tltu P* from (11€) into \ . S = d(-d—b)'lz _ b(d-b)'lz ¥ :
the equations for D and S to f1nd D* = S* Ne get: <. # g -
. X also. ‘ b
W Dr=a e b(d-b)‘l(ZTE)
“ (11b) SO ) A . . o : '
. - R ) .. ~ .. ) '
S* = ¢ + d(d-b) (a-c). . ) . By writing (3a) rab‘er clumsily as 1§
. . o . . ,
_ - ‘ da -
Hmm . . . that doesn't look much like (3b) . . in fact, D* = s* = 22 bc .. da _ _ bc

4

~
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we discover that the analogy between (3b) and'(llbj is ‘ + ~10. -Matrix Level vs. Entry Level Calculations

but who would ever write (da-bc)/(d-b) .

o

-

not deap. at all

.

We used exactly the same steps to calculate P*

1n so com#ﬁlcated a way?!:

Unfortuhately, the liberties

(see (Sa) and (11a)) from the one- and two-product models.

» i — .
we enjoy with scalar arlthwetlf we could use any of In the two-product cese, all calculations were at matriz
. ” . . ST ) NS
_ da-bc _ ad-cb =‘(d-b)'1(ad-bc) ) (da-bc)(d-b)'l Zezgl. we thought‘of a,‘cr P, D, S, b, d, b-&, (b d)
T a5 : as, vector and maﬁilx entities’, 51ng1e objects, without
el
‘ . thinking about the-1nd1v1dual numbers a., c. . bij’
among-bther forms—are simply not avallable when b and d dLJ,,etc.,Athat make them up. All the calculgtlons in -
atg tr1ces andpa,c are.vectors§, The main problem is Sections 8 and 9 _abewe were at matrix level
that matrix multiplication is not éommutative.‘p;~ ) @
. % - . . To actually calculate the components Pl* and P2
L4 = * .
ercise 7. Prove that ] , . of P in (11a),-however, we mhst calculate the 2 x 2 matr1x
‘ . . - inverse of d-b and mu1t1p1y it by the vector a-c. Such
) d(&%)‘l- (d-b)™"d . calculations are at entry level (they use the entries, the i
1f and only 1f db = bd.p ~ numbers that form the vectors and matrices). Thls calcu-
. 0 lation 1s quite. a bit more compllcated than the single
. Exercise 8. Prove that ' division needed to compute P* in (3a). The: great beauty
\ .
. . and wonder of “linear algebrasis the extert to which we - -
: - b(d-b)"! = (a-b)3tb - ;
) can do useful calculations at matrix level, as if we

v

,\ 1f and only if db = bd. ' .

. - yd !
= 7
¢

»

Ordinarily we must expect that matrices b and d will

not commute—commutative matrices are the’ exceptlon and
not’ the rule in mathematics. )
« .
™. Tf b and d happen to commute, we would have’ .
. D= 5% =d@@-b)la < b(db)le ; -
e ras—d ~ & . -1 - -
; . = (d-b) (da-bc)

)

as in (3b), but we would be wiser to c6nsider the "natural"
form of (3a) to be (from (12))

+ to work with.

had single 'numbers" (the matrices and vectors themselves)
Eventually, we must complete our work
with grubby arithmetic at entry level, however.

It's to our advantage to seek (at matrix level) 4
form of our expre551on that is least painful to work w1th «
at entry level. )

-

D* = 5% =

For example, we used
-

d(d-b)"1a - b(a-b) Ll .

to show that ﬁ* = E*,
culate D* =
four matrix multiplications.
hard: ~ N

If we actually use this to cal-
S* we will compute one matrix inverse and
We don't have to work that

\ (’

s D* =5t =3+ b-b) @0 2

=,E . d(d-b)'1

(a—-r?)
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Only .the commutativity bf

sl s

.
I

qpltiglication of real numbers

allows a simpler form like (3a). " ; 11
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each 1nv01ve one matrix inversion followed by only twg
matrix mu1t1p11cat10ns

: ‘ N
215 -

12

)

-




r

Q

ERIC

R A v 7 provided by s
PRANY
n

. -~

PART III: GENERALIZATiDN TO n-PRODUCTS

" 11. The Model with n-Products

ot Why stop with supply and demand functions that

Suppose gn economy is made up
, and let

interrelate two products?

-1

of n products, commodities, services, etc.

S., i’j = demand, supply, price for the jth product,

D
f
(13) for j = 1, 2,

4
a -

We still assume that Dj
prices but we permit any and all possible interrelation-

csey 0.
and Sj,depend linearly on the

ships by using all the prices in each demand or supply
function: ‘

i
£

+ b, P +...+b1x'11’n

N L 1272

1= ey P

D, = a +b

2 2171 Hby,P 2 e bR

s ° . . ~
.

oo+ bs P

D"=a +b P +b P +
n n nnn

nl 1 n2" 2

(14) : ' )

1% + dllPl + dlZPZ + .

\\"\/1.; . ‘. . . . .

LS“ =c, + danl + anBZ + ....+ dnnPn

~

Please compare this to (5) and (2), which are 51mp1y the

~a

special cases n = 2 and n = 1. : ‘ - -

. ——

For the reasbons discu@?ed in Part I, all a; > 0 and

all c; < 0. Most of-the b1J and d1j
will be. nonzero only when i and j are competlng products.

will be zero; they

Consider product 1, which might be large cars, for
> 0:
rise, demand for, large cars decreases~and supply increases.

example? Naturally b11 <0 and d as their prices

. .. ., 13

216 . . .

. -

425 and 7514 (small cars,
motorcycles and rapid transit fares

Now suppose that products 2,
perhaps) compete
with product 1. As their prices rlse, product 1 looks
more attractive to buyers, so b1 20 bl 425 and b1 7514
are al}l positive while the other b 1j are'all zerb A
rising price for a competing product tends to Jncrease
Thus-
d1 2 d1 ,425 and d1 ,7514 will all be positive while the

other d.
ij

the supply of product 1, as explained in Part II.

are zero.
ﬂ

Following the pathway from Equations (5) to (6), we
rewrite (14) uding matrix products: - /

1° | P » ir 1 .
N A a, byy byg «o ][R _ /
/ ; )
D, a, byy by by (P
M . = + . -
. . /,
._DnJ _an_ _bnl an bnnj_?nj /
(15)" s . J )
51 “1 41 912 -+ da| [Py |
S, ) dy1 932 donl|P2 |
|
. 3 I R N .
_sn_ Lcnj _dnl an"" dnn__pn_

Naturally we introduce these vectors and matrices:

’ -

- g re 1 -
. - [D, 5, [P,
. D, NE “{P,
i._I -_— - . -~ . ' ot
D = , S5=1].], P=
LDTiJ ‘-S‘?- -Pnj , |
~ . \‘ l4~

-




[3 N il
b (P11 By ®1n X
» ¢ 4
2, b21 P22 ++v by .
(16) a= b = . . ‘s
. , #
\ ’ _an_"’ _bnl bn2 bnn_ v
o 1 (41 f12 00 i ‘
2 dz1 922 42n . .
c , d = N
A
_Cnﬁ _dnl an dnn_ ,
L] . u‘ , . :
and write (15) compactly:
5 a + bP .
17 PO -~
. §=c +dP,
This is an exact copy of (8)!
Y A
¢ 12. Sdlution 6f the n-Product Model ~ . .
. ¢ [ . . B

The matrix.level calculations that led us from the
two-product model (8) to its solutions (1la,c),are not
Ope of the- °
. gfeat advantages of matrix level work is that it applies
Exactly the® -,
same reasoning and algebralc operations that led us from
‘(8) to’(lla ¢) work on (17) to glve us its equilibrium

v

limited to 2-vectors and. 2 x2 matrices.

to n-vectors and n xn matrices for any n.

solution: . v,
. »
o* - "“
P* = (d-b) 1(a-c)
(18) - i .
D* = 3% = a(d-b) 713 - -p(a-n) T

T really calculater Py*, PR,

of D* and S* does deperid on 'the dimension n:

Fn* and the-components

the entry 15 ’ N
Q ’ ) .

Aruitoxt provided by Eic:
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13.

level effort needed to calcul;ie (d-b)'1 increases
rapidly as n increases. We would need a computer to,
d%al with the large n we would want to use in a genuine

economic study.

gy

PART IV: HOW DID WE GET THIS FAR?

f -

Making™a Start

Let's take on the role of the applied mathematician
who first developed this model. How do we start? What
brainstorms along the way lead to progress and why do
the¥ occur? What have we learned from earlier modeling

work that we put to use here?

- So, we must now imagine that we do not know about
this model. An economist comes to . us with a question:
"Supply, demand and prlce have these clear intuitive
relatlonshlps Can mathematlcs help us understand the
relationship more accur;tely? Can we predict the price
and supply/demand at which a product will/should sell?"
We do some preliminary reading and thinking and talk with
the economist until we understand the main mechanism:
when supply/demand is in excess, this causes a shift in
_the price downwards/ubwards towards a "fair market value
price” where the forces of supply and demand are in
balance. In that wording, it seems that price is influ-

enced by supply and demand: 3

I A

price =

.

f(supply,demand). - .

»

)

We aisp turn around the language, however: as the price
increases/decreases, the supply should inorease/decrease
while the demand degreases/increases. This wording
suggests that supply and demand are influenced by price:
N supply =

g(price) and demand = h(price).

As experienced applied mathﬁaticians,‘we prefer to
work with the latter approach:,.we have more equatlons

&

*”219";: .
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and can easily eipress supply = demand. Thus we make for both producfs depend on the two prices and‘we
R the basic decisions that 1ead to the. model of Part I: specialize to the easiest concrete functions, in (5).

We'll think about the simplest conceivable economy (one Aha! A mathematical brainstorm—we can write (s)

‘.. " ‘product) ?Y expressing suppl? and demangg@s functio?s using matrices as in (6). Our skills with linear algebra
- of the price. We hope to writes down corfcrete functions: take over—we introduce the vectors and matrices of (7)),
. S = g(P) and D = k(p) ‘ reach the 'same" model 1in (8) that we had in (2), set
' . . s - supply = demand and use matrix algebra to reach p*, D*,
’ and to solve S = D, a single equation in the one $* in (lla,c). Alfost nothing is new here: based on
vaiuable P: our skills with linear algebra we have transformed the
) ' success of Part I into results for a more complex economy
» 8(P) - h(P) =0 in Part II,
for the equilibrium price P*, ! o Now the jump to n-products }s easy—-we{follow the
’ . ) path that linear algebra points out to us, exﬁané?ng
. The details of Part I now follow when we decide to two-vectors and 2 x 2 matrices to n-vectors and n x n
make g and h very simple (Equations (2)) as a first matrices. It works again' . : , )
effort. And we .are successful: we predict P*, D*, S* ! , ) - . R
In (3a,b) ., ‘15. Hindsight is Perfect o : e
*14. _ Improving on Our First Effort ' Now that we have Phg model of Part III and see that
. . = the models of Parts I and II are ‘just the special cases -
The answer to one question leads to the asking of ‘ n=1andn =2, we know that'the,n-proauct model (17)
) . - Many more: Here are two reasonable ones: and &ts solutions (18) are what we were‘afteq when we
- , Aj Can we chodse functibns g and h more began! We Qidn't knoy then' that matrix inverses would
o.rbalistically? How can we khow and measure be involved or that we would find 200 interrelated
N that we achieve better realism? products jusf as easy to handle (at matrix 1€Ve1, anyway)
hd ‘ . as 20 or 2,000, but now that all seems clear, natural
. B. C%n we include more of the complexity of a and inevitable! )
. real, interrelated economy in the model? ‘ >
Boih questions have received lotsxof attention from ] ‘ . .
applied mathematicidns. . ; PART V. \TWO ECONOMIC INSIGHTi'FROM THE MODEL
N Since .we can'f do many- things at once and’ want to 16. hTotal Dem;nd /
proceed by small steps, we choose arbitrarily to attack
‘, (B)f What facqors-of a complex eqonomy should we include? In the one-product model (2): )
‘ The emotional elements like fads liok difficult to get >Di= a + bp s =Vc 4 ap ,
a handle on.- We decide to consides two competing - .
products. Copying as much of our successful model in “we might call a the total demand because it is the amount .
Part I as ‘we can, we decide to make suPply and demand ; ) ' i ' . *.18
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of demand if the product were free- (P = 0) and thus Sk + ASk = DX + ADk = d(a-l;Az)-bc. ‘
the largest conceivable demand. . . ' * .

- “ 1l ' * = *o r P
Suppose the total demand shifts in olr economy from R Baiculate AS AD Explain why its sgign is_reésonable, based on
economic good sense. : : ‘

FEEN .
a to atda, i.e., the economy grows and is able to absorb é . \

- ‘“more of our product. The shift in .total'delparid Causeg Exercise 12. Repeat Exercise 11 for

a shift in the equilibrium price’ from [see (3a)]

. ' , . . a. the two-product model
% o a-c * x - (a+pa)-c : .,
P d-b ‘o px + 4P -b. Thus the resultlng S . . b. the n-product model.
change in equilibrium price is e !
AP* = (a+Aa!a-cl_ a-c, fa . . ,
R LRI ‘ * . . 17. Free Supply o . .
. . o .
This change is positive when aa > 0, as we should expect:, . Again, in (2),
.’ a larger total demand implies larger demand at ahy price ' . .
§ . D=a + bP, S =c + 4P
level and thus upward pressure on prices.—Our model . N -

\

agrees with economic common serlsAe_. But it lends quantita-- o we cdn-call c the free supply or supply in nature because

. . ’ X
tive detail to that common sense, too: we have predicted *

. ‘

it is the supply when P = 0. For most products or

the amount of e price increase. mon e alone s g -
he nt of the pric Common sens ° commodities, ¢ > 0 makes no sense because no product can

s places o

does not do that. o . . economic;l\ly be given away for free. ' However, in many

N
Exercise 9. 1In the two-product model, let: the total demand change
R — L 4

the American frontier in the 1800's, fresh water

was a‘t‘ree commodity in ‘plentiful supply; until redently,

"z from road maps were given away free by gas station owners.
- Suppose a product has a free supply ¢ and this
~ . supply changes to c + Ac., This causes a change in the >
causing an'equi]:ibtium pi o equilibrium price of the product from P* '\="(‘a-c)/(d-b) to f\(‘
, AP*, ) ' -
A . < P* + AP* = a—'(a(%)ég)-; thus AP* = - aé_—s
* Exercise 10. Repeat 4\' ) o .

- ”, . * . * . . . .
Exercise 11, In the one-product model: as the total demand a \ . The sign _Of AP* again corresponds to economic intuition:
TP changes to a +Aa there is a change in the equilibrium price, as , 25 the free sppply increases. (G > 0), the demand, the

we've analyzed above. There is also a change in the equilibrium amount of the product people Will'buy, \s}muld decrease . :

(sint_:e more of the product is supplied free) .and thus

~ supply = demand-level from 8* = D* fo Sk + AS* = D* + AD*. -Starting *
o v ’ N , i < 1 t . * Y g
- with (3b) ) . 1ts,pr1ce should decregse. .AIP < 0.\ As W1§h total .
s e . da - be \ . demand,, we are able to predict the amount of the price
i Sk = Dk - ——— ’ -
- . d-b’ - . drop., .

. -

. . [ ¢
) 19,
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Exercise 13. Repeat r.he free supply discussion for the two-product %D and S ' '
J -

. model:- what change AP* in equilibri price occurs when the free: . Dollars ) : "
— -

'
. - .,

supply changes from c to ¢ + Ac?

«

&

Exercise 14. Repeat Exercise 13 for the n-product model.

- : L4 N
Exercise 15. As the free supply c changes'to c + Ac, the equilibrium Sk = p*
price changes by AP* (above) and the ‘equilibrium amount changes from

S* = D* to S* ¥ AS* = D* + Apt, Calculate AS* = AD* for ¢

. . .

a. the one-product model

b. * the two-product’model * 7 . .
c. the n~product model. K . -,
! . t + price domain
D R 3 ) . [ “
. . . . . ,
PART VI: ARE LINEAR FUNCTIQNS CRUCIAL TO THE MODEL? Fislgre 3. Smooth nonlinear Supegly and depand functi®ns.
P - .
. v e ‘ ! .
18. . A Job for Taylor s Theorem * ” . S

nonlinear curves D(P) and ‘S(P). But recall our goal

0€ course; it is unreal1st1c to take supply and -

- We.want to calculate P*, so we only hqve to think about
demand as linear funct1ons of a product's price and the

: values of P close o P\* .Probably we know (or can guess
prices of its competitors. Yet all our use of linear

algebra—our whole ability to’ calculate equ1l1buum .
prices—seems to depend on having such linear functions.

an economic grounds) -g price P0 that is fa1rly close - to
‘ p*, We could’ replace D(P) by the’ tangent line to D(P)

at Po, gettmg N . )
How can we resolve this dilemma? ° : .- R R ’ v .
, oy’ [] -
First of all, in the one- product model, how might | o o D(P) =&D(PO) +D (PO)(P PO) .
more realistic_functions D(P)’én (P) 100k? Since the (19) ’ = [D(P,) + P D'(P,)T + D' (P )P.
supply inecreases and demand decreases as prices rige, : ) 0 0 0 b
we take curves with the ‘appropriate monotonicity for L We have wr1tten D(p) as a + b/P aboye, with constantsrf"\

D(P) and S(P). When we put such curves (choosing them, and b that we can calculate once _we know Py and D(P)a

as a first exaﬁlple, to be continuous and d1fferent1able) Recall that D(p) is"a close approx1mat1on to D(P) for P !
into Figure 2, we arrive at F1gure 3. Both curves have ! close to PO s . ,

[Ps,Pd] as domain, as in Sectio

5. From Figure 3 1t~' . v, ° .

is clear that there' is st1ll a unjque equ111bmum pmt:e -We can s1m1larly “take the tﬂangené@l1ne at P0 ;o S(P)’

* * . . o ’
P[P Pyl . ’ ) s(Pj = S(P ) + §'(Py) (P-Py),
needed te for all P in the full . : (20) .
e ST . = 3 - ' '
price domain [Pg,Py], we Would be stuck with these 21 [S(Pp). - PpS'(Py)1 + S* (PP _ .23
] ’ ) ¥ ‘. ? ¢ o1 . N
. 5 . . <y o s
A124 , N N o ‘w 22{? ¢ ° ~
< : . e

.0
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- o

as a close approximation to S(P) for P near PO. FigUrq\
4 shows these two tangent lines.

. ‘D and S, ' \
- . <Dollars

D(P)

:
\ . S® 3 S D(P)
' ; : !
{ s ' : Price P
- } ; + ¢ »
*
PS 0 P P1 . Pd
. i {
) o ’ i
Figure 4. Tangent lines approximate the gupply and demand
curves. . )
' ’ . /

N -
- . ©

Equations (19), (20) are a linearized version of the

"nonlinear one-product model. These equations are exactly

(2), with ‘ . -
a = D(Py) - PgD'(P)° b = D'(P)
L c=S(Pp) - PgS'(Ry)  d = 'é" (Pg)-

Vs -
When we solve forvthe Pprice equilibrium of the approximate

3,
linearizeld equat1ons we gets . .

2~ T S(R)-D(Py)

. (21) Pl = PO - W.

'
Yo

»
This is of course the Price where the taffgent -lines cross

in Figure 4, and P1 # -P*, 23

°
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Exercise 16. Substitute a, b, ¢, d above into (3a) and thus derive
(21). Also calculate, from (3b),
] -nt
S (PO)D(PO) D (PO)S(PO)
S'(PO)—D'(P

Beep) = 8tp)) £ y——
0 .
Exercise 17. (For readers who know Newton's Method of approximately.

solving f(x) = 0 for a root x given an initial guess %0 close to the

root.)

Equatiow (21) clearly has a relationship to Newton's Method.
What is that relationship? What function f is involved?

I3

Figure 4 suggests that P1 is a-better approximation

of P* than our initial apprgximation P0 was. Theory (we
omit it here) proves this true if P0 is sufficiently o -
close to P*. We can of course repeat the process: taking
P1 as our new gu%;s, we write down equations of the

tamrgent lines to D(P) and S(P) at P1 and use them to
calculate Pj. Aftér a few rounds of this, we will get a
very good approximation of P*. The method does generalize
to multi-pr?duct cases. '

B

So, whe; D(P) and S(P) are smooth functions of the“
price, with more work We can still approx1mate P* (and
thus, D* S*).closely . The crucial assumption about D
and S seems now to be that they-change smoothly as P
changes. It is not crucial that they be 11near ) v

- -

19. Discontinuous Supply and Demand Curves

. And is it realistic to expect that supply and demand
curves will be smooth? Unfortunately, no. The supply *
curve, especially, may have jump discontinuities, as

shown in Figure 5. !

7
For there will be threshold values of P (such as P
and Pb shown) where it becomes economical to open a new
factory or put another shift on an assembly line, causing 24

. N Y A
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‘sD and S,
b Dollars

Figure 5.

A discontinuous supply curve.

v

. D and S,
R Dollars

. \) | \
EMC ) N '228 )
- O - ( . M

]
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Y e
I ,
|
I
S
I
! .

l»
I
|
|
| .
l 1]
|
I
i
Price P »
.. . v
Figure '6. A more difficult case of‘ahmomoofh 8upp11»and/gzi:;d,
. 25
»
r

supply to jump dramatically However, in this example,
the equilibrium we seek happens to fall in a part of the
namely [Pa,P ], where both S(P) and B(P)
are smooth, we chn apply vur methods after restricting

the pflce domain to [P, WPyl

price domain,

We can draw other examples,
11ke Figure. 6, where the method doii,not apply.

.
N

- &

PART VIT: SOLUTIONS TO EXERCISES - %

1. P* = 4 dollars/item, S* = D* = 16 dollars.

2. p*x =32 dollars/item, S§* = D* = 17.2 dollars.

In a plane, two straight lines with unequal slopes always

have exactly one intersection.

and d > 0,

b. Two lines with a > 0, b < 0,

The slopes here are b-< 0

c<0,d>0 yet S*°= Dx < 0

can be easily drawn:

On economic grounds, if there is any market for a product,

ite .demand must'be positive at P = Ps, the minimal price.

In that cage . v
. D(P.) =a+bP >0
' - T e R
S(Ps) = c + dPS =0 t .
i - P =-%5 o a-8,4 o ad = be > 0.°
s d’ . -d ’ * 26

B
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- i . -
Since d-b > 0 we have S* = D* = _z%:_c_ > 0 from (3b2. Since D* > 0 we This has the same sign as Aa, as we should expect: when total
= - !
have QP*#_<_ P, and S* > 0 implies P* > PS. s ) y demapd goes up (Aa > 0), there is naturally an increased demand
et ey s -
A ’ ’ *R S ' at all price levels, including price P*, ,
I3 -le 5 7 .' -~
X = = Dk = o
4,5, P [2.5], S b [27.5]. . ) r7
, - * 12. From (llc) we have
- e ~ _1 — - N . L
6.  S8* = ¢ + d(d-b) “(a-c) .. . @ - >
. . S* + AS* = (D* + AD*)
_1-\ -1 — N P ~a
= (d-b)(d-b) "¢ + d(d-b) " (a-c) | ' \ G — RPN
, . - = d(d-b) “(a+Aa) - b(d-b) "¢ .
. = d(d-b) L& - b(d-b)Le + dld-b)~la - d(d-b)~le . - . N -
» 4 ’ and S* = D* = d(d-b) "a -,y(d-b) c. S
d(d-b) “a - b(d-b) ."e. . Subtraction gives i‘,
' . - — [
7 d -1 -1 . N EREY _ -1
. «  d(d=b) * = (d-b) d . AS* = AD* = d(d-b) "Aa. "
. , . o . .
= [ o = -‘], - = = - -1 ~
e’, (d-b) [‘:l(d b) -'](d-b) (d-b) [(d-b) .'d) (d‘b)- . » 13, Equating supply and demand we get
“ 14,
<> (d-b)d = d(d- n - - -
(d-b)d = d(d-b) . a + b(P* + AP*) = c + Ac + d(P* + AP¥)
e d?-ba=d?-a —_— P — )
. , e > P*x + AP* = (d-b) "(a - ¢ - Ac).
; . -
< = db., -1,
bd db el Since P* = (d-b) l(a—c), subtraction gives
’ . ' ’ )
8. Handle as in solution to_‘_l:‘abm(e. . . ‘ AP% == ('d—b)-lAc.
N E &
\ “91.10. The supply equals demand equati:n is . . e .
- . 15. From (1llc), o
- A N - . .
+ + * + AP*) = ¢ + + AP* ’
N a+ A3 +b(P AP ‘) c + d(p ‘ AP )' . S* + AS* = D* + AP ,
. . _;T -1 - ' ’ . .
> Pk + APk = (d-! - 3 : -1~ -] —
P+ fpx = (d-b) “(a + La - o). =d(d-b) L2 - b(a-b) " (cFhe)
. '~ . ’ N . .
Since . ) while /
— 1 . )
X = - - -] -]~
e . i L > . s* = D* = dfd-b)Va - b(a-by e, . oL
' — ‘l—i o - b ’ ‘ o .
- AP* = (d-b) “Aa. 2 Thus ! *
LY . . - « ~ ‘
. L. —_—r = . -1
“ A « AS* = AD* = -b(d-b) “Ac. -
11. AS* = AD* = (Sk + AS*) - S* . -~ . .
) N This may be applied for 1, 2 or n. .
_ d(atha)-bc ~ da-bc _ dba ' ' L . : v
d-b d<b  d-b".. ) . B O

- . a % . ¢ ‘. M . -~
DR RV 27 231 R 28
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. 17. We really want to solve S(P) = D(P), i.e.,
o« * ° -
e s(P) - D(P) = O,
hY
- for P. Thus £ is the supply function minus the demand
. . function and the usual Newton's Method for:nula
[
‘ ’ - £00 . ’ '
~ 17 % T FE. '
is exactly (21). "
.
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Student: If you have trouble with a specific part of this unit, please fill

. out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit. i ’ ’
' Your Name N . . Unit No. /
’ Page ' SR ' ‘
. ., Model Exam
O upper bR . SectiﬁqT______f_ “oR Problem No.,:
. ()M%ddle - Paragraph - - T Text
O Lower . Problem No: SN
Description of Difficulty: (Please be specific) . N e
t
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\
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Instructor: -Please indicate your resolution of the difficulty in this box.

-

<::> Corrected errors in materials. List covrections here:

v ’ - q

. ® _ :

. R . = M N . II
Gave student better explanation, example, or-procedutre than in unit.
Give brief outline of your addition here: >

(::) Assisted student in acduirin§ general ieéining and problem-solving
skills (not using examples from this unit.)
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,/ - Unit Questionnaire . Newton, MA 02160
Name - . - Unit Wo. Date -+
. Institution_ ’ Course No. -

Check the hoice for each question that comes closest to your personal opinion.

1. How useful was the amount of detail in the unit? . v

A

____Not enough detail to understand the unit

Unit would have been clearer with more*detail

Appropriate amount of detail

Unit was occasipnally too detailed, but this was not distracting
Too much detail; I was often distracted

[
v

2. /gow helpful\were the problem answers?

Sample solutions were too brief; I could not do the intermediate steps
“Sufficient information was given to solve the problems
Sample solutions were too detailed; I didn't need them

[}
f

3. Except for fulfilling the prerequisites, how much did you use other sources (for
example, instructorg frienda, or other books) in order to understand the unit?

t J
A Lot Somewhat A Little ____Not at all

4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical math or science course?

A

Much Somewhat - About Somewhat ' Much
____Longer ____Longer - the Same Shorter‘ Shorter
o N
5. Were any of the following parts of the unit confusing’or distractigg? (Check
as many as apply. ) . - .
___Prerequisites ’

Statement of skills and concepts (objectives)

___ Paragraph headings

___ Examples - ' .
_____Special Assistange Supplement (if preaent) '

____Other, please explain

»

6. Were any of the following parts of the unit particularlz;helpful? (Check as many
*  as apply.) - N
____Prerequisites
‘Statement of skills and concepts* (objectivea)
Examples | . .
-, Problems’ .
. Paragraph headings . . . ‘
. ~ Table'of Contents ) :
Special Assistance Supplement (if present)
Other,'please explain

e . . 4

Please describe anithing in the‘unit‘that you did not particularly like.

D) ~

1) = ’ /
4 ° ) - FY ""6 ’é‘
Please describe anything that you found particular}y helpful (Pleaae use the back of
this sheet if you need more space.) . .
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quires specific amounts of wood fibur, recyclable paper{: T, Leontlef applied 11near algebra to this problem.
water, capital investment in the form of machinery, labor, . We'll look ‘at his simplest model in this paper. From a .~
electricity, etc. A-paper-making company can be thougﬁt * knowledge of the final demand f&f each product (that is,
of as, an "input-output machlne" that conyerts a, reC1pe ) " . the market basket of all goods thyt the public is to buy),
.of inputs into a qplt af outbut many trmes a day We 4 . we can calculate the production amounts that wil% supply
will think of all the compan1es 1n this way, eaoh w1th . . that final demand. Sone restrictfive ecenomic assumption; i
its own recjpe for mak1ng 1ms one Produit' _ {k ’ . are involved. . IR .
1.2 Consumers ‘and Coﬁbﬂn1es Eorm a_ éo;piex Econ;py "’, - ° T IR )
The companies’ are elaborately 1ntéTrélatod @Jhe - ‘ ~5fg? - 2. LEONTIEF'S MODE}\\ > .

Q

2

. so that the -input products are not really consumed but

1. INTRODUCTION ¢ ) : are "replaced" on the market by the output products)-
4 - and the public, considered as the "final consumers" of .
With his famous 1941 book [3], Professor Wassily : finished goods. The amount: of a pfoduct demanded by the ;u
Leontief began the study of the economy as an input-output > pub11c is the "final demand" for that product; qupp]iér<
system. For this work, he received the Nobel Prize in . (companies) must sat1sfy that. final demand in addition
Economics in 1973. K34 . to providing input materials to other companies.* For
; some products (like steel), final demand is almost zero,

His method has been applied in more than fifty

nations and 1ntbrnat1ona1 agenc1es as a predictive tool while for others (1like blenders), final demand is a very

for economic planning. In Section § we will discuss the . large fraction °f,tﬁe totadgdemand.

uses and shortcomings ¢f the method; first, let's examine E - 1.3 The Problem: To Balan upply and Demand

IE in some detail. ) . ' hd - . " A sensible economic questign: how much of® each pro-

1.1 One-Product Companies as Input-Output Machines ’ . ; duct should be produced to closely satisfy the total demand
Imaéine an economy made up 6f companies that each, : - for the product by all users? That is, how can we match

make one product. (We can, at least in,theory, mentally : . outputs to inputs throughout an elaborately interconnected

split up a multi-product company tb satisfy this.) The . economy?® To answer "this guestion, is-to find a "genergl

: : G N _ -
manufacture of one unit of the product requires & known  {* equilibrium" (as economxigay), that is, we seek the
o

recipe of input products, commodities and services. For production amount for eacMPgood that will simultaneously
N A )
example, the manufacture of a ton of writing paper re- . . make supply equal demand for them all.

~ s - . . .

output of a steel company'is anh 1nput to a. vast’ﬁuﬁ en~ -

s, ks ~ - ‘e

*f other companies which make autos app11ances,,steéf*’ ¥ 2#7 Notation for Production and-Final Demand Levels
nuts-and bolts, steel alloys, and the thousands of othen, Lo . Jgi' We will looi At an economy made up @f 'n oompanies,
steel-using products The eutput of a text11e manufacf ) o ,:5 éach qreatihg one product, commodity or service from a !
turer is an input to the manufacture of clofh1ng, uphola’“ ) é: s fixed recxpe of input "1ngfed1ents We assume'that
stered fytniture, rpet, etc., and cloth is also sold . o oo .pricessare constant and known for each product, we will
“direc to the pu We draw a distinction between . Pgl‘gayﬁthat the ith company makes x; dollars worth of . ~
companies (which convert a product into other products , - ¢ .its product. Let d; dollars of this be the "final demand”

"ERIC
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- . .
(sales to households) of prdduc; i while the rest of X; 2.4 Equating Supply énd Demand '
is used as inputs by other com anies. We take the d .
P Y P The supply of.product i will be Xy dollars. The .
as known (thus assuming at there is some known m1x of Ford T
demand for product i will be- d; dollars of final demand,
products that the public is ready to buy) and hope to
/I plus a. 1 dollars (of product i) used in making the
calculate the X; values needed to produce a "final "demand 1%
o X, dollars of product 1 “plus 339X, doliars (of product i)
vector" (d dzn ..,d ) containing the desired final i
used in making x, dollars of product 2, and so on. The
amounts of all the products ~Lhis vector is really just ~ 1 ual dz and" ti £ duct
"su e S demand” equation for product i js *
the total public "market basket" of all products con-- . PPIy €q . d P “\\
sumed, in dollar amounts. ) () PTAXp YAyt e bapx 44,
2.2 Leontief's Input-Output Coefficients ' : We have such an equation for each i=1,2,...,n, thus :
: o~ n equations in all. Our goal, once a ain, is to calculate
Next, we need to express the recipe that ®he it “ 4 ] & g )
all the x. from given d. and known technological constants \
company converts into one dollar's worth of its output. . 1 ., 1
a... The model provides for the use of each product as .
*(That recipe, multiplied through by x., will yield X; . 1) . . . o)
. th- i an 1input to every other product including.jtself; of
dollars of output for the i company. This is an . . .
course, many of the a.. will be zero.
assumption called "constant returns to scale;" more about 1) - .
it later.) Let a, ij be the dollar amount of ‘product i 2.5 The Model fn Matrix Notation
\
that-is used to make one dollar's worth of product j. We are ready to switch to matrix notation: put
Thus 847 = .23 would mean that, to make a dollar’ S worth TN .
of product 7, we use 23¢ worth of product 4. The full _ Fx“\\i\ d,] fa,, 319 ¢ - - 3,
mix of products 1, 2, 3, ...,n used to make one dollar's n, dyl - 3, az; C e B, \\
worth of product j is a dﬁllars of product 1, a2J of . (3) . x=1. , d=|. w A= ], . .. .
product 2, LR nj* These numbers form the . ; ) . . Q§\\ . L.
'th column’ of the matrix A = {a ). Since less than a . . . . e e \\6
¢
dollar's worth of inputs are used in making a dollar's ° an ldnJ = 301 &g ¢ - 2hn)
worth .of the output (or company 3 would be out of busi- ° - - : . AL
ness), we know that » Then the n equations of (2) may be compactly written .
< N 0. ’ . =Y »
i-);laij 1 and of course 35 z , } (4) X = Ax + d . . w
Thus. the columns of A have sums of less than one. (The . or ’ . ’
rows of A have no comparable economic interpretation.) s A . . .
(5) (1 ~A)x=4d, .
2. 3 Concise Summary of the Notation -~
/ . . . . *  The problem is now almost solved. In (5), we know the
For i and j, each running 1’?’3""”5 nxn matrix I- A and the n-vector 4a.' Then (5) .is simply
£
/ / Xy * total dollars produced of product I, x a set of n non-homogenous linear.equatiofis with the .
. di = total dollars worth of product | that is c sumed wanted x. as the unknowns. » -
"y () by households = "final demand", . 177 . .
// /) Y . 3;; = amount in dollars of product 1 used in makln one . 2.6 Solving for the Production Level; -
E ’ dollar's worth of product j, ‘

‘3 You recall that a set of equations 1ike (5) may
/ IE C ’ : : ' L . . , 4
/ ERG - .24t AR U D 042" .
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have no solution, exactly one solutionm, -or infinitely
RN

many solutions. In our case; although we will not prove
it, there must be exactly one solut1on In fact (I - A)'1

must exist for our given matrix A. (Thls is true for any

matrix where a, ij 2 > 0 and the column sums sat1sfy ‘

,
ElalJ < 1.) We may use ‘the inverse ,to solve for X in (5):
- . . - 7 v

(6)°" Re a2 & P .

We have achieved our goal' to produce a market basket 3

’
.

of final cor'sumer goods, we should.pgoduce the amants

X g1vqn in (6) . N L
Two quest1ons arise at once. One is economic: anix\_

the consu afford to pay for the market basket 37 Con*-
sumers u{izlay pay for goods and services by exchahg1ng
their labor. Can we fit the cost of latqr. into the model
wher%@t has not been mentioned so far? -We'l] d1scgss

this¥1n Section 4. LA

B

-

The other question ‘is mathematical: in (6) We are
asked to calculate (I - -A) -1 for a matrix that may well
be 500 x 500 or even 10,000 x 10,800: we must ynclude
many companies to treat the economy with any realism. Is
there some way to calculate (I - A)il easily? See
Section 3. ! °t
2.7 Exercises C - . i

-

i. Although we have-considered individual cOmpaniesﬁﬁaknng specific

products like stoves; the ‘model can be applied to broadly-drawn
sectors of an economy. Th’s ""two-company" fictional example is
taken from [8], page 61: 1n hupdreds of Billjons of dollarss
~let the flow be: .

N . CONSUMPTION *
+FROM/ TO ~» AGRICULT. MFG. -

S|Agricul ture 4 e
Manufacturing ,8 © 18

Households 8 . * 6
Total S 20 30 .

Al

This array should be read as follows: there is a total flow

of 70 (hundred:billion‘dollars) among two ''companies,'' agri-
culture and manufacturing, and onp ”open sector,' households.
Agriculture uses 4 ounits of its own production, 8 unlts of )
manufactufing productnon (fertlllzer, machines, etc } and 8
units of household productlon (1abor), 20 units in all, to
produce 20 units which 3re distributed as follows: 4 to agri-
culture, 6’§giganufahtufing, 10 to households. The input of ’
6 units of household production (labor} to household consumption

is domestic labor -~ the labor of housewives, for example.

The data above is not the teontief input’;utputdarray we have
studied, butPwe ‘can calculate the Leontief matrix from it
easily.- The recipe of inputs to agriculture is 4/20 from
agriculture and 8/20 from manufacturing. The recipé of inputs.
to ‘the manufacturing sector is 6/30 from_agriculture and 18/30
from manufacturing. Tﬁus the technical mﬁtrix and final

demand vector-are

<

[ <
- [#/20 6/30) . {.2 .2 > 10
A [8/20 8730) = (b g 2 d o= [
* -~ ) P .
a. ~Using the A and d just above, hand-calculate the solution
X of the set of linear equations «

(I1-A)x=4d.

-]_s

b. Calculate (I - A)- and then find x again from x=(I- A)

c. yHow could you have predicted your answer to a. ajid b. .

from the tabie in the exercjse?
(Continued In Exercise 5.)

. +
in this exercise, we alter Exercise | so that agrfcul ture,

manufacturing and households are the three sectors or 'companies'

involved, while savings is the open sector. Each "company"
produces its product (which Is still labor in the case of the-
households) so as to supply the other two companies and create
a’ final -product called investment , while invested funds, called
savings, are inpqﬂied only to the household sector (say, to
bujlp houses. This example, ag;ln in hundreds of billions of
dqllérs. Is “from {8}, page 182: .

244
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. ’ -
- CONSUMPT 1 ON .
: $FROM / TO + AGRICULT.  MFG.  HO.  INVESTMENT  TQTAL
. Agriculture 4 6 3 |+ 7 20
Manufacturing 8 18 1 3 ) 30
Households g 6 4 2 20
Savings 0 0 13 0 © 12
Total 20 30 .20 |12 | og

a., Convert this data into a 3- company Leontief model by fJndingﬂi

-

A and d by the method éxplalned in Exercise 1.
b. Predict % from the table above wn;hout any use of the
Leontief model. PRT b

-4 . -

c. Solve (I - A)x = d for x: Show your calculations in detail,

—-—dr—Catcytate—{ I“""A)““‘?rrd"themerx-from ) H P

Show your, calculatlons *

.

Thi€ exercise is

v P\ .

> Answers to b, ¢, d should alt be the same.

a

continued in Exercise .6.

~

3. HOW TO CALCULATE (I - A)"! EASILY RS
% Do - . s ’
-3.1 An 01d Acquaintance Returnms . ) s

There is an elegant way to calculate (I- A)'1 ;;
In the back of your mind, you should think of the matrlx
T A as thoggh 1t were a single nunber (say a) "and of 1 A

as though it'were 1, 'Then (I-A) 1“’becomes analogous to -
. b

~a - S .
’ . . . . .

rs‘a""—s _— -
should make you think“of -- geometric ser1e$"~You recalL ‘
the .geometric series formula '_ . e
(7) 1 +a+a24+ads ... =«]—l; (if\|a|<

2 0 and "column sums
2 as5 < 1" take the place of |a| ¢ 1 and 1t\1s true that

For oup matrlx.A,.tHb cond1£1ons a1

(8). I,‘)+A+A2”+ A h = f1- AT
a complete aﬂalogy to (M. ° .. . .
3,2 How ;he Seties’ Aids Calculat1on of (I1- A) "

PR
We'll consider a plaus1b111ty argument for (8)

o shortdy (an 1ronclad proof-is_just a Fittle beyond\the

“ERIC " A

Aruitoxt provided by Eic:
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. - v
intended level of this paper because it requires "matrix
norms"), but first let's see the usefulness of (8). 1If
A4, As, 6 and all the higher power terms are "neg11g1b1y
small," then the 4-term partial sum I + A + A2 + A3 is a
good approximation of the hard-to- compute matrix 1nverse
(1-A) -1 needed for (6): (The inverse is nasty to compute.
think of the methods of matrix-inversion you know and
cgnside; applying them §o a 30 x 30 or 2000s,x 2000 jpatrix
I-A,) 1In fact, a partial sum of quite a few terms
from (8) is cheap and convenlent to compute by compar1son
to direct computation of (I- A)

+
*
IS

3.3 An Example

Tmemm s om e e ms —n e m = e “ °

-

Just to see how the calculation goes, put

\ d 02 9 -2 -0
A=_1|0 .2 0| sothatI-A= |- 0 8- 0 .
.2 0 "1 -.2 0 .9
and, to four decimal places, )
- 1.1392 .2848 .1266 :
(I-A) - o - 1.25 N
.2532 . 0633 1.1392

Py
You shoﬁ/h check all the calculations here.
e1ectron1c calculator

Use an
Let's look at some partial sums

of the geometr1c series:

3

- ( . . -
1.1 .2 A : v »?
I+A = 0 1.2 0 ’
, { -2 0 1.1 .
' [~ “ B
, |-~03 .06 .02 , (113 26 2
AT = 0 .0b 0 |, thus I+A+A“=} 0 1.24 .0
.04 .04 .03 el o T3
.007  .018" oos| °, (1137 218 a2
A = 0  .008 of, thus I+a+aZend= | 0" 1.208 0
. " {.ot0  .016 .007 .25 .056 1.137
‘ , - 8 A
4 .0017  .005  .0012 _
A! = o' .0016 0f, thus .
[ .0024 ,0052 .0017) ° -
T3y |18 .283 .1262 '
T +A+A+A4A" =« | 0~ .1.2496 o] . S
. . 2524 . L0612 1.1387 ‘

. -
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-." This five-term partial sum is convincingly close to
¢ (I-4)"
/ series would converge within a few terms;

This example was fabricated so that the infg nite

entrxc> like

2-; .1 and .2 become rapidly smaller when mult1p11ed by one
another‘ln matrix products However, in a large matrix A

the entries would mostly be small and many would be zero.

Remember, all a;; are > 0 and the column sums are less

S than one. The geometrxc series is a practical way to

approximate. (I- A)

.

-l

3.# Why Geometric Series E%teﬂds'to Matrix Cases

A p1a951b111ty argument for the truth of (8) was = -
promised. This matrix calculation Closely mimics the
dsual proof of the scalar case (m: notice that for

any finite partial sum,
(9) 2 + a5

(IT+a+a+ ...
-AIl other*terms cancel out.

>

I-4)=1-ak

For matrices 1iké our A .
-  with small’'positive entries, the powers A

zero n X n matrix 0 as k increases,

approach the
because products *

of small, positive numbers get smaller. To say
?
lim A
koo : : *

. ) .
‘means that all n of the matrix entries approach zero”
as k increases,

are studying.

and this is true "for the matrices we '
Now let ks in (9): - . «

(I+A+A2+A3+...)(I-A)-I-o'=I. “
I + A + Az + A3

But this exactly says that (I-A)'1 = 4

3.5 (1-A)°1

)

From (8) we can conclude that a1l the entries of
(I-A) -1 will be > 0. (This means that ‘negative production
levels x. cannot arise in (6), which i¥ comfortlng we
would throw away a model thaﬂ failed to y1e1d all the

xJ > 0.) To see that (I-A)"" cannot have negatjve entries,

simply recall that a.j > 0 for all i,j. Thus I, A, A2
. -AS, al all contain entries that are > 0 (think about '
- 'l i " - 9

’ Q ' g ) .
EHQJ!: 22 ‘.7 .. >

o, - - _ .

"

tWill Have Nonnegative Entries

(Y3
A

. . '. 7
the multiplication A~A = A%, and so on.) Then their sum

I + A+ A2 ..o = (I-A)° also has non-negative ent}ies.
3.6 Exercises °
3. Using A = {:g ::]“;
K 5 " 0/3
. a. show that (I - A) [5/2 ]0/3] ;

b. Write and run a'short computer program that calculates and
I+A+ Az, 1+A+ A2 + A3, IT+A% Az + A3 + Ah,

printsI + A,
® . . . « , -1
Print part)al sums until you have (h/i A)

etc. well

, |
approximated. This will take quite j/few terms.

c. How many terms must you include in the partlal sum in b. ~

State each law of hatrix

before you have approximated (I - A) "within .5 in each

. entry? Within .05? Within .005?

L. Verify the matrix calculatlo/,wn (Q)
> lgebra you use (e.g., the "left dlstrsbutuve law'"'). ’

-
v5. For* the matrix ‘A and demand vector d

(Exercise 1, continued)
of Exercise 1, calculate Ry computer successive approximate

solutions

¢

s

. (1 +4)d

(I +4a+ Az) d

o™ L4
2 - .

. (I +A+A° 4+ A3) d . . . . ’
’ etc. : . ’ /
Thesiwill converge slowly to your solution ; in Exercise 1.

. ~ . ,
{ : 6. (Exercise 2, continued) For the matrix A and “demand vector
“d of Exercise 2, ¢alculate successive appyoxifations of X by

using partial sums of the series for (I - A)-].

”~

‘ ' . X ]
4. MODELING LABOR IN LEONTIEE'S ECONOMY

v . "_ : N
Lﬁ.l The Value of Labor . s

Now let's turn to the economic question we raised in
Section -2.6: can the public contribute enough labor to
the economy to pay for the-final-demand tarket basket d
it "has ordered? It'is easy to calculate the value of

. ’ 248 .
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labor in.our economic model. To make one dollar's worth The proof involves more matrix algebrag - Fn‘st, no-. |
! of the jth product, we recall,‘/involves a1J dollars of tice that, by inttroducing an n-vector contaming all.ones , |
> ° product 1, aZJ dollars of product 2, ..., and a . dollars = Tue (,0,1, 0 ¢ . e o
of product, n; in all the dollar's worth of product j ) v . '
we can wr1te the right s1de as a matrix pnodt{qt ™”
contams - g y )
' 1 . - hd 9 |
. . d, +d, +...d = | B =y d. ~
pr Ayt ta<d o 1 +dy a = 1 ]d,] ="u ! . |
. M hd R v
dollars worth of input materials made by the n companies. . . . ) L , v ‘
The maxmum amognt that can be paid for labor is - . oot e . .o
' Su
' - ag; =1 - ay; }Now we can write the n equations of (10) compaetly ds N /
3 j=1 ’ . /
’ ’ 3 s
- 7 1 - FURTN = (1, L) - 0,00, ) A=y e (I-A
doIlars per dollar s worth of product j that is manufactured. (13) (?01 %02 aOn) ( ) - ) v (I-A). \\ '
/The new constant a0 (for j £1, 2, 3, ..., n) are labor's The (1,1,...,71) A term here gives the dolumn Zums xhat . o
N mammal slide of the:p1e. When X; dollars of product j : ‘appear in (10). Now < ) . Y
are made, labor recgives anxj dollars in pay. Thus the - T ) ag - = (301"" \a, ) }/
s : . : n /
total economy-wide earnings of labor are at most 6 ) = u (I-A) -3 /
. - S N - . N 'l
- » = I-A)(I-A) -
Z a, = (am, g’ Ag3r - aon) ;2 - L—ZL——) . /
j=t. . .3 . cangels . / :
- A 5 . ) = - St
, v . . . , xn 5 E ) a. . U" d dr d-z + ..
. - = a<o t X . . . . . \ . . \
! Here 50 denotes the row-vector (agys aoz; N v L - ’ ' 5. ABOUT THE MODEL .AND ¥TS USES 0
v ~ }
4.2 Labor's Earmngs and Consumptmn are Equal . e « 5.1 Open. #nd Closed Leont1ef Economes -
" The total worth of the\f‘mal démand Avec tor’ d is . ';s - . The. model we have’ looked at is known as Leon ef's .
dy + d2 e ¥ d dollars. Thus the final demand vector o'gzen model beca.use of the separate- treatment of ompanies .
d is feasiblet (can be paid for by the public) if - and public. In a closed model, 'the qublic {(or .
(12) ;o - x > d‘+ dy + ... +d - force or households) is treated as one more company to -
[N . o -
j E 3 ‘ . "which the jpput rec1pe is the market. basket dmwh11e the -
’ We w111 now prove that equahty must }wld in (12), output is the labbr mgredxent in the mput recipe of moge , "./‘
3p - X = dy + dp + ... +d., if we use production levels traditional companies. As we have- JUSt seen, the dgllar- .~
X Calculated from _the Leonnef model, from (6), and pay ' worth of inputs to the household sector will equal the
labor its.maximal earnings, the 3y; from (10). We will dollar-worth of its output (labor) in the same way that- ,
- be proving that labor's earnings @xactly pay ‘for the the inputs of goods and labor/(o a mahufacturer equal :
"market basket” that households consume. This turns . " the value of its output. The open and ¢losed models are .
OUt to be true bécause we have build conservation of . equivalent. The distinct’ion between "final consumption .
va]ue" into the model: the value "of output is equal'to : goods" in our open mogle/l and 1nputs that the household
>
Q e value of input products and labor if we use (10). 20 :
? < N ." * », .
- - - . 1] R . -‘




*  sector processes" into an output product called labor ® | . can hope to actually know. -Other models that attempt

- in a closed ‘fiodel’ is of economic  inteérest, but makes no to equate supply and demand (i.e., to study general equi-
." . mathematical difference, T . - librium) tend tz/Pe so theoretical that no useful nu@bers
5.2 Profit and Savings Have Been Included _.can be calculatéd from them; on¢ can instead use them-to

: prove that one or more general equilibria must exist!
. - We have emphasized so stron%ly the equal value OF In fact, several Leontief models have been fully researched
the inputs and outputs ff each company that vou may and are in use as planﬁ1ng deyicés.
wonder how a company can make any profit. In fact, : \
profit is one of the input ingredients to'each company. |, But there is a price paid for the use of linear al-

.

R One of the products or commodities that f£lows through gebra; the models are subject to a key criticism. We
the economy we have modeled is money! The paper manu- have assumed "constant returns to scale," as economists
facturer meptioned at the beg1nn1ng«of this paper 7 say. This means that, if a specific recipe of inputs L3
-'really receives a few pénnies of money along with the i . makes one dollar' s"uerth of output for a.given company, ~
phys1cal inputs (like wood fiber) and rabor-t1me in : . then N copies of that recipe will make exactly’ h dollar's
exchange for the dollar's ﬁLrth of outpu. (paper) made ° . * worth of output. In reality, éompanies can reduce the
from the¢se inputs. The public receives some money as ” cost-per-unit-produced by enlarging the1r production.
‘part of its market basket -- this 1s\sav1ngs. Money . For example, .once an assembly line has been purchased and
is s1mp1y one of the n products "manufactured" by n com- - installed, it can be used for one, two or three eight-hour
panigs: one company in this economy is a commercial bank. . Shifts dailp. When used for three shifts, the capital
Certainly the role played by money is unrealistically , : inyestment in the machinery is spread over three times
. simplified.-- we have not built an investment or cred1t moTe output than is the case ¥f one shift is used. The
. . jstructure into the model.’ That can be done, however. _ . input “of capital to any one unit of production is much

. . . & ’ . less when the maehanes are used to capacity. (There are
This model is only concerned with the complex
o : e expra expenses 1nvolved in runnrng machinery around the
. f1 of goods among the companies and consumey/labor sec-

tor of the économy. No risk is modeled -- each company v
knows how much of its product it can sell to the public;

clock -- repa1r and maintenance expenses, extra pay for
work done on’ n1ght shift, etc. -( but these expenses are
easily overcome hy the three- to ne savings.,) It 1s

- process of the economy, not- 1ts other aspects. N .

. e . - produce more of any ﬁroduct than less; that is, there~are
I 5.3 Using Linear Aigebra in Economics -- Benefits : "economies of scale."” This’ phenomenon is an 1mportant

”_ , and le£1dh1t1es . i . " reason for the clear tendencgy Foward large corporations in

5 .. Leontief has chosen linear algebra as h1s mathemat1-; . our economy. e ; . 4’

“cal tool. He benefits from that -- to find X in terms - Linear equations like (5) cannot dedl with economies

. ——0f- d we-simply-solve a (large) set of 11near equat;ons 7 P of scale. Inde®d, doub11ng a 1n (5) leads to a new solu-
-‘ which we know how to do. The great contribution’ °f tion X that is double the old x.e "Constant returns to-

Leontief's modéls is that they permit actual calculatxon
of ‘general equ111br1a in terms of input data (the tech-
.nolog1ca1 constants a.f and f1na1 demands d. ) which we .
. P " ) * zt:r\. R 14~
‘EMC ’ 201 . T 13 f‘- ' ' ' b’“

v L3 L)
s v . . . -

sgale" 1s an inevitable assumption if L;near algebra's
> calculatlon advantages are to be exp101ted

rices do not chan We ar 14 the distrid tto - . -
p n ange. € are mode ing the 18 weren generally less costly (per unit of prpduct1on) to mass- e
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The use of constant technological data, the a,
also been widely critigized.

ij has
The input-output process in
each company is excessively rigid in the model. In reality,
a furn1ture manufacturer might very casually switch from

one upholstery cloth to another. However, that amounts .
to creating a whole new economy in our model! The recipe
for the futniturﬂ‘maker must be altered“.(changing a column
of A) and new production levels must be calculated for all
companies. This is another price for the use of linear -

algebra -- all }he companies are rigidly interconnected.

" 5.4 The Model is Widely Used as a Planning Aid -

When a natiom\\@ region or a city needs to know
the-impact that alterhative development projects -- a
steel -mill, a cultural center, an auto assembly line, a food
processing plant -- will have if built,
analysis is of great help.

input-output
The model can predict the flow
of -goods and services, including transportation needs,
new employment and pollution problems (such factors may be
added to the model we have discussed) and po1nt to serious
ghortfalls or oversupplies in tHe current economy. Its
answers are only apgrox1mate, of course, but they—give
crucial insight intq a Yery complexAproblem.

e W;;ld Bank use Leontief
atistics of the U.S. fed-

r sponsor of Leontief's re-
odel of the U.S. economy.
than fifty other countries,

The Un1ted Nations and

models. The Bureau of Labor
eral government has been a maj
search and employs a massiv
including the Scandin an nations, Western Europe, East-
ern Europe, the USSR and many developing nations use such
models. , °

5.5 The Model's Great Impact on Economics

~

In S¢ience magazine, Walter I<ar}\and Phyllis

Kaniss (10) reviewed Leontief's contr1but1ons at the time
of his w1nn1ng the Nobel Prize. They h1gh11ght the power
of input- output analysis for planning, but concede %hat

the model's predictions have contained large errors ‘when
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WASSILY W. LEONTIEF was born in Leningrad in 1906. ’
He fled Communist rule in Russia in the early 1920s
w1th his family. At the age of 22 he completed a
From 1929
to 1931 he was economic adv1sor to the Chinese
government; in 1931 he JOlned the Nat10na1 Bureau
of Economic Research in New York.

doctorate at the Univegsity of Ber11n

His pain input-
output methodology matured during the '30s. He was
chief of the Russian Economic Subdivision of the
Of?;ce of Strategic¢ Services diring World war II.
Leontief has Been a professor at Harvard since .
1946. Sources (9) and (10). ’

¢

the method has been used by inexperienced planners.  Such

errors can arise, they/point out, in’these key ways:

-- constant coefficients in the matrix A make the "recipes" 7
of inputs used by companies inflexible; .

_-- the effects of inevitable changes in technology are

snot included; P

-- the extensive and precise data needed for the model
is oftem unavailable, "borrowed" from another region
or nation, etc, This has bheen a problem in develop1ng

nations, especially. .

-- one product can sometimes be substituted for another

in our economy; Leontief does not include this possibil-

ity 1n his models.

Aside from planning and predictive uses, Isard and
5
Kaniss report-a major impact upon economics. Since the
4 - N ‘ - =

ﬁ%del requires éUﬁﬁT;:e, consistent data, it has forced
many nations to take economic data gathering more ‘seriously.
Uniform definitions of products and sectors of an economy

and uniform accounting procedures have been needed; thus

planning and data collection agencies in many nations

have coordinated their programs. Much easier comparative

istu&y of related national ecenomies has resulted.

Writing in Newsweek {9], Paul Samuelson (himself a
famous doctoral studeng~of Leontief's at Harvard) mentj

, 254. - 16
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these uses of input-output analysis: )

-- As the Vietnam War wound down, Leontief predicted the
results of the shift of a billion dollars in gross
national product from war to peacetime production.

He concluded that there would be- an expansion in
employmeﬂ&\

Léontief diScovered that exports from the United
States are more labor intensive than our imports,
confounding those who decry thg use of 'cheap foreign
labor" as a source of -unemployment here. His conclu- 7
sion is that the net result of importation and “export-
tation is to iniqease use of U.S. labor.

The U.S. Congress discovered the great,impact of
steel-price raises on inflation &g the Unitgd States.

w it - A
I
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Exercises: Thé&*Yugoslavian Economy,
v in 1962 and 1958

in {[8] page 69 ff4, there is given an eight-''company" model

of the Yugosﬂavian econony as of 1962. The data is reproduce{
by permission of Holden-Day, inc.~The closed sectors or
‘'companies'' are qgiven in rows/columns numbered 1 through 8.

A variety of‘epen sectors are given in columns [0-14; use the
total in column 16 to represent 3 single open sector. The
|nput-output matrix A is glven ‘also. You w{11 have to construct

] as in ExerC|se 1. %
. v

Your ass»gnment, should you choose to accept it:

Use a s:andard lnnear equat»ons solving program, already
available for your computer, to find the production vector
x for this model.

-

Write a linear-equations solving progrim that, say, uses
Gauss-etimination, to solve the equations (1-A) x =d for
this model. (This is a fairly large project.)

. - .l 4 -
Have the computer print out successive approximate solutions

N1 —-
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. for this model, as required inproblem 6. Convergence will v Tables for Exercises 7 and 8, reproduced from [8], by permission,
not be immédiate but will occur by about the twentieth round. of Holden-Day, “inc. ' .
M ] ¢
. . . . " ’ Input 1 ia 1n Mifl '
8. Consolidate the data in the ta'bles used in Exefcise 7 so that the nput Cutput Tuble for the Y ugpslaian Econsmy 1962 {in Millions of Dunass)
ducti d’ "ind ) o \ ‘ y C Tramport * | Senies
roduction and consumption "‘in ustrles are« v Besinatron 1 Manu. Agti- on. and . Subtatal
- P P Poturng | cwitore | FORIY | ieion {Commund  Trade (.::ﬁ’ Others (1-3)
1. '"manufacturing,” made up of old manufacturing (1) and Ungtn + ~ ‘< caltuns — -
. ! 2 3 4 s ° o 7 s 9 |
construction (4); , T eManatiunng | 1.59%.873 3#7! 4,584 253,51 LRIAY 37,904 40,708 9,328 2,097,665 R
. " H " N . < . 2 Aghiuliuie L0080 82 3,566 (/] 3,497 4 760,834
2. 'agriculture, gade up of the old agriculture (2) and forestry'. 3 Lotertey 2982 yA S50 6,65 230 1299 M 1 878
1(3); ’ 4 Consirucnon 16,086 1,322 1235 137,391 26,189 3 oy 703 186,447
. ’ . N ‘ H ;l':nnspon and . 2 a8 , 10 . N . 2 ; ;
. , GmMmuniLation {78 Y] 1, vid 2.4 9,500 2,946 12, 1,2 8% 207,37
3. S;_‘SCGS made up of the 8ld sectors (5), (6), (7) (8), 6 Tiage - 0.643 13,292 M6 20,508 6407 5519 10.714 894 130,783
7 Services und L ] ‘
TReopen sec:or is the subtotal row/column-16 use'd in Crafts 31,624 9,08 988 8,939 8,561 7,069 1,613 co14 68,406
"R £ ise 7 for thi lidated model a8 Others 39,256 37 130 2,100 1,063~ 2,849 mw o, w.m
- Exercise 7. Repeat Exercise 7 for this consolidated model. Cooy DShuuiien |25 W1 4 00 sl o ssau ] o amss - B
Comparexto the results of Exercise 7. . 10 Depreciation 9,606« 42,677 10,458 21,300 4,785 16,112 2,09  2,108] 300,200
: N - HoPotwndl Incne | 02,748 525,599 60,257 173,067 94,313 120,266 38,621 16,090l 1,430,961
. c ble dat (t hat of 1962 3 d inE . 7 d. 8) £ " 12 Awumatation * h) .. f
9. Comparable da a (to that of 1962 used in Exercises 7 an or C O sasemgy) Loh. ey 203,260 30,673 2029500\ 134,187 340735 34,764 37.87072,045,179 )
: 1958 appear on p.21. You should regard rows/columns 1-8 as the 13 Subtesat(y 120 | 3,006,258 1,412,603 116,610 866000~ 477.1j8  s31.121 130968 68,815 7,662,899 . -
indihddationk - <
. 19 Decrease | . .
“'companies' and subtotals in column lé“‘s*-bhe single open sector, S " s snsw 2w e o sen
Exercise 7 , . 15 Iniporey o bk, 171 40 133 L1122 20,247 , 9,585 45,261
in Exerci S K
as ‘ - 16 Taal {0V 1S) [ 4700 412 196,394 119822 806,348 497,303 $SL,122 133,905 78,403 ¥, 559 K31 +
a. ﬁcaalc"'late the appropriate matnx A and final demand vector luput Outpus Tuble'/onhe Yugoslavian Economy 1962 (Continued) .
’ d. - . . ~ Y -
. . ¢ . . . \ Deshnation ncresne ] * Gess 2 Consumption o Total
b. Solve the linear equations (I-A)x = d. - N N Stk | tnsesement| ExPorts Pecrmn GE?,‘,.'?' 'r‘:::‘;ﬁs: 110-14) 8‘:7:;
. - . - 4 ' . -
c. Approximate x by using successSive partial sume of thesseries Ougan, \ ) ; B T
- -1 . s . 0 " [} 3 e 15 - 16 17
for (I-A as- required in Exercise 5. - 2
or ( o ) Sequire 5 . . 1 Manufaciyring 176,952 7 403,628 552,553 960,817 ' 162,802 1,123,619 2,318,747 4716412 ©
: . v 2 Aghiculture® 6.9 12,6% LYY 4,03 736,008 835,560 1.5v6.394
. -, . . 3 larestry 681 5,835 20,42 L2 20,540 3106 119822
, . . > 4 Comstiuction 655,173 250 DU 2.7 619,901 866,348
5 f . s l"mmpurl and* \_) p s - -
v To- . Communidatinn 3,80 6,733 - 109,758°"" 150,851 19,1 169, 289,990 497,365
- . 5 6 Trade 6,106 39,485 SIS 306.870 ) a1 a0, ssta22
N e ’ _ 7 Services and < . -
. . Crafts 1,206 | 2,645 S s6n 1,66 61710 65,558 133,95
‘ o ’ 8. Others N 1008 10,10 20,651 o84l -301¥  78.403 -
. ’ ; c . -
. . i 9 Subtuiat (1-8) 196,945 1.168.940 796,742 2.21.84 283N 2.500,648 4.613,27] 8,559,831
. : - ' Saune Suetint Zuswd ta Stutdliku (1968} *Medusobm Odnast Privredmih Delainosty Ju;mhvut u 1962 Godii™ ("latesindustry Rela-
‘ . tiuns uf the Y ugoslav tconumy in 19627 Beognad
. . . ' . rr ® 0 3920 0 0510- 0 0383 0.2926 0.2310 0 06is 0.3262 0 119%0]
. L. . ¢ - ~ 0.048% 03277 0.0298 O . 0,002 0.0371 00003 o .
, . . . . . ) . @ |00 00003 00046 00077 00004 0.0024 0.0028 0.0010 .
. . ‘ - as|00U4 000S 0.010) 0.1586 0.0527 0005 0.0030 ¢.00% N
S . : . ’ [ - - 7o ]uous 00071, 00205 0.041 0,0882 0.0225 0.0 0.0110 -
' o : . . i - 0 0152 0 00% 0.0062 00237 0.0129 0.0101 0,0%00 0.0ii4
: .o . 0 0067 0 0057~-0-0080 0 0103 0.0172 0.0128 0.0120 0.0078
. =y : ' * 00083 00001 00011 00024 0.0021 0.0052 0.0028 0 003$ K
. N . .
. 2 ) i - [/ . Programmed by Ervin Bett .
’ . * . v . Tcrhm:al Coclicknl Mairiz for the_ Yugoslavian l::onomy 19625 .
oo B ° B . 2 K . -
- 3 ~ S
r I ’ V8 e N .
. . /\ o h A& . 20
. N « 19 ' o ° - v, . N F
[ lC 1 . . .. \
¢ — PO R - o < .
A ruiroc provides o enc | ;...m.‘ A ruiroc provides o enc | . : . Lo S - “ s PR . " -°. A .
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« . Pata for Exercise 3, reproduced from 8], pp. 73-74 by 8. ANSWERS TO SOME EXERCISES
. ! . permission of Holden-Day, Inc. .
. B - <
. » , v . * N i '
. . / . . R -.z] R (IO] - -
s ) The 1958 Yugoslavian Economy “ e 1. a. (I-A)x = {~.4 .4j x = | 4] has solution -
. - ’ / -
. M * . - : . ~
- } . . © L [zo] . i}
VIS
P X = .
' Inpus-Output Table ‘)"or the Yugoslavian Econamy 1958 in Atillions of Dinars) ‘ R . 30 .
- : ) c(rn D=(5/3 2 5/8) - . .
» S . - | Trampon Services b. " (I-A )=[ precisely. The ‘same solution -
Devimalon | Movng | core | Foresey | S N, and ] Trade | and | ouhers | Subowt 5/3 1073
- cauuns Crafts . =_ [20 i e . '
- Ongn ) 2 3 bl s 3 7 3 9 i X 30 results. ;
4 1,4 104,48 .88 1919° ] ] 3 4 . . . -
¥ :‘:::::(?;M. l.?g;:gssg 26::;:; 5.3;; e " ;.3:6' 86::: 0 '43;‘:;2 c. The “productionstotals’* in the table give us x, as we should"
o 3, Forestiy . 50,030 1,009 15,462 4,222 198 1,227 1,320 13,481 . s e - e . N
~ 4..Gonstruction 4,922 199 299 10,437 s 498 16,428 expect from the definition of x. . .
S. Transpori and .t . . ¢ ' . :
Commumications | 4,216 3.5 1,393 15688 13843, 8208 2,635 301 93,935, ° .
6. Trade . 33,143 3,680 5 79 10,848 1158 97 9,38 v 63,040 4720 6/30 3/20 2, 2 .15 .
7 z_err;‘llcses:nd , 902 7102 8 5635 2.8% 92 - 2. a. A= |8/20 18/30 1/20 = 1.4 .6 .05 ,
& Others 26! aa 30 Jiae 662 « 2980 o 8/20 6/30 - 4/20 L
o 9-Subwtal (1-9) 11,379,403 337640 24,183 191970 115,764 <0901 101,306 6,021 2,197 188 R 7 . .
W Deprediation 13,362 20,789 1,971 7933 34,500 7.249 4,391 1,249 151,444 and d = |3}. .
1P Perwnal Income | 156,018 388,407 45,332 55,435 41358 3°S4.695 56,380 8,446 306.07) 2 20 i
12 Accumylstioh . -
{ssvingsh © 630,132 ¢ IS0 28,967 53,622 50,085 139197 45267 22,6%6'1.046.19 b. "Production totals" predict x = |30].
13 Subrotal (3-12)" | 2,238,945 824,086 100,453 ¢ 307,960 241,707 242,042 .207,344 38,392 4,200,899 - . 20 .
14, Decrense 1n ‘ 7 . : . /
Stnds 1,851 . 1,851 N .8 -.2 -.15) . 7
15 Imports 43,691 | 91,366 683 « 30 8086 . 2.558 346,614 o . é. (I-Afx = |-.4 y -05| % =13 =3d T
16 Towt (13-15) < | 2,684,457 915,652 100 136 307,990 249 79) 242,042 207,344 40.950] 4,749,364 o -4 -2 .8 2 . ‘
. i . ¢ e «
- : 20
B lnpvl-Oulp.ul Table for the Yugosiavian Economy 1958 (Conllnucd.) ‘ \ ( : fhas the solution ; = 30 as expected. ’
. 3 20
Destination . Consumption l . Total : . . - - .
i 1n§,:cﬁ,,, lm(g:,:m Exports [ Persomil | Genenl [ToaTCor .“0 u)l oot The arithmetic is nasty if a methodical Gaussian approach
4 . . - 1 - .
& ongn h ,ugh s C‘:'.‘ e | 9+16) | Is used, but easy if one tiptoes through.the equations
10 o 12 13 14 &1s 6 17 using a little fofesight. . . .
] 1. Manufacfuring 119,406 281,797 276.287 438,903 132,724 71,62~ 1.249.087 2,684,457 ’ 4
2. Agnculture 10,549 5953 70,250 419,447 8,625  428,0°% 514,824 915,652 \ - ' )
R 3. Forestry 1,413 7.54  17.830 1,168 18,995 21,655 101,136 - X . r ’
;- g:::w:t:nm 272,000 42 19.136 19,13 91,562 307,990 . . ’ N
5, Sommunications 1,010, 4946 58,688 74,599« 16,615 o214  1is.85 249,793 ’ - . T o,
5 3,‘3'«,.,.« 1,98 18959 25,628 120,135 12,294 _ 132,294 179, 242,002 ’
. I'd - L]
» L Crafis - S 230 2,584 102374 ‘15810 138,184 123,069 207,344 . .
.. 8 Others Wt 242 4.159 6,238 10,391 1.1 990
* 9. Sumoul (1)), s 135,732 L SBATEE 41613 1177447 212,610 1,390.057 z.ssz.m[ 4749364 ) .
‘& €, 1 Crneiosrh k3 . * .
- “m'y“a"l-‘nlu et (l_’ﬂ)-"‘_' dusodni Odnosi P!lym;nlh Dcm;usn Jugotjavije G 198 Godini™ ¢ Interindustey Relations | | =~ \ .
9587). J oty 4 X .
[ srd o ' / .
. [ . . € ° 2 v
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3. b, About 50 iterations are needed to get noticeable convergence.

" Results:

L

o

SR

~

A .
~THE 45 TERM APPROXIMATION IS

A

THE 5 TERM APPROXIMATION 1S

2.838399 * 1.&55999]
1091999 2.110399

THE 10 TERM APPROXIMATION 1S
3.979849 2.447314
1.835486 2.756191

THE 15 TERM APPROXIMATION 1S
4.518542 2.915179
2.186384 3. 060952

THE 20 TERM APPROXIMATION IS
b 772777 3.135986
2.351990 3.204784

THE, 25 TERM APPROXIMATION IS
4.892762 ‘;.zhorss

. 2.430147 (272664

THE 30 TERM APPROXIMATION 1S
4.949389 3.289377, °
2.467033 3.304700

THE 35 TERM APPROXIMATION 1S
4,976114 3312588
24844 3.319820

THE 4O TERM APPROXIMAT|ON IS
4.988727 3.323642
2.h92657 . 3.326955

3.328712
31330323

" 4.994679
*2.496534

THE, SO TERM APPROXIMATION 1S

4.997489 3.331152
"2,498364 -~ 3.331912

v
.

-

s

.Y
e

4

. 5. Reproduction of computer results are Just below, giving the

matrix, sums and results after multiplication by d:

THE 5 TERM APP!QXIHATION IS

1.473599 0.569599
1.139199 2.612799
THE 10 TERM APPROXIMATION IS
.1.621937 0.772231
1.544463 3.166400
THE 15 TERM APPROXIMATION 1§
1.656303 0.819177
1.638354 3.294658

3

‘THE 20 TERM APPROXIMATION 1§
1:664265 0830053
1.660107 3.324373 -

THE 25 TERM APPROXIMATION 1S
1.666110 . 0.832573
1.6@51Q§: 3.331257

THE.30 TFERM APPROXIMATION 1S

1,666537 0.833157
1.666314 3.332882
THE 35 TERM APPROXIMATION §s
1.666636  ° 0.833292 .
1.666585 * 3.333221

THE 40 TERM APPROXIMATION 1S
1.666659 . 0.833323
1.666647 ".333307-

THE 45 TERM APPROXIMATION 1§
1.666665 | 0.833331
1.666662 3.333327-

THE 50 TERM APPROXIMATION IS |
1.666666 0.833332] -
1.666665 3.333331

by

~

AND LEADS.TO OUTPUTS
> . [17.014399
21.843199

AND LEADS TO OUTPUTS
19.308298
28.110235

AND LEADS TO OUTPUTS

19.839746
29.562180

AND LEADS TO OUTPUTS
19.962872
29.898565

AND LEADS TO OUTPUTS

19.991398
29.976499

AND LEADS TO OUTPUTS

19.99800
29.99455

AND LEADS TO OUTPUTS

19.999538-
29,998738

AND LEADS TO OUTPUTS

19.999892
294,999707

}
AND LEADS TO OUTPUTS

.

19.999974
29,993931

-~

AND LEADS TO OUTPUTS

vz [19.999993
: 29.993983




, * . // N
6. Reproduct}oﬁ of computer printbuﬂts of successive matrix ‘ 7. Rogers, ih [3], page ;'2, gives these results which | have not
. apprOxim;tiOns and the x they yield from multiplication by d: confirmed. Only d and five x vectors are given,
’ uTS ,
THE 633;52" APS’}g;(I);:I;;ION (l).5309799 ANO LEADS Tof?ijt;z%ss lierative Solunion of the Input-Outpur Model Yugoslavia, 1962 '
1.266199  2.699099 0.323299] X = 17.607299] < <
[0-979]99 0.833999 1.432893 ,2,'222’99‘ Iadustnal Sector Final gcmand — . ::maldouw;lda:e‘r PRETRT Tz‘(’)lzahll?:ég;l
S . . Ist Roun 2nd Roun rd Round  10:h Roun 2
THE ;gszg?ﬂ AP';Rg’s‘l"g‘s‘ng (')51'205]5 ANO LEADS 70 ?17172?"{;95 | Manufactunng 2,318,747 3,593,595 4203567 4,483,704  4.75.489 4,7&,412
: 6 : ) 25 381104 2 Agniculture 835,560 1,226,465 1,418,674 1,512,349 1,596,030 1.0 394
1.95297 3.532773 0.555972 5.3 3 Forestry 31,063 76,403 100,006 110,812 119,786 119,822
1.410627 1.356132 1.579797 g 17.102386 4. Construction 679,901 814,7% 848,359 859,071 866,321 866, 348
5. Transport and Communications 289_990 409,701 458,548 479,915 497,296 497,365
THE 15 TERM APPROXIMATION 1S ANO LEAOS TO OUTPUTS 6 Trade 420,339 . 4927930 524,941 539,248 551,074 551,122
2.080723 1.232059 0.461666 ° 19. 184608 7. Services and Crafts 65,559 104,519 120,686 127,933 133,941 133,965
2‘20901 3'813;3 07 0'61,231.0 28'278700 * 8. Otters 32,113 56,310 68,182 73,751 78,1385 78,403
1.57125 1.550941 1.634293 18.920162 Total 4,613,272 6,775,199 7,742,963 8,186,783 8,558,322 8,559,831
THE 20 TERM APPROXIMATION IS “ ANO LEAOS T2 OUTPUTS Progra'mmcd by Ervin Bell
2.125927 }.286879 0.477001° 19.696132 )
fggll'll’(z)g ?zggggg ?2;22(1)3 . fggggggg (Reproduced by permission of Holdﬁen-an, inc.) <
. ? .
THE 25 TERM APPROXIMATION IS ANO LEAOS TO OUTPUTS \ ot o
2.1821n 1.307308 0.482716 19.886759 _ R
2.339987 4.002158 0.687277 29:760947 . . ‘
1.653415 1.650594 1.662170 19.850033 .
THEl30 TERM APPROXIMATION IS ANO LEAOS TO OUTPUTS . T 4
2.149048 1.314921 0.484845 . 19.957799" -
2.353239 4.018230 0.691773 : 29.910913 . .
1.661728 1.660677 1.664991 19.944112 ' R . Vg
THE 35 TERM APPROXIMATION IS ANO LEADS TO OUTPUTS ‘
2.151388 1.317759 0.485639 19.984272
2.358177  4.0242)9  0.693449 - 29.966800 .
1.664826 - 1.664434 1.666042 ' 19.979172
THE 40 TERM APPROXIMATION IS ) ANO LEADS TO OUTPUTS ' : : . . . .
2.152259  1.318816  0.485935 = 19.994138 . : )
2.360017  4.026451  0.694073 29.987627 ) . o '
1.665980 1.665834 1.666433 N 19.992238
THE 45 TERM APPROXIMATION 1S : ANO LEADS TO OUTPUTS- )
+2.152584 - 1.319210 0.486045 19.997815
2.360703  4.027283  0.694306 - 29.995388 . 8
1.666411  1.666356  1.666579 19.997107 . . . e 2124
THE 50 TERM APPROXIM‘ATION IS . AND LEADS 1O OUTPUTS , - d )
2.152705  1.319357  0.486086 . ]19.999185 A
2.360959  4.027593 0.694392 x = [29,99828) ' \ ‘
1.666571 1.666551 1,.666634 19.998921 .

. . ) . e ° . ’ :
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STUDENT FORﬁ 1 -

. 55\Chapel St.
Request for Help Newtqn, MA 02160

Student: If you have trouble with a specific part of this unit, pleaé% £111
out this form and take it to your instructor for assistance. The information
you give will help the author to revise the unit.

Your Name : ) Unit No. -
Page =
O Upper Section Model Exam
- PP OR . OR_ _Problem No.
OMiddle . Paragraph Text
QO Lower . Problem No.

Description of Difficulty: (Please be specific)

> v .

hd w

. |- - Instructor: Please indicate your resolution of the difficulty in this box.

b S .
" (::) Correctéd'errors in materials. List corrections here:

(%4

PN

S . §\,
(::) Gave student better explanation, example, or procedure than in unit.

. « Give brief outline of your addition here:
r . , ) .
. * % - ; = 2 — L=
- 3,
R ~(::> Aésisted stu&ent in acduiring general learning and problém-solving
~ s8kills (not using examples from this unit.) ‘ 4.
1. ‘ a
—
2E3 -
T S

Instructor's Signature .
- -

- N Pléase use weverse if necessary. : -




Return to:

STUDENT FORM 2 \ EDC/UMAP
) 55 Chapel St.
. Unit ngstionnaire N Newton, MA 02160
Name b T ‘Unit No. " Date . J?
Institugion * Course No.

Check the choice for each question that comes closest to your personal opinion.

1. gggruseful was the amount of detail in the unit?

Not enoughﬁdetail to understand the unit «~
Unit would have been clearer with more detail
Appropriaté amount of detail . : N
Unit was occasionally too detailed, but this was not distracting *
Too much detail; I was often distracted e .
2. How helpful were thesproblem answers? w f
Sample solutions wérg too brief; I could not do the intermediate steps
Sufficient information was given to solve the problems v
Sample solutions were too detailed;_I didn't need them ’
3. Except for fulfilling the prerequisites, how much did 'you use other sources (for
example, instructor, friends, or other books) in order to understand the unit?
A Lot . Somewhat A Little Not at all
— B — -
4. How long was this unit in comparison to the amount of time you generally spend on
a lesson (lecture and homework assignment) in a typical .math or science course?
- Much Somewhat About ' Somewhat Much
Longer Longer ) the' Same * Shorter Shorter * N
. ) . / ‘
5. Were any of the following parts of the unit confusing or distracting? (Chggk
as many as apply.) ‘ o .
____Prerequisites , “ 3 ]
Statement of skills and concepts (objectives) . K
* Paragraph headings | ‘ . t - )
Examples ! .
Special Assistance Supplement (if present) . : v
Other, please explain ° d .
6. Were any of the followi g parts of the unit particularlxlhelpfdl? (Checy as many
as apply.) ’ ’ } ’
Prerequisites ] y ,
R Statement of skills and concepts (objectives) ' , <y
Examples - ‘ o
Problems ) \ :
’ .Paragraph headings ] \ ) .
Table of Contents ¢ \ .,
Special Assistance Supplement (1f present) - .
Other, please explain : \ i
. . P
Please describe anything in the unit that you did not particularly like.
: i

- Pleagse describe anything that you found particularly helpful. (Please use the back of
this sheet if you need more space.) - \

el 286 S \




. ' ) ¢ VISCOUS FLUID FLOW AND THE INTEGRAL CALCULUS
UNIT 210 1 '
umap , " ,

MODULES AND MONOGRAPHS IN UNDERGRADUATE
MATHEMATICS AND ITS APPLICATIONS PROJECT

Philip Tuchinsky

-

TABLE OF CONTENTS
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* VI5COUS FLUID FLOW

AND THE INTEGRAL CALCULUS LAMINAR FLOW .

by Philip Tuchinsky
2. POISEUILLE'S LAW
3. WHEN O0ES TS LAW HoLO? . .

4, ‘THé VELOC LTY OF FLOW ANO THE AMOUNT OF FLOW

-

.top of fluid ¢ - THE TOTAL FLOW THROUGH A PIPE ‘OF ﬁAOIUS R™ ..

THE RIEMANN INTEGRAL .

A

tank*of fiuid, -“ THE RIERANN-STIELTJES INTEGRAL .
weight W

OISCRETE SUMMATION . . - .

collect”
flow
here

L

APPLI’KTIONS OF CALCULUS TO ENGINEERING

* - ” . / » . !
* This section may be omitted without affecting the readability
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Intermodular DegeriPtion Sheet: UMAP Unit 210
Title: VISCOUS FLUID FLOW AND THE INTEGRAL CALCULUS

Author: Philig Tuechinsky -
7623 Charlesworth °
Dearborn Heights, M| 48127

Dr. Tuchinsky is a member of the Computer Science Department
* of Fbrd Motor Company's Research and Engineering Center. He
formérly taught in the Mathematical Scicnces.Department at
Ohio Wesleyan University (where earlier editions of this
baper were written). :

9/1/78
APPL CALC/ENGINEERING ~
Suggested Support Materials: None are essential. A lab set up like

- that shown in Section 10 would make an interesting display. Exercise
b calls for use of a computer or programmable calculator.

Approximate Class Time Needed:

Intended Audience: Calculus students qu{ning how to integrate
podynomials. The paper is suitable for independent reading and
seminar presentation by more advanced students as'well,

’

Review Stage/Date: (RR

Classification:

One 50 minute class.

Referencés: See Section 12 of the paper.

Prerequisite Skills:

Calculation of the integrals [xdx and [x’dx .

Knowledge that [c f(x) dx:= cff(x) dx . ‘
Recognition of an integral as a limit of Riemann sums.

Comfort with summation results like 1 + 2 + 3+. . .+n-=
n{n+1)/2.

Elementary computer programming (for Exercise 4 only). «

Output Skills:

1. Replace'a simple integral by a discrete sum, qélculate both any
compare results.

2. Average a function over an interval.

3. Reduce simple Riemann-Stieltjes integrals to Riemann integrals
and calculate the latter (if the optional Section 7 in included).

4. Discuss how well Poiseuille's Law models a specified viscous

5

6

FWN -
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wvi

flbid flow sitdation.
Describe a laboratory procedure for finding the coefficient of
viscosity of a fluid. .

Identify local vs. global information.,

UMAP Editor for this module:

Other Related Units:

The Human Cough (forthcoming as .UMAP Unit 211) Starts witg the
- result of this paper that total flow is proportional to R and goes

on to discliss maximizing the speed.of air flow during a cough.

Diffarential calculus is its method.

<

Solomon Garfunkel

C)‘}978 EDC/Project,
- All rights reserved.
Q

S \

PROJECT STAF.

!
MODULES AND MONOGRAPHS |N UNDERGRADUATE", \f
MATHEMATICS AND ITS APPLICATIONS PROJECT {umaP)

.

The goal of UMAP is to develop, through a comﬁun:ty of users
and developers, a system of instructional modules in undergraduate
mathematics and jts applications which may be used to supplement -
existing courses and from which complete courseé‘nay eventually
be built. ¢

The Project is Juided by a National Steering Committeée of
mathematicians, scieﬁtis;s and educators. UMAP is funded by a 3
grant from the National Science Foundation to Education
Development Center, Inc., a publicly supported, nonprofit
corporation engaggd in edu&gtional research in the U.S. and
abroad. -

L] Y

Ross L. Finney Director <,
Solomon Garfunkel Associate Director/Consortium,
* Coordinator

Felicia Weitzal ®
Barbara Kelczews!i
Dianne Lally

Paula M. Santillo

Assdciate Director for Administration.’]
Coordinator for Materials Production
Project Secretary .

Financial Assistant/Secretary

NATIONAL STEERING COMMITTEE :

W.T. Martin . MIT (Chairman) "
Steven J. Brams New York University

Llayron Clarkson Texas Southern University
Ernest J. Henley University of Houston

Donald A. Larson ‘SUNY at Buffalo '
William F, Lucas’ Cornell Univeksity

Frederick Mostellér Harvard University |

Walter E. Sears University of Michigan Press
George Springer’ Indiana University

Arnold A, Strassenburg  SUNY at Stony Brook . o,
Alfred B. Willcox Mathematical Association of America

‘s

* 4, The Project would like to* thank Melvin A. Nyman, Peter

Signell and L.M. Larsen for-their reviews and’ all others w
assisted in the production of this unit.
t
This material was prepared with the suppgrt of Nationala .
Science Foundation Grant No. SED76-19615. Recommendgtions®
expressed are‘those“of the author and do not necessarily refléct
the views of the NSF nor of the Nationa] SteeringsCommittee.

o



N

‘ . } . . ’ )
. N ' . . . .
C - . P ¥ T e ) b4 P01seu111e.f result abput viscous f1u1d flgy has
‘ VISCQUS FLUID FLOW AND THE INTEGRAL CALCULUS
. ‘ ) ’ many other appllcat1ons We can use it to study %the °
. . . . (' ' c . * flow’ of air in the windpipe, oil in a pipeline water
v s ' . . * "1, LAMINAR FLOW e mn a plpe system, graln flowing by p1pe 1nto the hold -

. ' 5 M . .' . of a sh1p, etc. The assumptions 1nvolved din the Tesult
.« + <« When a thlck, stlcky {viscous) f1u1d through -~ T nake it more applicable to some of tﬁese réblems than
. . PP P
: a pipe, it does fop ali floa at the same ad othérs (see Section . :3),"but it provides a good first -7
N the fluid closest to the wall of the pipe, suffefs) ‘ ; tpprox1mat1on to them all. <
much friction with the wall that it hardly moves at all, ’ ] . . . T e ’
‘ * Another important use of>P01seu111e s Law is to
while f1uid closer to the central-ax1s ,of the pipe moves ° - . Y )
. . . neasure the relat1ve v1stos1ty of- flulds More -about
‘ more rapidiy.. The f1u1d s speed 1ncreases steadlly ass, - e,
. - this Tater, in Section-10. .
the d1stance from the wall increases. Because of IR -7
c1rcular symmetry, the effecf~1s that, of cbncentrlc \\ . We will use Poiseu111e S Law to calculame total
tubes of fluid sliding over one another (see Figure 1). ** « « flow *through a pipe using a"finite sum and the "continuous
) ‘ - . - > summation" -process called 1ntegrat10n " The tworesults
¢ - ] * A v .
' * . o, . . - \ . * . 3Will deserve comparlson *

.« &

.
- - ) . v
.
. " P

. The exact way in wiich laminar flow happens was ° . . Where Yrefe; to\f1gure 2) o Lt i
found by a French scientist, named P01seu111e more than ’ 2di ; )

: R = radius’ of the pipe if cm. (Thus 0 < r < R)
. a cefftury ago. He was studying.blood pressure, which T« - L #"length of the pipe (tm ) '
. F - ~ . Vo - . 1 -3 :
i had just been aCCurately measured for the first time. ) . .P s pressure change P, - p2 down the length of
' He wanted to know how much blood” flows through a blood * .. *"the p}pe,'(dyne/ty ) )
vessel in a given time. From that information and . o % = coefficierit of viscosity (poise) 2 .
analysis of .blood samples one can sqz how much oxygen ’ : - ” ) -
* a——)
ind nutrients are Peing de41vered to the cells ser- ® o :
3 o Varlables wull be giveh with thelr cm-gram-second (cgs) Gnits
¢ viced by that blood . vessel. Knowledge of bloord flow . " “tohelpus undérstand their physical meaning. Any system of .
is a basic part of understandlng the body as a‘physical ' . ! . ' units could be used, of course. .\ ) ’ !
system L2 PR . . R . g

) . N
. . . . - ¥ . . - o
, ;
. N e - .. .-
- .
o . - :
. .

] ’ " " h
4 = R ¢ . - . * s
; - - flow - - . s . . )
- « . A - T ) ) 2. ‘POISEUILLE'S LAW . T

: Figire . Lami Elow i Cylindrical pi s Poiseuille discovered and others later ddduced .
- Igure . amsnar ow In a inarica Ipe. .
ouk . . . 4 from theory (see Séction 12) that tKe veloelty of the ’
. ' — particlbs of flydd at 4 distance r centimeters out frome
. L . . : ~ . - the center axis of, the pipe is Lot oo
. We call this laminar flow: each lamina or layer of ’ . B . , -
fluid moves at its own épeed. Different laminae move ¥ W, N s x .
. . 1) - v r) _F_ R2 - r2 cm/sec..) . )
at different speeds. : . - e )( - ( '« ) ( ) .
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{Let me remind you that pressure is force per unit cro;s - \. ) . B . -
sectional area.) One can prove that the pressure will JEAN LEONARD MARIE POISEUILLE (1797-1869) was a
decrease_steadily [as a straight line (linear) function] well-known physiologist and phy51c1st He ’ ’

. - @as the fluid moves through the pipe. It.‘is the difference ‘ invented the mercury manometer t¢ né%sure blood |
. in final vs. initial pressure that enters the equation. pressure, 1mé)rov1ng the pioneering work of )

X The cgs unit of viscosity, the p01se 1s named after Stephan Hales. The law consider'ed here appeared
Poiseuille. - ) .1n a paper of 1840 and was found through \abora- ’
e ‘ .t tory experiments hlth- dlstxlled water, ether and

fluid in at higher - fluid speed . mercury. The mathema\tlcal derivation was first
- Pressure Pl \ - ’ e v(r)' found in 1860 by F. Neumann and J. E. Hagenbach,
) :; -+ axis of pipe [ ::f’\ v.ho named the result Poiseuille's Law. But the
. - - fluid’ out at “name is disputed: G. H. L. Hagen found the same
- - - : lower pressure P, law independently in 1839; his worktwent un- ‘
‘\/ . = . ; ‘ . ° noticed for decades. Reference: Dictionary
' \ . : . of Sciemtific Biography, 1975 edition, vol.lI,
. Y oo, Florez By T p. 62. N ' _ .
IR 3, WHEN DOES.THIS LAWHOLD? 4
JES ' /‘. s d)  Fluid is cc?ns‘ervegi, i.e. neither creited nor
, THe maJor assumptions ‘that must be true to have ) » lost, in the pipe. Thud no f1u1d is leaking
equation (1) valid are theser out thrdugh the pipe wall and no feeder- - v
. Pa) ITR&re must be no: turbzdzty in the fluid. L pipes are pouring fluid in or out. ’
‘ / ) R Thls means that there is no swx,rllng, e) The tube is hotizontal and the (very sllghtﬁ ’
A Jparticles of f1u1d ‘move-in stralght lines downward pul],lng effects of gra\uty are _ . .
. down the pipe. * ‘ A ignored. For 'a vertical tube th1is minor . .
v M b} The speed of flow v is asgumed to depend oxi R - variation on (I) is true: .. R
> - L of on;y Thus v _does not°change as fluid v . & L .- . .
. ?ves ddwn the length of the mj:pe,'; and it ) v,ér) '=.‘ P_ZkgLo_b (R% - rzj
oes not change with time; the flow is. . . . b - . . .
‘ .o uei’ther,.speeding up nor *slowing down, it _ . where g% 980 cm/sec/sec is the grav1t,ational

) is steady stute. - ‘ i K ’ " . constan't and p is,the density of the fluid,

‘ ) c') "The fluid is incompressable, i.e. ,,made up 3 » 1. €. » ts mass per unit-volume. For -2 slant;ed

- 3 of particles that cannot ‘be crushed or packed. ) o, A p1pe,bthese.hor1%on:al ?nd verti;:al "91°C1t;i’5;

sy (;\7. in closer t‘gether (by the forces Present)' e " . Y- : must be veetor adde. . or simpl c11j.y We w1
L ) . . oo use~ (1) Ca . s
v . ‘ % ’ "'/~ e ‘ . -'\ 7.___,,;' f)‘ The p1pe "is a right- c1rcular cylander‘wa.th
. . "’ . TR . 3 e 4 constant dimehsiomns ’Lmnd R. T 4
‘ o' .o -‘”-e:' ( «‘ . -, A 'v N R -: d ) ) - . 4 e 4 ® /S
Q 27/\3 / A et
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"+_-8) _There is 'so much friction at the wall that -

£, fluid there does not move at all. [Notice
° that r = R Teads to v(R) = 0.)
" "h) 'Oné assumption that is not present: in

other classes you may study so-called

"jdeal fluids" in which particles slip
- frictionlessly by each othér. We are
‘assuming that .each layer exerts a drag
on the layer next-further-in, Ours is'

. not an ideal fluid.

.

? . ’

These assumptions are sat15f1ed to varaous degrees .

by the appllcatlons mentioned earlier. Sw1r11ng,
turbid effects are bound to oecur in any large dxameter
pipe. “This ‘limits ’he usefulness of “our’ law Lp K .
studying water pipes, oil p1pe}1nes
etc. Blood vessels flex
little. Blood surges because of the heart's ,bumping ° ¢
action; thus the flow is not steady-state. Omygen

and nutrients leave a blood vessel /by 0Smosds through
the pipe's wall and wastes are added to the blood

flow so that f1u1d is- only approx1mately conserved.

.

grain chutes,
their a1mensions change a

Desplte these and other practxcal short-comings,
P01seu111e ‘s Laweis a valid simplification of viscous
fluid flow. It is the right sort of. law: v(r) is
‘zero at the p1pe wall and increases stead11y as r

It has
We.- can
really calculate with it, as we shall shortly see.
And in the laboratory, the assumed conditdons can be'
made almost true,

decreases and we approach the pipe's center
a Solld we11\understood theoret1cal ba51s

giving a practical’ way to measure .
the”v1scos;u& coefficient k for any'flu1d ThlS
coeff1¢1ent 1s a‘ fundamental property of the flu1d

iﬂportant in de§1gn and engineering work. «
4 - . . .

Y]

4. THE VELOCfTY OF FLOW AND THE AMOUNT OF FLOW

S . *

. ' We JNant to usé Polseu1lle < Law to calculate the
tozal f ow through a p1pe of radlus R, The flow F

. is the total volume of flulg pa551ng through the pipe
each second; in units of (cm) /sec

J'vFirst,
in Figure 3,

we need a preliminarY’result. Consider, I
any typical small piece of cross-sectional
arez of the pipe, ‘consistiong of 4A square centimeters,
. located r cm out from she center. How much® flu1d will .
. leave the pipe 'through this ﬁﬂt of area i# one gecond? .
The fluid moves' (r) cm in the one Second; thus a '
stack of fluid w(r) cm longegpf constant cross section
* AA{cm)? Tshdﬁﬁ{ywxll flow out of the pipe through AA

in the.one°SECond This stack has volume v(r).- (AA).

. s T
\f' ¢ 1 - area AA R
» : 7% °
flow ~ v(:) X,
. end of .
. pipe
" \
: j , ~ /
. . Figure 3. . - . :
5 T e ‘ - ) ’ R b ~
Thus fluid leaves AA at 2 steady rate’of *
v(r)-AA(cm)*/sec. . .
s N s ‘ r
\ .
. Summary: If AA is any area through which »
. (2) ui lows. at a'constant velocity v,
. ', titen v-AA is the total flow’ through the )
. e .area AA, per second. - e . .
‘?\ . \

N .

S. THE TOTAL FLOW THROUGH A PIPE OF RADIUS R

+In the p1pe s cross- sectional circle of radius R,
“the veloc1ty v(r) given by Polseu1$le s Law is the same
at all points located r ¢m from the center&

If we
* . e
- : o 6 o
B A . .
' 2 o .
- .
, . - N
" 276 .. . -




consider concentric rings of area (Figure 43,
fluid*s velocity will be approx1mate1y constax":m°
each ring. We can then use (2) to caltulate, the total
flow through'each ring; the sum of these ring-by-ring

vaflows will be the total flow through the pipe, which
we set out to find.

-

8 To clearly identify these rings, partition the
3
» interval . ’
~ (0 <r<R)
. A .
into n pieces using partition points

) » 0 = Top Ty < Ty < .. <r <r =R

(pgrhaps not equally spaced).®

s ' wall of o A
pipe -

. .

The f1rst:/second . regions are then chosen as

sketched For j = ]j 2 f.c: n, the jth\region is a

ring with 1nner and outer radii r; 1 and rj, and-thus

j-
has area . . : -

K . n(rj.)z ‘ \Q;sz.!l)zp"

:‘E lC ‘\‘: ‘e . ; . 4! )

) c e
L3
4 . - .

. e

. -

If we take n large and the r."'s close to each oiher,
the velocity of f1u1d flowing through any one region
will be almost constant, although different from ring
to ring. What value w111 approximate the constant
velocity in the J 'r1ng7 Pick any point 1n that ring;
say, pick a point that is t{,‘:ts out from the ceahtere
with T3 tJ < T Then. s

1s a typical speed
for the JtH ring and (2) says that - -

the flow through the Jth ring < v(t ). [nr j-f
We ca111t an evaZubtzon point for the J th subinterval
[rjyl, r;loe k - )

Thus the tota1 flow through . a11 n rings i%

&3 F =

e~
—

3
t. wr.? - . 2],
; v( i) { Y ﬂrJ_ll

0
We write "approximately" instead of equality because
we have reglaced ail the various values of v(r) in
the J;ﬁ r1ng by the single value'v(t ). In fact
we have a vast family of approx1mat10ns of F in ° "
Equation (3). For any choice of a partition ro, r1

cey Ty and any choice of evaluatlon points tl, 2
(such that rJ 1 < tj i rj for'edch g) we get

_an approx1mat1on of F. As we take larger values of
n and more closely spaced rJ's and tJ's the theoryggf
1ntegrat1on tells us that such sums approach a limi¥ing

value' more and mor‘closely, and that[11m1t is an 1ﬁtegra1.

A 6. THE RIEMANN INTEGRAL .
. ] . .
We must do a bit more work on Equatioo (3) before

it is recognizable as a Rlemann sum. Let the width of
~ - -~

the j th sub}nterval be

o«



>
.

' 2 . 2 '
-1 +_Ar.) "rj-l I -

*3 pry =~ -

27r, fl(Ar ) + n(Ar )3,

T . -qb,' . \
As n ;ncreases, rJ and LT approach each other and
» ArJ becbmes smdll. The the (ArJ)2 term above is

negllglbly small by comparison to the first term,

= mw(r.
.3

;gnd becomes more negligible as n grows larger. Thus,
from"(3), © \
n - . : . T
x 'Z v(tj)[21r~rj.1 Arj]. :

F
U , v .
Q§_n.z_mr—and all’ subinterval widths Ar ghrlnk to . oo

zero, this Riemann ‘sum becomes : i . e
R L ‘ 3
- F = J v(r)(2nr)dr (5 . :
0 . ' )
‘3 R )
= . . ui‘?
: =J' (R - r?) 2 dr = IR
.0 . - \
’ LYY [

You are asked to calculate the 1ntegra1 in Sxerc1se 1. .

Another convers1on of (3) into a Rlemann sum: Slnce

f L
b} ° -
. .

2 = 2

g B S R U R OIS R SISV ¥
we haVe.frqp (3) * ’ . o ) )
. & n
4 v F = v{t. + r. - . .
(4) jgl ( ) ‘IT%J 1)( J 1)
As.n » o, tj,,rj,'and rJ._1 all approadh‘each other and
we get o )
L ] . . 5 . fR Q .
- I }' v(ry w(r +1) dr “”’7
! * . . 0 'y . ’ - e
) . ‘ R . -
. o '-J v(r)(2nr) dr 4ds before. 9’
. 0 < . "
. > . 279 - . » . - o .
o A P P v ¢ - »

. - .
T el N -

)

*
—_— 7. THE RIEMANN-STIELTJES INTEGRAL

. The integral usually studied by calculus students
is the R1emann integra®,

® f f(x) dx. T
a v

An imgortant generalization i§ the Riemann- StleltJes
1ntegra1 where: the "dx" representing change in x can
be replaced by "d g(x)", the change in a function of x
between er partition point and the: next. That is,
the R1emann1$ums and the limits they approach have
the forms AN

b
xj-l] + _"J f(x) dx

a

Lo d

i f(tj)[xj -

while the comparable Rfemann-Stielfjes forms are
e . . b «
TE(ty ‘fg(x ) - g(x 1)] + J f(x) dg(x).

. a

Fd

-

In each case a = Xgr< Xy < ... < X, =
of [a, b] and t’ is an evaluation p01nt 1n the j

sybinterval: xj_1 <t

b is a partition
.th

< X. ¢
J-J. .

We can now tecognize (3) as a Riemann- -Stieltjes
sum with this integral 4s its limit

R
\' F =“L v(r} d(an?) ° »

Y

L (R - x?) d(ned) .

02
r'd

* This section can be omitted without affecting readabilit9 of later
7 sect&ons.
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We can convert this integral to a Riemann integral ‘ Tf develop this idea, we should let all the rings
by using this theorem: . , * have that fixed finite thickness Ar. Thus ryg =0 = OzAr,
Ty =~1-Ar, Ty =T, + Ar = 2Ar, etc.; the n+1 partition
points are r_ = j-Ar, j.=0, 1, 2, ..., n. Let's
fimplify by ‘taking the evaluation points to be °

b - T :
J f(x)‘d g(x). = J £(x) g'(x) dx. t; = j-or also. Then, from (4),
a ' ‘' ‘a .

If f’is cont1nyou$ and g has a cont1nuous
first der1vat1ve for a < X < b ghen .

]

& —_ .

We get [since g(r) £ nr? has derivative g'(r) = 2ar} , (5) ‘ E%f (R?- (jar)*)an[jar +(j-parlfar]
. . 1)=1 ¢

v -
~

R'p , N cL |
F = J axr (R* ™ 1) 2nr dr, v .
4‘ . ’ b Pn 2 ] 2 . 2
, , axe L (R* - j*(ar)?)(2j - 1)(ar)?.
. \ ; ]
the same Riemanfi 1ntegra1 as in Section 6. . : . .

= n.Ar and saimplify to:
Why should we bg 1nterested in tﬂg R1emann- '

St1e1t3e> int8gral if it simply leads us back fB Qﬁe ' ‘ a PH£A£2“ ? (n{ -3 - 1) 4
Riemann integral we derived twice in Sect1on 67 The < : . L* j=1 . .
Stieltjes case ,be¢omes r?terest1ng when g is not a ) . ’ . . .- L
smooth functmn when g'{x) does not exist. Then , ) = p—’ﬂ}%)f,[-zz‘(js) + Z(.j'?v ZQZ Xj)y-n2g 1_], N
R1em§nn St1e1tJes theory must be used directly; : i ‘ : A )
we cannot escape ‘to the ea51er R1emann case. There We can prove by mathematical i?dUCtﬁon that
are important applieations, especially in theoretical ] , ;

_ economics; wHere_g must' be taken as a step function, . —_ J§ (J ) 17+ 2%«

. for example. - | oo - . -
L4

¢ AN ' . S ‘ ; 12 + 22 &+ ., =1 Zn+1

- 8. DJSCRETE SUMMATION . j - .

Is it va;1drto let n% o, tak1ng rings oﬁ*arbntrar11y

smaller and smaller width? That is, should we convert
{3) into an- Integral’ The fact that you ar® learning
"calculus is’ not suffzelent to.make the answer "yes'" ! ) ?’1
In fact, we ofteh should. not. take the 11m1t After ’ =~
all, blood’is made up of red blood cells and other ' ; times -
part1c1es. They have a certaln non-zero, thickness '
"Ar and no layer rof blood cam be th1nner than that ] .
th1ckness The same is true of all f1u1d$, in fact’

- g

1 +1 +

Plug these in and do the algebra to reach

p—

Ay
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’ § * pipe's total 'flow, to the pipe as an entity in itselfy -
. Fl= ‘P (Ar nz( *1)(“'1)
. \ L n . Integration® (or dlscrete summation, which 1s used less),
' information 1nto the global.
(6) i n(n Ar n*l n- 1 ) cbnverts, locally varylng n g
‘ We are reasonlng from the morq detalled to the less
K t T N
anu [ } detailed w?en we intégrate. )
v ) Do we lose information through that proceézr\\San
. . L : : £ w ow the global
. As,n » o, -%-» 0 and thlS does approach the integral's we reason back to the local,i e kn ' g .
ne, B . - o W " [ r " ur
. value, as 1t‘should. . resliit? You might immediately answer "no" o sure, _
’ - | . \ . just dlfferentlate " Can you JuStlf) either * ag§wer N

When we Mant to compute a sum, we often use the

carefully? My question is A '
Integral to aPprox1matet1n a problem (like our current‘ . . ' - AR
> one) where' n » o« does not make sense. If n is in fact L Suppose e knoy that
very large, onlY a smaLl error is made. ‘To do the' ’ ' R ' Y P ¢ . ;
. . actual sum for lirge n would“be cumbersome; by lett1no . ) L vir) d (nr = (330 R* for any R> 0 .
) ) we galn\all the\calcu}atlonal power of the 1ntegral N . ) v . s .
calctilus and save the algebra that led to (6). . ‘. Can we deduce Poiseuille ? Law, that
- There ar% other proble;s in which it is an integral - . ‘¥ f v(r) = 4kL (R? - r?)? ]
we want but we, are forced to use a sum. (Many integrals - '{
R can't be calcutated by awti differentiation). By | I leave it unanswered here. ‘ I
° tak1ng n sufficiently large, a high accuracy- approxi- " ' )
‘ mation of the. 1ntegral can be gotten with the help of . ’ ‘ 10. CALCULATION QF VISCOSITY "
. a computer. R ' *
v i ( . : L - To calculgte k for a specific 11qu1d set up a. tank
- Integratlon and discrete summation are associates. . v and pipe in the laboratory as in Flgure g \ Get a steady </
L ~ Each can ﬁelﬁ as 3 replacement for the other, 12‘,. ’ flow going, then collect (say) ten seconds flow 1n
approprlateYC1rcumstapces, . ' * . a beaker. Measureithat wolume of fiuid.
v N ,
e 9, I;;TBGRATION; LOCAL DATA YIELDS GLOBAL RESUP}S According to our integration, in tep seconds the
. ' volume of fluid flowing out should be
‘ Poiseuille'a Law contains" Lacal 1nformat10n. the . 2 ;é“p : v
S speed of fluid flow at a specific spot in the pipe ‘ 10F = 10 - 8kL ¢ 7a
' is v(r). Our result (2) that v-.48A is the total flow ] ” - : )

, In thlS equation we know €very constant except k,.which
through a bit of area AA where v is the (almost)

we calculate. We know R and L by measurement. To
N constant speed of flow is still local 1nformat10n find P we take the- -difference between the pressures,
£ 4

When we sum that local data over .all parts of T P1 and PZ’ at the beginning and end of the flowpipe. *

the pzpe S cross- -sectional c1rcle, we gather the i\ L ‘ The outlet pressure PZ is simply atmospherlc pressure
. local data 1nto a("global" result, referring tp the ‘ ) . ) \ + °

4
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’ . o
. ' ‘top of fluid ) -
, T - K ' . c) Use v(r) from-‘(b) to find the total flow, .
v ) . h)rough the pipe of radius R

v N v - ‘ f

A

3 tank of fluid, 5. The velocity v(r) varies from place to place in
area weight W ' et
the pipe's cross-section, but has some average
) " value V. ’

-

a) Explain how to find V from the total flow

F and the principle in (2)..

3
- L ] - 3 R .
C‘;:'ect‘ . > b)  The definition of the average value of
ow . .
here ) the function v(r). is )
- s e * R ‘
: v'Figure' 5. fov(r) 2nr dr
- LY V = + .-
R
If the f1u1d has welght density (weight. :per unit volume)p 7 * [ 7 1.2 nr dr )
and the f1u1d depth 1s h as shown, the 1n1et pressure ) " )
P, is pgh where g is .the grav1tat1onal Gonstant. ., Calculate this and check against your work
.. .. in (a). The two answers should agree.
. '11. EXERCISES ‘ SN ;
: < . - c) The largest velocity is V and occurs at
R ~ ' * . - o "
¥ P ; TR“P . r = 0. Check that V 3 2v .
1. Show thit | (R* - ¥?) 2ar dr = . .- . '
‘ ) o KL N BKL 1 -
. : : 4, a Use a computer program to calculate the .
.Notice that. P, k, L and R are simply constants. ) P prog h‘
Ve .. N - ’ sum (5) for. reasonable values of n, R, L,

. Z. We have assumed that the fluid's velocity at the ‘e¢c. Check the computer results against - :
pipe wall is.zero. _There's na need to do that: .o _the. algel_n’aic result (6). Repeat with
The¢advanced derivation (see Section 12) that we * larger values of n. <
have omitted in thns!apaper in fact shows that the ’ b) How large must n be to have the discfeté

. ) "31081‘5)’ fs ;‘F‘ . ¢ . " sum within 1% ‘of the integral result? ' ’
CpLA, . oy .o .
‘ ‘v(ry < Tt + b . R - :
- o w7 .4TL‘ . , . . 12. REFERENCE ’
: t‘ . " [} ) A
where b 1S a constant we may choose. 33_ . \ ' o .
\ . C N é . If you know mu1t1var1ab1e calculus and a little
a) =~ Show that v(R) = 0 leads td the formula (1) EF‘; mathematical phy51cs, you can "read a clear derivation
we have used. - . , ) of Poiseuille's Law from basic ideas in elasticity and
. o 2. eb‘ ” ‘ .
) b) . Suppose the velocity at the wall i bne-Walf : fluid flow:, ,
. of the velocity at the cent’e}' (r = 0). Find . Siater, J.C. and Frank N. H Introduction to
the function’ v(r) forsthis case. ’ - I, Theoyetical PhySics, McGraw-Hill, 1933. Or L
! . ' L st TS mor e’ recent bookS with §imilar titles. 16 .

oa './\, ’ 285 o - . ':"~ -\ . ‘ ) ‘
. o ‘.~ .-. | .. e’ .~. ‘ .
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13. SOLUTIONS OR HINTS TC EXERCISES

. 2
First convert to 27PR

b)

: ar - 22 IRy
—4kL—0rr mvor T.

2 _ p.2 ’
v(r) = 2PR Pr® \
R “ .
3w7PR )
27r dr = . ;
L . SkL f
If the g Were moving at the same speed

at all’ Ppdnts in The cross- sectiomal c1rcl?
of radius R, that constant. speed would of '
course be the average of the Poisguille's
Law EpeedS' From (2), using AA “R?,

the full-circular area, - ~ L

. - 4
Total flow = V- (7R?) = %ﬁﬂ?
Ty
_ R?p

A X

ar .
c) At r =0, v(0) =v\=E‘I:-ER2= v,

o . Ty ,/

.
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Request for Help . Néwton, MA 02160
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) . N .
— Student: 1If you have trouble with a specific part of this unit, please fill )
out this form and take it to your‘instrpctor_for assistance. The information
you give will help the author‘to revise the unit. . ‘
Your/yame ) N ~ Unit No.
Page _ -
ge Section . ) Model Exam
O Upper oR " . — R Problen No.
OMiddle Paragraph . o Text - ‘~>
- C) Lower . \ Problgm No.
s
' Description of Difficulty: (Please be specific) "
..
. (-
i ) i \
‘\ -
. 4 N .
A ]
- ’ . . . [
. /
' r ‘ N S
F » . N — ’ ' . . ce S n
Instructor: Please indicate your resqutigg_of the difficulty in this %ox. , - .-
. ) . ) . . Y Voo
9 (::) Corrected errors in materjals. 'List corrections here: ¢ \
. . <
, t ' - {
PN i l'. 7
. §
. \ . ! ‘.
(::) Gave student better explanation, example, or procedure than in unit. . ‘.
Give brief outline of your/addftion here: t
’ < N ~ . ) . - y ) o ,
v . 4
4 ? . . \
7 «
V4 -
’ " . - : l7" r ¢
’ o« < ] X
(::2/9saian£d student in acquiring general leaip;ng and problem-solving . - ‘ ‘—
skills (not using examples from this unit.) . . ;
. \ . .. s - .
’ [}
» . )( \\2‘: .} . - . . N i (' . u‘
. ‘Instructor's Signature - - .
. - ‘ . v .
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.THE HUMAN COUGH ° .
)
.1, WHEN YOU COUGH .

>

L whez a foreién obj;bt in your trachea (windpipe)

) leads you'to cough, your diaphragm thrust§'shérp1y wpward,’

As a result, the air in your lungs is suddenly, compressed

to a higher pressure than the air outside your body. A

] high-speed st am of air shoots upward through the

. trachea equa1121ng these pressures and, it is to be hoped,
clearing the passage.

By Newton's law; the force exerted on the object to
be cleared is due to the sudden acceleration of the air
)flow1ng through the trachea. The greater the veloc1ty of
the airstream dur1ng the cough, the greater the force on

the foreigner and the more effective thg cough. To

increase the speed of the airflow, your body also con-

tracts the.windpipe during a cough making a nafrd&er& '
chgnnel for the air to flow through For a g1ven'amount‘

of air to escape in a fixed amount of t1me, it must move

c . faster through a narrower channel than a wider one,’ just
N ;§\a river flows rap1d1y where it is narrow but placidly

where it is wide. In fact, x rays show that the radius
of the trachgal tube Yeducesg to about two-thirds its usual
radius duting a cough.

2. NOTATION FOR A CALCULUS MODEL OF COUGHING
Y -

We can relate the speed of the airflow during a
cough to the body's contraction of thettrachea amazingly ,
well by studying a simple mgtheméfical model of the -

_ situgtion. We think of the trachea as a pipe with a
circular cross section, and apply.the differential cal-
cul(&, uding the folloyang ‘notation: )

O N
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] 1 , r
, ’RO = the "rest radius" of the trachea (its usual -
radius when you are relaxed and not cobughing)
in* centimeters; -
& = the contracted r§h1us of the trachea during a
o cough (thus R < 0); )
a—" [ *
V = the average velocity of the air in the trache !
’ when it is contracted to R cm. This dependsu .
on R and we wish to calculate R such that V(R) - )
is maximal; : ! ,
P = the dxtra pressure in the lungs during ; cough,
. i i.e.,\"the d1fference P1 P, between the pressure >
.o 1 inyour . lungs and the atmospheric pressure
2 outside your mouth, measured in dyne/cm2
F = the total volume of air flowing through the
'if trachea per second, in cms/sec.
We will make two physical assumptions, one about the -
_; airflow, the other about the flexibility of the trachea's
., wall. , )
3. LAMINAR FLOW
< . ’ .
. First, we assume that the a1rflow is laminar. This
3 means that layers of air move at d1fferent speeds in the
i trachea. The thin layer of air right next to the pipe
wall hardly moves at all hecause of f}lct1on with the
wall. The layer, or lamina, just 1ns1de that one moves a
little faster, and ;so on until the fastest airflow is
, folhd along the central axis of the trachea' It is as if
- the airstream were made of thin concentric tubes of air ‘
sliding gver one another. See Figure 1.
) Laminar flow is an apprOpr1ate model for the motion of
any fluid through a confining pipe. Tn 1840, French physi-
olog1st Jean Poiseulle* established that the speed of the )
*1797-1869. He was StU?YIA; the flow of blood through veins and
\ arteries. . . i .
) 3 ' g 2
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central axis

Figure 1. The air in the'trachea is assumed to flow iy

& thin concentric cylindrical layers called memnae Inner 3
layers move ‘faster thar outer ones, which are slowed by |
friction with the tracheal wall .
A M IS ,
. . . @ ' . .
fluid (of air in the trachea in our case) at a point x .
ch out from the center ax1s of the pipe of radius R cm :
‘is” - .
- ¢ ~ 2 ' ’ M
1) v(ix) = kP(Rz-x ) Gﬂdséc for 0 < x < R.

Here k is a constant depend1ng on the length of the pipe%
and- the particular fluid involved. We defined P and R
earl{gr. The average speed V. is the average of these

v(x) values over all points in the pipe.

Formula (1) is usually called Poigeuille's Law of
_viscous fluid flow. By using integral calculus, it is

r
- s: easy to deduce from (1) that the total flow per second
through the trachea (when it'is contracted to a.radius ‘
“ of R cm) is . o
} . (2) - F = cPr? cms/ggc, T,

The constant ¢ again depend$ on the length of ;he . .
_ pipe anq the fluid involved. Formula (2) is derived
from (1) in several ways in a companion paper to this
one, Viscous Fluid Flow and the Integral Caiculus, UMAP
Unit 210, Laminar flbﬁkis discussed in more detail

h . . 3 . £
there, too. s . ) . ‘g
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4. AVERAGE:  VELOCITY AND TOTAL FLOW

\ . .

Wé/meﬁtioned above that we'could compute the
average airspeed V in the trachea by wsing inteéral cal-
culus to average the speeds v(x). However, we can rel?té

. V to the total flow per second F in a much simpler way.

- . .

4 Imagine air flowin§ through the trachea at a .
steady velocity of'V cm/sex. In t sefonds, each particle
of air would travel Vf'cm Now, the cross- sect1ona1 area
of the contracted tracheal tube is nR2 cmz. Therefore, a
cylinder of air Vt cm long by 7R% cn? would leaver the

tube during those t seconds. .The flow of air through the

tube, measured in volume“per second, would be ’ Al
- C 2 ,
) op= RERD ey pd/secs
~ ° / . . ‘,

We can now write V in terms of P and the contracted
+ radius R by using, (2) and (3):

’ o F 2 .
- (4) V= = = ¢,PR%,.
g iR gRZ 1 . A
where ¢, = ¢/m. ‘ . b . N

. 5. PERFECT ELASTICITY . . -

-
-

The second assumption, about the’ flexibilitysor

elasticity of the trachea's wall- tissue, is needed next. -«

We assume that these tissues are "perfectly elastic.” .
B This means that the tissues contract so as to reduce ,

the radius, of the windpipe in proportlon to the pressure-
change P between the two ends of tﬁ% p1pe That is,

L}

(5) ¢ K Ro - R = aP,

.'. :n-» —-
for soime constant a > 04 Thisa«is valid for fairly smalil
pressure, changes P, in fact for

- .' 4
-a e
M . : - /4
- TS , T
o . G ~\
ERIC
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‘ . 0
(6) 0 <P <5 .

.
If larger values of P occur, the tracheal wall stiffens
and the contracted radius R would be larger than the
- value predicted by (59. (This ig fortunate—if the
tféchea were to contract too much, Qe would ;uffocate.)

.

Exercise 1.- Use (5) to prove that the inequality

‘ ‘. : . R
' so0cPs

¥l
.

is equivalent to the inequality ’
" < . ' . \
R
0- '
—'<R <R, - ’
2 SRERp i
' * AN - s

Thus, by assuming perfect elasticity, we are also assuming that the

contracted radius R is at least 50 percent of the rest radius RO.

- - You may be familiar with Hooke's Llaw, which sa&s that
Ve “the change X-Xg in a spring's length when a pull, or force, *

—

of magnitude f is applied is proportional to f. .

L ~
B

<o 7
-3
: % Pull £
3 i TO0T U0
g 2
x 45
> e X — »
. Natural ﬂength % Stretcﬁ\e'd Lengtﬁg .
AN 7 -
P . A f .
—_ . '
! a. Unstretched ) B b. Stretched
- . . .
e Figure 2. A spring stretched beyond its natural (unstressed)
' length by a force of magnitude f. . .
. y ’ . v A s
) %
- . 5 ]
L .

~ . ¢ [}

A\
(Yo
~1
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‘ g?ﬁﬂﬂﬂﬁ? oo . ‘ Taw




That is,

f = k(x~x0),
for some consé@pt k. This *is really the principle behind
perfect elasticity. jhe pressure change sucks in the
tracheal wall with pre;sure P and the wall behaves as

though it were made up of small ®prings, which, stretch
(Figure 3). . . . ’

tracheal wall

Figure 3. The tracheal wall is :assumed to behave elastically
as though it were made up of small springs which stretch as- the
trachea contracts.,

As (5) says, the amount of stretch, RO-R, is proportional
to the magnitude of the force. Although this is a rather
simpljfied explanation, it leads to a good working model,
as you will sée in the next section. )

3 y ’
\
. v o v
v T6
L2
’ L3 -
. , . gt
[}
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£ . - .
® " WHAT RADIUS R MAKES V THE LARGEST?
. ;-‘. "
We'can use (5), the ggrmulq for-. perfect elastlc1ty,
to express P in terms of .R: e :
RO-R - .
a ° .

’

P =

.

Inserting this in (4) gives us V in terms of'h'g{one: AR
¢ \ \ - . .

: RO‘R 2 ! . Z . , \
(7T~ V.=c¢ -1IR" = ¢, (R,-R)R® cm/sec.
11 a 2 70 » e
‘Here c,.=¢ /a and R0 are constants. Equatipn (7) tells
us that a1rspeed V is produced when the trachea contracts

.

from R to R cm. . . -
. o -

Our original goal was to digcoiér what value of R
gives the largest value of V. Since V is a differentieble—M——
function of R, for R in the domain [Ry,Ry), V.must assume
its maximum at one of the endpoints‘!gR0 or RO" or at'an -
interéor point where dv/dR = 0.

Exercise 2. o

"'a, Show that V= cz(R -R)R satisfies dV/dR = 0 (has horizontal
,tangents) for R = ZR(/S and R = 0 but no other values

-

b. Show that R = 2R0/3 leads to d V/dR~ < 0. Interpret this

“result: vhat sort of horizoktal tangent is R = ZRO/S? .

«

Carefullyfexplain how you know that V has“its absolute haximum
at R = 2R0/3 when R is restricted to the domhin ‘[%RO,ROI
o

.
Y -

'y

~
- . -

As Exercise 2c shows, our model leads us® to predict that

our body can maximize the cough s effectiveness’ by ¢on-

tracting about 33 percent, from R ‘to 2/3R This agrees
. w1th experimental evidence as to how the body actually

behaves: It is as though "Mother Nature" Gsed calculus

in desiénihg the complex muacle-actiens of co;ghing to

maximize the ‘airflow speed produced!

v % .

'
o .
+¢




 Exercise 3. Sketch the. graph of £(R) = (RO-R)RZ
. a. for0-<.R<R0 .
~ b. for all real R.
Results from Exerclse 2 will help, because V is just a constant

~
mu]:tlple of the fuption f here. .
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8. SOLUTIONS TO EXERCISES

)

=

. R - ¢
1. 0<P< g'<=-> 0<aP<— (mult;l'phcatlon by a)
R

<> 0 <Ry ~R< —2‘3 (substitution from (5)).
- f - 3

N

The let;t iman, 0 < R, - R, is equivalent to R < R, and the right

0 0
¥ " Ry ‘ Ro
half, Roe- R < 5 is equivalent to 5 < R. _Together they give
‘ R
0
3 —2—- _<_ R i RO:

2. a. By the product rule. (there are Bther #ays)

& 2 : \
. = ol R +\(R0-R)2R] = CR(R-3R).
b. dvV dzv R

R = 0 and —5 < 0 at a particular R indicates a local

maximum. . ‘ . - . s N
«< -
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) . , !
Y } . <0, .

. ¢. The absolute maximum needed heFe must-occur at an endpoint
. of the domain or at an interior point where dV/dR = 0.
Thus the candidates are &
7 . R . Corresponding
IS Value of V
L1 - 3’ P
. S 1 3
. endpoints > g% R0 ks
. ¢
endpoint RO 0
.
local maximubr 2/3R % c, R03 «¢—— the largest V

N

We ignore the horizontal tangent at R = 0 because it is
outside the domain of our function.

ERIC
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Ehe polynomial f(R) = (R -R)R has a double root at R = Q, and
a $ingle root at R=R
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. ZIPF'S LAW-AND HIS EFFORTS TO USE
b, INFINITE SERIES IN LINGUISTICS
. % \ © :
1. " PARTIAL SUMS CAN HELP US ADD UP A SERIES
The partial sums of the series -,
. z a. -
j=1 J . A
are, of course, . " . . N
' n \ B
s_=-7 a.- . , : .
n, j=1 - J., -

for n=1, 2, 3, .... Thé sum of the series is defined

to be the limit of these partial sums as n+«. Although
that's a sound definition, it's almost useless when we )
want to calculate the sum of a series: becauée it is
impossible to simplify the partial sums of most series

into a form where the limit can be obtained. A classic -

+ &
exception to this rule is geometric series. The n-term .
partial sum a + an * ar2 L P arn’1 simplifies to

hl
1 - " ) e, .
S A T . *
(as you should be able o prove). In this simplified
form, we can see what happens as n + «: for r such )
that |r| < 1, we have r + 0 and the series converges .
té L .
1 -0_ _a ‘ "
' EA W e N . :
while |r| > 1= ;n + to and the series diverges. (What
happens whep r = 217?) N . LN

‘ L

. Thisa.paper is about 'another exception, another

series who'se partial sums can be directly analyzed.
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This series is not as impoftant as geometric series (which
has dozens of significant applications).

»

.However, our

serxes played ap interesting role_in the linguistics -

‘research of Gedérge Kingsley Zipf in the 1920's and 1930's

We will examine: that application and the later research

' about artificiad languages that has made Zipf's work obso-
lete A surpr1s1ng interplay between the study of human"
languages and engineering research into ¢ommunications
networks and computer languages will be discussed,

<

We will see that the series we study is not completely

¢ successful as a mathemat®cal* model in ‘Zipf's work. Several
efforts to vary and improve the model will all lead to
difficulties--no single accepted model will emerge. That
sort of partial success is common ihen applied mathemati-
cians work on actual complex problems; this deserves con-
trast against the experience of most students, who see one
successful theorem proven after another as they study the
established branches of mathematics.

-~

SUMMING THE SERIES® ZIPF USED

2.

The series we consider here is

1)
. 2 "(k—ry R .
The key is to use partial fractions. "Please check that
a "1 1.1 ’ - .
k(k+D)-~ k | &+ 1 .
. " Now “the partial sum through n terms is
2 = 1 + 1 + 1 + 1 - #'
EiE +1y " 1T72 7 7T (n-T)n ", n(n+1) 2
1 1), (1 1 L 1) .(1 1
= lT'f]’(f 3]’ (n_l'ﬁ' [i'n—r ‘"
- P ST S S S N S
cancels cancels cancels cancels
_ 1
N _l'm-
bt ) o
- ¥ SR ) -
. 306 .
N T v,
EMC. . ’ ! 1 4 i
P i - .
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* . -\ ) N s -
+ _ This partjal sum is now so nicely simplified that we can L™
- See what happens as n+«. Of/gourse , - R .
) 3 i 1 ; « . ..‘ . v . ) N
,1 N ' vy 0 . .
¥ and thus . ' i /’
.48 ' S 1 _ lim 1) ¢, .- . ‘
: N O R |
*  .The‘original series gd'ds up_ to 1. . .
. R | ! . :
\~ P . - '
3. WORD COUNTS IN .JOYCE'S ULYSSES _ .
' .
~this series gives a mathematical model of the occur-
rence of rare words in Jgmes Joyce's novel Ulysses.
Among the 260,430 words in Uly'sses there are N = 29,899
different’ words.. " Many are "rare" words appearing only
once or twice. A few are common words that appear a ° .
thousand times orymore. We'll study'the rarely appearing ]
*"  words here. There'gre 16,432 words that appear exactly
o once each in lzsses ‘(about half of N), 4,776 words that
_appear exactly twice “ g N
(abdut B'N = TZN)’ \' !
. 2,194 words that appear exactly 3 t1mesJeach ’
(a50ut TZN = UN)’ i 0 . RN
gnd,se on,
e . R \ ~ 4 -
- In fact, if nj is the number of words jjat appear
exai:tly j times in Ulysses (j = 1, 2, 3, ) these nJ
L
- words make up a fractmn n. /N f(Of the total [N words) that =
’ is rather closely given by )
Y . ) . 1 . . - A
the j*M tetm of our series. . T et
. Thus we use the series to model n; as :
st N - ~ .
n d 1 = . -
(7 modell- 5 L35G -
. . | ) o .
\ -
v . .
P [ . .
» - 8 . .

»
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This says that tﬁe terms of thefseries (which, you recall,
add up to 1) split up 1 in justfabout the way that ‘the
words appearipg %pce, twice, thrice, etc. in Ulysses

split up the total of different words appearing in that
novel.

__HOW _GOOD_IS THIS SERIES MODEL?

2 »

The acgaak number of words appearing once, twice,
ten times in Ulysses is listed in Table 1 along with the
number predicted by the series-model.

— i A

TABLE t -

Model's prediction
< nj = actual # of of number of words
words appearing that appear Relative
exactly j times exactly j times error

16,432 : 14,950 9.0%
4,776, 4,9 ) 4.4%
™ 2,194 2,492 - 13.6%
- 285 1 495 . 16.3%
906 ’997 10.0%

637 . © 712 ‘ 11.7%

483 534 10.6%

- 371 . 415 11.9%
298 332 11.5%

222 . 272 22:5%

| ]
Z;pf Human Behavior and -the Pr1nc1p1e of
Least Effort,

- The last column provides a $implé measurement of the
extent to which predicted and actual values agree. The

8

relative error is defined to be

- RE - |predicted value - actual value
actual value

As an example, for j = 7, the RE is

’ |533-483| _S1 . .
T T g3 - 10559 = 10,68,

T 2

k4

’ . - \
. The predicted values are obtained from our series model
as“in this example: for j = 3, the model pEedicts that

_ 29899 _
¢ , n3 = m T = 2491.58,

which we round. to 2,492.




The prédicted values given by the terms of our seri%es
o’ do follqw the trend of the actual data quite well, but you
emay feel that the specific numbers (483 vs. 534 for j = 7,
. for example) are not as close 'as you m1ght prefer.
Shouldn't the model match reality better than that? The
RE's_in'the last column average 12.5%. For most research -
in the natural sciences such relative errors would be
considered large--repeated experiments done with labora-
tory equ1pment for example, usually yield much more con-

. sistent results Errors above even 5% make us %pnder
about the experimenter's measuring abilities or the design ' -
of the experlmentw But we shou;z not expect such hard- -

del that concerns so
complicated a social-science process as the choice of

“. science accuracy in a "law" or

words by one human in éreating one novel. Instead we ask:

Is this pattern obeyed by a W1de range of language samples? Y
N ’
° 5. THE EXTENSIVE RESEARCH INTO WORD-COdNTS-AND
\ RELATED LANGUAGE PATTERNS b
* . . '
During the 1920's and 1930's, many word-count
" experiments were performed by psychologists and l1ngu15ts,
led by Professor George Kingfley Zipf. of Harvard and his
. students. They found strikifhg patterns in the frequency
" of occurrence of: rarely appearing words, the number of
*pages between appeakances of a word, the number of and .
spac1ng between uses of individual letters, syllables,
L - ) préfixes, suffixes, meanings, etc. Some of the language
- . texts studied (not all gor rare-worq fréquencies) were:
IR B Ulysses by Joyce s . .
L © --- Stretches of English language newspaper text <.
. "7 -<- the plaps of Plautus in Latin
--- the Iliad in Homeric Greek. ~ % R~
) --- wopnks in,0ld Engllsh, and other medieval ‘
) ) languages . , , <
. <--"part of a Biblé in Gothic German
--- traditional oral legends in. Dakota and Plains -
Cree (American Indian languages) and Nootka
) s (an Esklmo language)‘ ,
. * .
d L4 &

ERIC | - mTORY
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--- works in modern languages from German to

Hebrew to Chinese

» v

--- the speech of children at various ages

--- some schizophrenic speech.

This exceptionally broad selection of language sampies
all yielded iery regular patterns that astonished the
researchers. A few studies failed to support the
patterng* but the evigence suggested that important

Cross-cultural properties o€ language were being:found. _«~

-

Linguists pufsued this research in the search for -
fundamental structural propertie§ of language. Psychol-
ogists hoped to explain just what prgce?s goes off in a
buman mind as it calls on its whole histo;y of language -
exper1ences when crafting*new sentences, paragraphs, or
books. One of Zipf's books (see Section 10) contains a
readable survey of these experiments. It also contains.
the exten§1ve consequences for human behav1er that Zipf
put forward as 1mp11cat1ons of the research. A too-brief
review of his logic: Z1pf Claimed that d1fferent amounts
of mental effort are exerted by‘a speaker or wr1ter in
choosing words. Common words, very frequently encountered
in the writer®s past experiences, "come to mind" with
little effort wh1le words met less often in the past
requ1rz more effort for their use. A human selects words
to express an idea using the "principle of least effort.Y
Zipf hoped to derive the specific quantitative patterns
he had found from sﬁch a basic principle (in the same
way that Newtén start1ng from a few basic assumptions &~
suéh as ‘the law of gravity, could derive the motion of

the planets and many other results). Zipf offered v

situations analogous to writing or language usage where
beha‘1or obeying a law .of least effort d1d lead to the
patterns found, but he—did nét succeed in deriving the
_5urpr1;1ng patterns from language structure itself.

.

* One of the exceptions is another novel by James Joyce, Finnegan's
Wake. . -

319 .
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. 6. ZIPF'S LAW (THE RANK-FREQUENCY LAW)

A central result of this research‘is "Zipf's Law"
. also called the "rank-frequency law." We have. looked at
the number nJ of rarely apPearlng words that appear with
frequency (number of occurrences) j for j =1, 2, 3,
In a rank-frequency study, one looks instead at the, rank -
of a word (lst an, Srd, etc.) when the words of a book
-are listedin ‘order of decreasing frequency. Thus the

. most-repeated word has rank 1 and frequency f the second-
most-repeated word has rank 2 and appears fz t1mes, and
so on. Z1pf's Law, also found empirically, is that

~

‘r-f = constant

i.e., that the rank and corresponding frequency are in-
versely related. As an example, Table 2 gives various
ranks, frequencies, and r.f products for Ulysses.

TAB‘& 2

Actual Rank-Erequ@%cy Data from Ulysses '

<

Rank ~ Frequency r-f products
(r) f [
10 ’ 2,653 - 26,530
20 1,311 26,220
30 926 27,780
40 : 717 - 28,680
50 556 27,800 :
% 100 265 26,500 .
200 133 . 26,600
300 84 25,200
400 62 74,800
500 : v50 25,000 .,
1,000 26 . 26,000
2,000 . 12 24,000 "
3,000 8 243000
. 4,000 <6 , 24,4000
& 5,000 5 4 25,000
10,000 . 2" - 20,000
20,000 1 . b~ 20,000
29,899 1 29,899

-

- v

Source: Zip$; Human Behavior and the Principle of Least
Effort.” ~ .

Q . 311 " -"
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The approximate constancy of this third column is
striking’ and intuitively unexpected. And the constant
value obtained is roughly N = 29,899, the number of
distinct words being ranked, or perhaps it is a bit less -
than N. This ié discussed in comments following Exercise
1 in Section 8%

[y

7. A LOG-LOG GRAPH REVEALS OBEDIENCE TO ZIPF'S LAW

There is an easy way to graph the (r, f) pairs from
Ulysses for r =1, 2, 3, ..., 29,899 so that the closeness
. of fit-to r-f = k becomes visible. On ordinary graph
paper, r-f = k appears as a hyperbola; it is hard to look
at the graph and determine that we have f = k/r as opposed
to some other similar curve, like f = k/r2 or f = k/rl'z.
But these curves are easy to tell apart when graphed on
< log-log'graph paper. Notice that r.f = k implies logr+
"log f =log k. Thus the points (r, f) fall on the curve
r-f = k if and only if the points (x, y) = (logr, logf)
fall on the straight line with slope -1 x + y = logk. On
log-log graph paper (see Figure 1), the axes are labeled
with values of r and f but, because of the special spacing
of points along these axes, we are really plotting y =1lpgf
Vs, x = logr, Weé will have a good_fit to r.f = k if the
data fall along a straight line with slope -1, cutting ™~
both axes at 45°, .

In Figure 1, the tendéncy of both curves A.and B to
follow the straight line C is very striking. (The “steps”
at the bottom-right of both curves occur because, for high

*Zipf's Law r.f = k appears to fit many kipds of ranked data beyond
our word counts. For example, when U.S. citles are ranked by popula-,
tion (so that r = 1 for New York, etc.) then r-f = k holds pretty . -
well, where f = f_ is the population of the city with rank r. The

rule fails for cities wopld-wide, or for cities in much less urban-

-ized, industrialized societies, and the extent of fit to this law has

been proposed as a measure of a nation's urbanization. Consult the

social science literature for more details and other examples.

* 3




ranks there are many sties, many occurrences of the rare
frequencies 1, 2,. 3, NS

Researchers up to this p01nt had not explatned Z1pf s
Law, or the series model that we began with in this paper

or other patterns. J . “ .

10000 1
. .
41000
r Lo ,
g - te
2 .
2100 1"
&
Uy 5
10
"v v €
'l‘ 1 2 2
10 100 1000 10000
' . RANK :
t & °
LN . 2 o

Figure 1.~ Data that precisely obeys Zjpf's Law would -~

graph like C, having slope -1, to whlcﬁ curves A and B - N

should be comparedJ Curve A consists of all the (r;f)

data pairs for U Ulysses, not just the few given in Table

» connected together into a curve. Curve B is a . R

similar rank-frequency graph for a sample of 43, 98é

running words of Amerncan newspaper text,, studied
- R.C. Eldridge. (The Ulysses data was created by Hanley
“and Joos, but first graphed by Zipf. Source: Zipf,

Human’Behavior and the Principle of Least.Effort.)
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8. EXERCISES: DERIVING A NUMBER-OF-WORDS LAW

-

I

o We have studied two parts of Zipf's research which
we summarize as follows:

(A) The rank-frequency law fr = k/r gives the approxi-
£ mate frequency (number of appearances) fr of the.
s rth-most-commonly-appearing word in the language

sample, for r = 1, 2, 3, ..., N.

(B) The number-of-words law nj = N/j(j+1) tells how
. many words (among the N different words of the
language sample) appear exactly j times, for j =1,
/ ' ‘2, 3

-

Both are empirical laws-tthey work quite wela for a wide

variety of languige samples. So far we have no deriva-

tion of these laws from obv1ous or widely accepted facts,
_ no clear explanat1on as\to why they should be true.

\These two laws are related to each other and that
is worth our study--if one follows from the other, they
are more believable together than either is by itself.

. Therefore, let's assume that (A) is true and' try to (
. deduce a number-of-words law from it. Specifically, let's
try to calculate ny, the number of words that appear
exactly once (i.e., that have f = 1),

~¥

The rank-frequency law predicts frequencies f between
1 and 2 for all words with ranks k/2 + 1 up to.k:

k
N lxf<2 «» 1<2<2 .

<« ; <r < k.

s

Thus, a total of k/2 words have theoretical frequencies
f in the interval [1, 2). -

However, frequencies must be integers; fractional
frequencies do not make sense. Let's decide that we will
always round f downward to the next lower integer. Then

o -
ERIC ' ,
’: ) . \
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fefl, 2) becomes £ = 1, and n, the number of hords
with f = 1, is N

This looks promising--if we are going to.derive nJ =
N/j{j+1) from (A), we need that denom1nator 1-2 in n,.

But that k in the numerator? Maybe the correct constant

k in the rank-frequency law is N? We'll have to test that
*idea later. First, extend our result for n, by doing

’
-

Exercise 1. N N

Exercise 1° -
’ Assume that f = k/r for r =1, 2, 3, ..

a) Show that fe [j, j+1) occurs exactly for ranks

k_ k s

ey N ’

b) If we round fe £j, j+1) downward to the integer value f = j,
show thaf ) ’ N . 4
’ T IGAY
. - . for any j. - . '
s .

B

. Thus we can deduce (B) from (A) if we agree to round f
downwards and if k = N.

We should test whether k = N'empirically by trying
it on maﬁy language samples. We can start .here with
Ulysses, which contains N = 29, 899 different words. The .
r and f datd in Table 2 can be used to get & comparable
value of k. Let's exclude the data for r = 10,000, 20,000,

and 29,899 because these (r, f) pairs are located in the
"steps" of the .(r, f) graph where r cﬁanges while f does .
. not. and those r-f products are not very constant. When
e average the r.f products in Table 2 for 10 <r < 5,000,
we.get k = 25,874, Thus k # N. We have k about 13.5% !
smaller than N in this one example.

\
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i .
Wait. This is no time to quit on the problem--the
values N/j(j+1) are also 10-15% tod large for the actual
’ nj ‘of Ulysses in Table 1 (except for J‘= 1, 2). We could
correct that by decreasing N/j(j+l) to k/j{j+1).. Thus
we propose / . ) )
nd k ~

del)~ n, =
(2 .,moe)\ nJ -Jl—(-JfTIT

for all but the smallest j. We cannot apply this model
for all j because” ’

=Zn_"
jJ

-

however,
1

3 *TJLT =k T - = k.

530+ j 7G+D
But "the an model may work well for all but the kmallest
few values of j, which are special cases requiring eir
own formula. Ulysses data cohparable to that in Table 1
appears in Table 3. We must be cautious in.concluding
that the an model will do this well fdf’j > 10 or for
language samples other than Ulysses., The second model
does not seem to appgar in the psychological literat@pe,

probably because Zipf deduced yet another number-of-words
formula from tKe rank-frequency law.

TABLE 3
Additional Number of-Words Predictions vs. lzssg; Data.

2" model* 3Td model,
true predicted pfég1cted

nj nj E n. E
16,432 3] 12,937 .3% 34,499 109.
.7% 6,900 44,

4,776 | +4,312
2,194 2,156, .78 2,957 34,
.08+ 1,643 27.

1,285 1,294
906 862 .9% 1 045 15.

21
9
1
1
4
637 616 . 3.3% 724 13.
- 4
3
3
5
k =

1

483 462 . 3% 531 9.

T 359 .2% 406 9.
~ ﬁgz\ 287
¢ 2322 235

© WO O~ U AN et

.7% 320 7.
s .9% 259 16.

—

>

*A11 calculations are based on

.

25,874.

L]




" Surely you wanted to object to the "rounding" of
fe[j, j*1) to £ = j! After all, would you round 3.01,
3.3, 3.49, 3.51, S.QQ all to 3? dt would also mean that
fe [0, 1), which is predicted by f = k/r for ranks k < T
<N, is rounded to f = 0, although each of the words
with these ranks appears in the language Sample .at
least once. Zipf proposed instead to round fe[1/2, 3/2)
to £ =1, fe {3/2, 5/2) to £ = 2, etc. ,

Exel:cise 2.
Assume that f = k/r for r =1, 2 3; ...,
a) Show that fe [j - 1/2, j + 1/2) occurs exactly for words®
with ranks

kK
j+1/2

-y

k
< r-<-J -1/2¢
b) If we round fe [j - 1/2, j + 1/2) to f= 4, show that

rd - k .
(3 mod\el) U (R VA LR 7)) for any j.

IS

ThlS third model is the one given by Z1pf It leads us
to ask: .

Exercise 3.

should equal N, the total of dif ords in the book® under
study. Sum the series suggestedAin Exercise 2, formula,

JE, ST

by simplifying the partial sums in much the way L 1/j(j+1) was
summed early in this paper.

Since ExeréiseN} tells us-thai In. = 2k”# N, we know we
cannot use the 374 model for all j, based on k and N from
Ulysses. As with the 27 nd model, for low j the predicted
values are far too large, Table 3 shows a very pgor fit

Aruitoxt provided by Eic:




between this model and the Ulysses data; for much larger .
values of j the fit may be much better.

So it goes!- In three tries, we have not achieved . .
a trouble-free model. .

T

Exercise 4. . s

Without finding the‘sum, give more t\iamgne\proof that

o ‘ 1 -
J.EI (G- 172)(j + 172), —
is a convenient series. Mention the cdnvergence tests you use, - .

Exerciser5.
Suppose we decide to round upward: Assume r-f = k and decide
to replace fe (j-1, j) by f = j. What rule for n; follows? Is it

7/ a better model than the ones we have discussed? Preparé}the N . .
* equivalent of Table 1 for this bth model. How did you decide whether
or not it is better than the first 37 o .

The series result
! re
1 +1 .
3 .
can be used to find the sums of other series.} Two
examples appear as Exercises 6 and 7 X

h) S
N . Exerdise 6. i
 Pirst show that R
(-]
1 1.1 1 :
I e " T2t 73 3 Tt

Use this result to show
. - .
.. 1,1 e .1 Sl
T3t3steTt e " 21 Grn-N(a+1) "2

*thanks go to w,llham Glessner of Central Washlngton YUniversity

>‘for suggedting Exercises 6 and 7.

ERIC S )

Aruitoxt provided by Eric




v
«

o

L
Exercise 7. R ‘.
),*~lf:we‘start with the result in Exercise 6:

1.1 1,1 .
ZT i3t Is eyt

“‘and use the same "sum up two terms at a time" method (as displayed
In Exercise 6) on it, show that ve get LT .

. 9. MANDELBROT'S EXPLANATION OF THE LANGUAGE PAf%ERNS
N <
. Zipf's Law ard other striking patterns found through
wor&-countléorts of experiments op natural (i.e., human)
laﬁguages-were finally explained by scientists working
on very different broblems, problems related to artifi-
cial languages. Zipf and his colleagues had examined -

+ the structure of language and the process of wriiing or .
speaking; now Norbert Weiner and Claude Shannonlléa the
studY of communications channels. Human speech and
writings, electronic signals sent over telephone lines,'
messages sent in Morse code, radar signals sent out and
received after bounc1ng back, coded data mov1n@/from IBM

. cards into a computer's electronic memory, all are examples
of information being coded and sent by a transmitter
(speaker, writer, telegraph key user, etc.) then received,
decoded, and interpreted by a receiver (listener, reader,
etc’). The researcﬁer% asked: How couh&-igformat1on be
most eff1c1ent1y coded and sent so that it would be
rece1ved at’ lowest cost. and with h1gh accuracy? How much
repet1t1on ("redundancy") should be included as- a check
on the  accuracy of the message rece1ved? The1r ma1n goals -
uere the eff1c1ent design of high speed, h1gh volume, high
&fcuracy man- made data channels for use i
Nternational tele¢phone and microwave Systens and -military
app11cat1ons, but the 11ngu1sts and psychol gists noticed
at oncg thi this reSearch was relevant to the study of
?uman language communicatijons, t

- N

computers,

L]




E

RIC

DA text provided by ERIC

~

W

Iy

.

) This research led to an anticlimatic completion of
“the project begun by Zipf and his team. In 1953-54, *
Benoit Mandelbrot showed that the number-frequency, rank-
frequency and other patterns «foupd by Zipf will always
arise }n any language satisfying these two assumptions:
1. The language is made up of words--small units
- ef information separated by sﬁaces.

-2. The transmitter encodes and the receivér, ¢

decodes word by word--that is, the speaker
(or writer) formulates and speakscone word .
. at a time ard the listener.(reader) listens

and interprets one word at a time. )

The main point is the presence of a space between un1ts
of information. By .random processes this spacing, and
the word by word handling of messages,
" patternsy There is no need,

accounts for the
in *explaining’ the patterns,
to claim that James Joyee, while writing Ulysses, was
choosing words using unknown "universal laws" of language
;tructure at, some deep almost-unconscious level of thought,
Iqstead we simply claim tha® Joyce was choosing his words
one at a time to convey his mean1ng§ The space-between-
words structure of English then ‘suffices o produce the °
patterns, Mandelbrot showed this by.using a lot of
advanced mathemat1cal statistics.

Zipf's ideas persisted for a while.
of Shannon's work to human languages was challenged and,
some of Mandelbrot's assumptions were questioned, by

H.S. Simon and others.

planations o

Simon, in 1955, published alter-
Zipf's Law and other patterns,

using the idea tha
the more,likely i

the more prior usage a word has had

is to recur.

. \
Mandlebrot has won the ddy, however.

* >

My most .

,

recent reference, in Mathematics and Psychology, edited
% by George A. Miller, John Wiley and Sons, New York, 1964,
includes tH1s quote from Birbel Inhelder and Jean Piaget

The aﬁplicability

-

K

on page 249:

-

o
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. during the 1930's G.K. Zipf stirred up
considerable intérest in various statistical
regular1t1es that he uncovered in his, analysis
of word frequenc1es "Twenty years later the
mathematician Benoft Mandelbrot was able to R
demonstrate that Zipf's laws were attributable
‘to random processes and 1mp11ed no deep 11n-'
gu1st1c or psycholog1ca1 consequences (9
Y '10. SOURCES '

. ~

[N

.

I first met this application in the essay "The
Sizes of ;hlngs" by ‘H. A Simon in Statistics: A Guide
to_the Unknown ed. Jud1th Tanur, Holden-Ray, 1972,
pp 195-202. -This paperback contains many short essaysl
thgt ow the‘épplicability and practical uses of star
if%)&t?, especially the difficulties of statistical
‘experiment design, Most are only modestly mathematikal.

The work of Zipf'and his colleagué?ﬁis well summar-
ized in G.X. Zipf, Human Behavior and the Princii;e of
Least Effort, Addison-Wesley, Cambridge, Mass., 1949, .
Chapters 2, 3, and 4. ) ‘

The original leéses data, complete, ;ppears in
M.L. Hanley et a1,~Word'Index to James Joyce's
Uiysees, Madison, Wiséonsin, 1937.

The mathematics used by Zipf to relate his. rank-
frequency law to the number- frequency»iaw for rare words,
presented in Exercise 2, was‘presented in G.KX. Z1pf

I"Homogene1ty and heterogene1ty in language", sxchologlcal
Record 2+(1938), pp.347-367. A more general argument&ﬂ"
Martin Joos appears in a“book review of Zipf's The Psycho-
Biology of Languége, ﬂbughton Mifflin, Boston, 1935 in

Language; ‘12 (1936) pp-196-210. Joos, while contr1but1ﬂg
to Z1pf's rrgdfj“??“not uncr1t1ca1.‘

A good summary of Mandelbrot's results and their’
meaning may be found on pp 60-69 of R.D. Luce, edt, -

-
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Developments in Mathematical Psychology: Information,

Learning and Tracking, Free Press oé Glencoe, Illineis,
1960. Part I (by Luce) is "The Thepry of Selestive
Information and Some of Its Biolagical Implications" and

covers Shannon's work and some brief mention of Zipf. 1

did not obtain the papers of Mandélbrot; Miller and Simon ’,
referenced there but relied on Lucg's'rendition Bf\{hfif:L’
work, which I hope I have not misrepresented. The
bibliography on 'pp 110-119 of Luce (above) will direct

you to the original literature.

;

The Project would like to thank William Glessner of.Central
Washington University, Ellensburg, Washington, and Mitchell Lazarus
of qupatlon Development Center, Inc., Newton, Massachusetts for
their reviews, and all others who assisted in the production of
this unit.

v

This material was class~tested and/or student revjewed in
preliminary form by: Stephen Corder, Southern_Baptist College,
Walnut Ridge, Arkansas; Paul Nugent, Frankiin Coliege, Franklin,
Indidna, and George C.T. Kung, University of Wisconsin, Stevens -
Point, Wisconsin, "and has been revised on the basis of data
received from these sites.

“This materlal was prepared with the ‘support of National
Science Foundation Grant No. SED76-19615 A02. .Recommendations
expressed are those of the author apd do not necessarily reflect
the views of the NSF. or the copyrlght\holder.
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xef = kand j <f < j+1 = j<

"11. ANSWERS TO EXERCISES

k . k k
;<J+1=>3—+-i-<rij. -

/
Thus a total ‘of

n. = K "k

k
i3 7T 30D
:anks r have associated felj, j+1).
- A

Similarly j - % < f<cj+ % >k r< k
* - 1 - 1
itz i-3 v
and
A S S k
j . 1 . . .
iz ity G-PGeD
= .
Usding partial fractions ‘ ﬁi A
’ A
. 1 . 1 1
NS PP A T
(j - 7)(J *3) ] 3 1/; 3

the partial sum is

+

Y.

h
\

SR ERREAN, Y

: .1 1 - s 3 1 1
- -t {ifn- 172 ifn-+Ii7ZJ 72 " an+1)/2: ‘
Thus the series sums to 2. But £ n, = 2k >> N

makes Zipf's model also only partially useful.
. <

Comparison- and integral tests are easy enough,

. >, “

The rule is f = j*1 for theoretical fe(j, j+1],
i.e., for ranks

k k - .
FTST <3 | AN
(using the solution method,of Exercise 1). Then :

- A A
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n. "L k. k | _k . T
*1 0§ 3+ 50D . ‘
for j =1, 2, 3, .... Thus n, is excluded, which
; makes no sense, and the split-up”of k totals .

Iy s f : _

z) a 2 s & ’ o ' ] (;
als6é not nicely interpretable. Shifting the terms 3,
n} > ny does not help us fit the Ulyss¥s data ’ .
better, as an eyeballing of Table 1 will show. - |

R Y R . ‘

' 1)

6. All thdt's missing is '

@
=S gy -
1
1 (1 1) ,.1fr 1) .1fr 1 N
ff[r*z]*'z[.?*i]*a[ﬁ*f]*
. L
o
1 1 P
. - nZ1 7n [Zn- Tt 2n’+'1]
i"“
. (-] 1 'I .w hY
- i} ,,Zl Zn [(Zn - 1) Tfnﬁ)] nzl (Zn - 1T(2n+D_
i , .
7. First we show '
1 1 101 -
Z2° T3 st Tt o o
[ 4
: = 1f1,1) 4, 11,1 11,1
", '3[1’5]*7[?*,5]*1[9 1’3]*
) =n= 4n+3{(4n+1f (4n+5)]' e
- y 8n + 6 - E 2. . N
n=04n+3(4n+1)(4n+5) 2o G+ o .
. The result then follows at once. -
L 20 g
|4 S
. . “ o
) * 3 ? —Y\
ERIC* 24
'Jdﬁmwma ) - . . - A}(“

C s N v v /]

*y




.

ﬁ

UMAP. MODULE 2
MODULES AND -
MONOGRAPHS IN
UNDERGRADUATE
MATHEMATICS
ANDITS . .
’ . APlﬂ.ICATIONS . - .
I gy Curves and their
Parametrization

" by Nelson L. Max

-d
A
d

4
J

v .d

A%
4 vIdy

:;l .
q

H.Z
H

o

nmr)\an;oduo;nﬂyxvga};
N
6

1 © H,Z

I
nmq&Xdin.Lgd_xo;nrl\(x1ga_$;‘,g‘k'g

I

b/

W v
v
N v N

N

—
~
—

: . R

d 0 o
d 0 O

M

<4

M

Z
nmqﬂXd_’n;od#o;nﬂ\(yvgaj;ng

o 2 W ] L e

380 Green Street o .
Cambridge, MA02139 | | K S '

N
>
9 Birkhauser Bostop Inc.
\9)
AN
>




A

D)

-~

v
i
.

"Intermodular Description Sheet: UMAP Unit 216 ‘

Title: CURVES ANO THE!R PARAMETRIZATION

Nelson L. Max

Department of Mathematics and Statistics
Case Western Reserve University
Cleveland, Ohio 44106

Author:

Review Stage/Oate: IV 6/30/80

Classification: [INTRO TOPOLOGY

/
Prerequisite Skills: !
1. Understand the representation of points in the plane by -
Cartesian coordinates. .
2. Understand the trigonometric functions of sine and cosine, and
the measurement of angles in radians.
3. Understand the, natural logarithm function.
4. Sum the geomefric and harmonic infinite series.

Qutput Skills:
1. Oefine a parametrized curve, image of a curve, orientation of
a curve.

a curve, write the equation &f one or more

2. Given the image of
parametrized ‘curves which trace the image with a given orien-
tation. . , i

3. Given the image of a curve, describe all its possible orienta-

tions.

. [y

Other Related Units: .
The Alexander Horned Sphere (Unit 231)

The Project would like to thank Joseph Malkevitch of York
College of CUNY and Anthony Phillips of SUNY at Stony Brook for
their reviews, and all others who assisted in the production of
this unit.

This unit was field-tested and/or student reviewed in pre- .
liminary form by W. Hugh Haynsworth of The College of Charleston,
Charleston, South Carolina; C.,Wagner of Pennsylvania State
University, Middletown, Pennsy?vanla; Tom Halgh‘pf Saint John's

. University, Collegeviile, Minnesota,; and Phillip Lestmann of
Bryan College, Dayton, Tennessee, and has been revised on the basis
of data received from these sites.

" This materiai was prepared with the partial support of National
Sciegce Foundation Grant No. SE076-19615 A02. Recommendations ex-
préssed are those of the author and do not necessariiy reflect the
vjews of the NSF or tHe copyright holder.

: ¢

© 1980 EOC/Project UMAP
All rights reserved.

o L

N
.

:qu{llC ) | 326

Aruitoxt provided by Eic

- e




A Firmext provided by R

A e g

CURVES AND THEIR PARAMETRIZATION

by
Nelson L., Max
Department of Mathematics and Statistics

sCase Western Reserve University
Cleveland, Ohio 44106

TABLE OF CONTENTS

‘ '
L4

THE DEFINITION OF '‘CURVE"

PARAHETRIZATIONS OF THE UNIT CIRCLE

OTHER PARAMETRIZED CURVES

CONTINUOUS CURVES




.

1. THE DEFINITION OF "CURVE"

. [}
“

Webster's Dictionary defines a curve as '"the path
of a moving point." If the moving point were the p;int
of a pencil, it could trace out the curve on paper.

o

. kY . . N

Y

.. For example, the point of the peﬁhii on a compass
might trace out a circle.

°

Webste;’gives another more technical définition of
a curve: "A line tha% may'Ue‘precisely defined by an” - ‘
equation in such a way that.its points are functions of
a single independent variable or parameter." We can ‘
think of the variable or parameter M time and call i t.,
Then the coogdinates of the moviné point, x(t) and y(t),
are the functions of time- .

S

ERI
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. Y —

ow the curve
has® been traced. In particular, their spacing will indi-

. If we imagine the pencil as making ?ot on the “*
curve ‘every second, these dots will show

cate the-speed of the moving point. Here the point is

s . . o
speeding up as it moves to éhe right. s
’

Y ¥ - .
- . |

* 2. PARAMETRIZATIONS OF THE UNIT CIRCLE

" Below is a circle which is traced counter-clockwise
at a uniform speed .of 15°, or f% radians, every second.
When it.is' finished in 24 seconds, it will have 24 evenly
spaced dots., The coordinates of the moving point are ' -
given by the equations ‘

Ry L

- x}t) = cosg[f% t}; e . ‘ k )
y(t) = sin‘[f% ?]. )

SERIC AR, )




‘. There are many other ways to trace the same circle.
In the figure below we see only twelve evenly spaced
dots, so the equations might be . ‘

x(t) = cos [% tJ;

y(t)

sin [% t]. ,\
However, they might also be
. c

x(t) = cos [% t];' . B '

y(t) = -sin [% t] '

which would trace the circle with the same constant ’ )
speed in the opposite direction. ° ) "
y
. N
oot »
» {
* »
v > X
, , . A /

(A
n
e

Aruitoxt provided by Eic:
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We might also trace the circle by having the x
coordinate move at a uniform speed from 1 to - 1, for
example, ) .

,x(g) 0 <t<6
. =

“y(t) /ﬁ - x2'= %‘¢6E - tz

° . . ‘
These equations work only to trace out a semi-

v
.

.

¢ €ircle,

?
-

Here the dots are not evenly spaced. They are
closest toéether at the top and bottom, indicating that
the curve is traced most slowly there. The tracing point
actually moves infinitely fast at the left and right
sides.

a

-QUESTION A: Can you find similar equat1ons to trace out
the bﬂFtom sem1C1rc1e, for 6 <t <127 i

y

Y
s
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All these different functions define différent
We say that they define
The set of points which
a curve passes through is called its image. All the
different parametrizatiogs of the circle have the same

parametrizations of the circle.
different parametrized curves.

image. ;
In addition to defining the speed,” a parémetrization

also defines the order in which the points in.the image

are traced. Thus, a point trac&ng a clockwise circle

moves in the opposite direction from a point tracing a

so it passes through the points

sThus there are .two

counter clockwise circle,
in the image in the opposite order.

.
* orientations to the circle, clockwise and counter clock-

9.

wise. - -

I

3. 0THE§ PARAMETRIZED CURVES

The situation becomes more cémplicated if the cﬁ;ve
is not one-to-one, i.e., 1f it passes through some points
more than once. Here is"a curve which crosses 1tse1f
pass1ng through the point B twice. One orientation would

be to pass through the p01nts on the image in the order ,

@cnss K . ) .

’ ~ L »
- . , ?' H
L4 & ]
>
<
N ¢ é -
o ©
. . { .
B hd . 3}
. . )
'.Q »,
L 4 t
. - | < .
. o Another ‘method of tracing fhe same image, shown
/

partly completed here, would pasg through the points

the order ABDCBE, making two corners at B. Two more -

) ’ ‘a a ’ S
*
‘C’
- . N
-~ s N
-3 < ﬂ .
’ .
. TR 332
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.

orientations would QUESTION B: °

What are the{?

o N ‘ H ¢

N

start at. E and end at A.

\ .

Although a curve can pass through éertain\points
on its image more than once, it should not cover whole
Thus, ABCDBDCBE would not give
3 Yalid orientation for the curve.

sections more than once.

IS “
There is hothg g wrong with a corner in a curve.
A mathematifal e is noE/necessarily a smoothly
curving line, but may have corners, and can even consist

entirely of straight lines. F3r example, a square is a

curve. Gan you find a set of equations which describe
this curve?
. . e
. Y
N .
’ (0,1) (1,1
e fl ‘ N - N
, , > .
. (0,0 1I- (1,0  “°X

-
" s

-

1,]Elz\y

L

The trigk is to find separate formulas for the
different ‘side's of the square, just as separate formulas

. could be used for the’ two.semicircles making up a circle.

~

Q . )

s ’, J ) o
« () .




\ The functions below define two sides of the ,square.

. t, 0<t<1 } , 1
x(t) = ~ ' v
) 1, 1<t<2
A
‘ 0, 0<tc<1 .
o y(t) = .
. t-l, 1 <t<?2 .
[ ) y M
R T™ = - -
. |3
. i -~
[ . G .
(0,0) (1,0) X

QUESTION C: Can you continue these functions for

N 2 <t <4 to define the other two sides? - .

- ’ s k]
\\ 4. CONTINUOUS CURVES . .
. ~ L] .
T A natural subcollection of the class of parametrized
S 'curves are ones: for which the tracing point moves dontin-

. uously, without jumping. This condition’ is equivZlent to
o requiring that the curve can be drawn yithout lifting. the -, , ‘
- . L ; : - v
- pencil from the paper.t. . .
- * t . ~ . ‘ ‘sa i i
[ * A R
+

R 5y . . '

i s/
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3

[E

s . ,

v

k]

- - ﬁ

It is also equivalent to requiring that the two
coord1nates x(t) and y(t) be continuous functions of

the time parameter t.®

¢

¢

©

-

v

If one of the coordinate functions is d1scont1nuous

for example,

t, ¢t <t<1
x(t) R
i t+l, 1<t<2
2
y(t) t .

.

the resulting image, shown below, may have a gap in it.
If both x(t) and y(t) are continuous, the result will be

a continuous parametrized curve called simply a curve

\

for short{ > . v . )
> ‘ ‘
. . ,. . i
- l‘ . " '
) N ﬁ’ ﬁ*' M ’
. 0 1 2 3
< )
" 1’ - - N v PR
/ \d w .
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1
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. K 5. CURVES WITH UNUSUAL PROPERTIES

There are many strange ea;%les which satisfy this
A definition of curve. : -

ﬁ/ - Example 1 il ‘

For example, if Inx denotes the natural logarithm >
of x', then the equations

e

. X =t cos(2n lnt)
Yy = t sin(27 1lnt)

which make sense on the interval 0 Lt <1, can be ef®
tended to a continuous function on 0°< t <1 by defining
. x(0) = y(0) = 0. This gives a curve, called the log- .
arithmic spiral, which has infinitely many (similar)
turns near t = 0. Nevertheless we will prove that it
has finite length. P -

Consider the first turn of the s;;iral, from t = 1 g
tot=cel, Suppose it has length L.

Y d '
A

tee
o 3%
T

.
.
oy ‘ .
b, « . )
f - . .
p .

|
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*

The next turn of the spiral, from t = e'l to t
looks exactly similar, but e_l’is large, so its length is
Le’l. Similarly the length of the next turn is Le Z.
Thus the length of the whole spiral is L + Le ! + Le™?
+ Le-s ..., a geometric series which converges to

L/(1 - e'}), a finite length.

>

Problem

Verify that the Zurn of the spiral from t
K is similar to the tuzn from t = 1 to t
constant of proportionality é.

t=e

xampyle 2

L
\\\\‘\There is also a épiral which winds toward the origin

uch a way that it has 1nf1n1te length. It is the

.

’

hyper$ol1c spiral

o

o= il
- X =t cos[t]

y=t sin[%]‘ -
-
which can again be defined for 0 < t <1 by letting x(0)
= y(0) = 0. The length of the spiral must be at least
" as long as the length of the inscribed polygon ABCDE...
~which we will show is infinite. If 0 is the origin, then
AB and BC, are both longer than OB, while CD and DE are
both longer than OD...and so forth. So the length of the
spiral is greater than twice the sum of-the lengths of

-

LA , ‘
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thé line segments from th& origin to the 'y crossings,"
the poin'ts where the curve crdsses the y-axis, the first
three of which are”B, D, F.

~.
i

[}
o

How\long is OB? Consider the intersections of the
spiral with the y-axis (x=0). Since t # 0, we have

éos[%i =0

sé€that, . 1.
3 _ 1 3n 57 7n
t, 2" '2—’ -2‘_’ '2—’

i'e., e e ‘o

Since t < 1, the acceptable Vqlueg'for 1;are %;, %?,

t ¥
The length of OB is thé y value when

bF oyt e

W
.

11

A"
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Below is the graph of y =t iin [%],.with the point

B! = lg, ‘3 giving the y coordinate of the point B,
i.e., the’ length of OB. Similarly D's %, % gives the
y coordinate for the point D. The length of the spiral,
which is greater ¢han the length of the poiygqn, is thus
greater than the series ’ . . .

2H+z[§]+zu \-4[% é+%+

which diverges. $o.the length #s infinite.
. . v

Example 3 . N
o s i
The infinitely wiggly graph of y = t sin (%] also has
‘infinite léngth by a similar argument. .

Other Examples
- ’
There are functions whbse Efaphs have infinitely

many W1gg1es, and infinite length, between any, two‘$01nts

LI A i Toxt Provided by ERIC R
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The snowfldke ‘cugve also has infinite length be-

tween any two of its points.
. s - hd Q . ,
& - '
'
Among the strangest examples of curves, are the
. "space filling curves," which pass through every point —
- in an area such as a square.
-
4
R
° .
¢ »
‘. o 6 EXERCISES )
, .
1. How many different parameterized curves have the image shown
below? . ”
1
~
~ .
- .
*
- - B ¢
. ~ ) 13
' A
- ~ L
s
E .
a2t

ERIC ) .
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2. How many different oriented curves have this image?

3. * Find two different parametrized curves, defined for 0 < t < 1, ¢
~t=
which have this piece of a parabola as an image? ' .
« N > ’
A (1,1) °
. ¢ Lo R .. .
\ [ R =
s S - .
. . S x .
(0,0) -

@ .
3. Find the equations for the parametrized curye which traces this
equilateral triangle at uniform speed in a counter-clockwise .

direction, starting at the vertex (0,0), ‘in the time interval

- 0<t<3t . . I

B B ’
o A S
: J - (.73 ¢ . . .
.
¢ L/ « . i
. i .
-
M
~ . .
4 . -
.- o : 3
.
(0,0 ' (2,0) ,
‘o . ~& = = ~ S~
M » .
- a 4 - J
~ - ™~
. L
‘4 ’ ’ - .
o ° s, v
& " .
N 1. °
L] .
. ' . N .t ¢ A ‘a- :
’ o . . = -y,
- . .
’ .
3
> 3
- \ ' - .
. » .
. ; o o .. .
.
- S - ° 4 . r
] § [
- . ¥
14
- o
. . . .
- ~ . - \
. . - . {
' ~ e » .
- . .
. " 5"1 - v
. 341 .
.
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7. MODEL EXAM

- N

State whether exch of the curves described below is an
o
oriented curve, a parametrized Gurve, or the image of a

curve.
.

a) The contrail left by a jet plane.
b) The script letter m, drawn from left éo tight.
¢) A marathon course. ’
Ld) ‘The straight path of an automobile, accelerating
uniformly-from 0 to 60 miles per hour in ten seconds.
e) A figure eight. ’ &

f) The path of the tip of a-second hand on a wall clock. * =
}f ABCD is the curve defined by tracing the first three sidds

of the hexagon below, with constant speed in the time interval
0 < t.< 3, find the formulas for x(t) and y(t).

EaRuind 4

D=(3’2m

. - X
A={1,0) B=(3,0) -

P
&




3. Describe all possible orieftations of the flgure 8, starting
At the top point P. -

-
'

o
;"’ e
/
/ .
g >
- LY
] - l- : Y
L. What Is meant by the Image of a parametrized curve?
5. Give a parametrized curve whose image ks
- ¢,
[y o x<1,0<y <1, 2=y}
~ . » .
.
1
¢ ~
: L4
- w .
® -
Koo ! ‘ -
[ . ~
/
1.3 K
Q
R Y




;\. x(t)=%t-3 '
v == A=t e ALy a-—/8t-t
B. The order EBDCBA and the order EBCDBA.
. {
. C. A set of the equations for all four sides of the square are:
) : t , 0<t<i 0 0<t<t
‘ ' 1, 1<t<2 t-1, 1<t<2
x(t)= 43¢, 2<tc3 YO =g 2<t<3
3<t<h "’“'35‘!5;"
§ ;
9. _ANSWERS TO _EXERCISES ; . -
\//. . . .
" 1. Infinitely many. . ’
2. Sixteen. ,
3. (Possible answers)
x(t) =1 -t, y(t) = (1-0)%
Tx(t) = t, () = e
x(t) = t2, y(t) = tl' ‘)
T x(t) = /t, ytt) = ¢
N 2t, 0<t<t 0 » 0t <
T M=, ey YO RBleD, <z
3(3-t), 2<t<3
l‘ g
L
, .
) Y:r
: 9

ERIC
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- . 10. ANSWERS TO MODEL EXAM .

1. a) image b) oriented curve c) oriented curve N

d) parametrized curve e) image f) parametrized curve

2.
1+2t, 0< t< 1 6 o0<t<1 .
Ae) = J2+t, 1<tz y(t)= s .
6-t, 2<tc<3 V3 (1) 1 < t°< 3
3., PABCDEBFP, PABEDCBFPY PFBEDCBAP, and PFBCDEBAP. ‘ '
5. Possible answers 4
7
x(t) = t, y(t) = ¢2/3 0<t<1 )
. x(t)=t3;y(t)=t2 10_<_t§| B .
3
. ~ y
L3 s ’ ¢
” ° ]
1 .
b o - L3 . - PR 4
A - *
. . s
. . .
‘ (2
. , » )
. N
1
. 18+ i
. .
L4
W - - ;
- . 345 ,
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® 1. INTRODUCTION
¥

In this unit we will déscribe the image of a homeo-
morphism from the standard sph;re into three dimensional
space, whose exterior is not homeomorphic tomthe ex-
terior of”a standard sphere, It is called the Alexander
horned sphere because it was discovered by J.W. Alexander
in 1924, and looks as if it HKas grown horns. We
will start by discussing the situation for simple closed
curves in the plane. Then we will describe tie horned
‘sphere, and suggest the idea behind the proof that it
has a non-standard exterior.

.-,
- »

’ o ‘ oy

Suppose we have such a-simplé'élbsed curve g. The
Jordan curve theorem ;¥ates that g(Sl) separates the
plane into the union qf'tWO non-empty connected open sets
Aand B. That is; R% - g(s1) = A y B, A and B are both
non-empty, and‘open, and in particulér, g{Sl) is the com-
plete frontier of both A and B. The previous set, A, is
called the interior of the curve, and the unbounded one,
B, is called the exterior. (See Figure' 2.)

A

e ‘THE JORDAN CURVE AND SHOENFLIESS THOEREMS -

A simple closed curve is a closed curve which does
Kot cross itself. If it as paramétrize& by a continuous
function f from the interval {0,1] to the plane Rz, then
f(a) = £(b), for a < b, if and only if a = 0 and b = 1,
(See Figurg 1.) ’

>
£(0) = £(1) .
. " r
-
Figure 1|

S

1f S1 stands for the unit circle,{(x,y)aR2|x2+y%=1};
we may aiso think of ouf curve as a homeomorphism g of

S" into the plane. This means that g is a homeomorphism

of st onto its image ggsl), although g(S™) is ‘not ‘neces-

sarily the whole plane, P

£ »
'

350 - | '
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® .
Figure 2
ks
The Shoenfliess Theorem states in addition that
the homeomorphism g, which is defined only on the unit
circle S°, can be exXtended to the whole plane, so that
it takes the interior of Sl-to A and the exterior to B. °

Thus A and B are homgomorphic to the standard ""round"
regions. ’ : )

*
We will not prove either of these theorems here.

3. °"THE HORNED SPHERE .
- N

Let R3 denote the three dimensional space of

triples of real numbers (x,y,2z), let

’

$° = {(x,y,z,)eRslx2 + yz + z2 = 1} be the surface of
standard round sphere in R”, and let g be a homeomo
of s? into R3. Then the gereralization of the Jorda
Curve Theorem, sometimes called the Jordan Separation
Theorem, states that R3 - g(Sz) = A U B, the union of
two non-emptygyconnected open sets, and g(Sz) is the

[ v
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complete érontler of each. Again; A represents the 1n~ <
terxor of the distorted sphere g(S ) and B represents

; . the exterior. (See Figure 3. ) : ) '

: e Fig'u/ré3’ ) ‘ R N v - 7 . / ’ )
. . R : . Figure 4
. . The analogous generalization is actually true in S . :
" any number of dimensions. ’ need only move points which lie ‘ingide the‘feur discs 7

« an

However; the generalization.of the Shoenfliess /
. ) Theorem is not true in the“case of g(SZ) and the Alexandex

Horned Sphere is alcounterexample. In this section, we

COO’ C ﬁld’ and Cll' gF1gure 5.)

s

01’

.,

will construct a homeomorphlsm g of s? into R3 such - ¢
_that the exter1or B of g(SD) is not homeomorphic - ta~ghe
exteribér of the standard sphere‘So~ In particylar, then, )
it will not be’ p0551b1e to extend g to a homéomorphism
. of the exterlor of s? ontd B. :

~ .To construct the- horne&’sphere, we start with a v
*round sphere as the first approximation and push out

.8 pair of horns to make the second approximation. We

..« can'do this by tak1ng two pairs of cdncentn,e discs on

;7. "s thHe sphere, DOC Cgs and Dy =C;.° Then we keep s¥ (Coucy)

N

. .

A flxed push CO‘- Dy and ¢, -'bl to the tubular sides

JFigure 5

of the horns, 1eav1n§'c1rcu1ar caps made from® Do‘and D C s * . . P .
as shown d&n Flgure 4.0 7" K . PR ' ¢ . We rep&ay’qgain and again! growing new branches .
- From, the flat ends og'these horns we push out two "« - on the tops of'éaoh of the gld branches., Since each
4 ’. ke . - . - . . . .
new pair of claws is a reduced version of the previous
..new branches in the ‘same way to get the third" approxxma- P P
X tlon' Jt lcoks like a pair of crab's olaws partla;ly - pair, the total amount any point moves 1s dominated by a.
< ,( -
¢ l ked but losed hi To do t} geometrlc progression. _Therefore, the approxxmatlonS’f¢ '
1n erloc ut not.closed or touching. To do txxe, we . . - \ , ,
. s ! “ v e” - .
* s N e . . : -
-, T ; e 3 3 . , . . i .,— R R 4
L . S, /\ P 353+ , .
P \ RN " ‘ . P :‘ . o ) N . . y -
. e e 1 ‘el ' - .t RS ¢ T
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° . P . <«
converge uniformly to a comtinuous limit function g from"™ -
S” to R™. By the wdy the construction is arranged, g is

- »
also one-to-one, so it can be proyed that g is a homeo-

morphism. (Figure 6.)-
1 ‘ .

Figure 6 ..~ .
We can rotind' the corners of our surface to mdke -
a-new function g which is smooth (Figure 7), except at ) ‘

the points which belong to an infinite number of the
fiscs C,- These exceptional points are’ called wikd
points, If we take any infinite binary expansion, say
.01100110..., we can get a corresponding contracting
-sequence of discs C0=>C01= C011= Co110 =...w2ich~60ntains
a wild peint P in common. Thus there is at Jeast one
wiid‘point for'ébery real number between 0 and 1, so
Lthat the collection of wild points is uncountable.

Let C = {(x:y,z) cR3|x2+y%ﬁ22|<1} be the interior
of the'unit sphere S% Then we could pull C along as ‘we

\ push_out Sz,hso tﬁe'functipn\g can be extended to C, - -
\ giving a homeomérphism of the closed ball SZUC into RS. .
Therefore the interjor A of'g(é%) is theémbrbh{c to )

the round ba1l c. . AT | S
. 1 I4 LI . . .
s\ ‘

w
wan
-

e

L
LN

N

a._

4 L]
y Figure 7
: 2 ;
But what about the exterior B of g(S°)? We wil]
show in the next Section why B is not homeomorphic to .

the exterior D of the unit sphere SZ.

-4 . 4
i & ' .
Tha demonstration that B is not homeomorphic to
D useil‘he following topol¢gical property. A set X
is called simply connected| if every closé&d curve in

X (called.a loop in X'for short) can be shrunk continu-
ously\in X until its ima

SIMPLY GONNECTED SETS -

is a single point.

For example, the exterior D of §° in RS is simply
connected,” because eve; lgbp L can be pulled’'off the
sphere and collapsed tofa single point P. A number of

) intermediate positions/gre shown in Figure 8. .

Suppose the loop /L is parametrized by a coh%iniéus
function f(s) from .{0/1] to’X, and that the shrinking
Fmotion takes place for t in the time interval [0,1].

Then .for each fixed E, we get an intermediate curve
[ J .

855 ..




. ) s Figure 9°
' . ] if*? Then h™lof is a closed loop in D. Since D is .

' Figure 8 ‘ X simply connected, “there is a homotopy F which shrinks

the loop h~ °f in D to a point P. Then hof will shrink

éurve f (s), wh1ch is aIsb closed and continuous, and ) .
the loop f in Y'to a ,peint hCP) ‘Since this works for

J . these 1ntermed1ate curve depend continuously on t The

a . - any loo inyY, Y 1s simpl connected
intermediate curve must agree with f(s), when t = 0, | y Paf: P y
Y+ and stay fixed at_p when t = 1", Thus, a parametrization We say simply connéctedness is a topological property,
., of the.Shrlnking motion is a contlnupus funct1on 1” . because it is preserved by homeomorphlsms
F(s,t) = f ¢+ (s) of two var1ab1es, s€[0,1], which marks ‘e .
o \dxstance along ‘each curve and te[0,1], which marks the, - . . 5. THE EXTERIGR OF:EHE HORNED SPHERE T
different 1ntermed1ate curvgs in the motion. " ’ Co . . : -
- .- . -
- : : o .We can prove similarly that ‘the exterior of B of
(NG Ltomust satisfyr - the Alexander Horned Sph t h hic to D,
. . . N . e n orphic °
\ o “a. FUs,0) = £(s) for all s, ) - . fe exan :r o;n: phere is no . omeom :e;
. ) b, £(0,t) = f(l,tﬁ for all t, Tnd t we can show that it is not s1mp y connec .
. c. F(s,1) = P for all §. At first, this might seem d1ff1cu1t because the

. ' . . cla stouched, h of d&ch a -
Such a flinction F is called a homotopy. It is said WS mever ‘touched, so,the e;ter1or pproXi

mation is simply connected. However  a operty which
to shrlnk the lqop f id X to the point P. Py » @ property
is true of each of a sequence of approx1matzons is not Lo

. - If T denotes the golid donut, or torus, shown in necessarily true of the limit. 1In fact, we can define

FISUTe 9, then its exterior Y = R*-T is not simply con- the horned sphere differently, so that the exterior .
. 2 nected. The loop L, which WLraps around the- hole, cannot L. . , of each approximation is not s1mp1y connected .
; “be shrunk to a point without cross1ng T " ) , Imag1ne you are carvirg the,sol1d horned sphere ,
‘k < , Suppose ;here were a homeomorphism h from the ex- g(S“UE) out of a piece of wood. The f1rst appfoximation
terior D of S” to the. exteg}or Y of T. Thén, knowing ' Xy will be a torus wi K “two bulges, one for the,or1g1nal
'\ D’is simply connected, we could prove Y to be simply sphere, and 02//;0/€§italn the claws, as showﬂ in
> - connected az;§3é;ows. Let £ paranetr1ze a £losed. loop . Figure 10. -

) ¢ I . e
Q | . . 47 o , e ) :355’7, ., 8

. f . »
.. N . -
Full Tt Provided by ERIC. o . . N
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The exter1or K

LD
L
Figure 10 »

loop L cannot be shrunk.

1 is not smply:connected, since the

The next step will be to carve out twe claws from

the upper bulge (see Flgfre 11},

nected by two smaller bulges.
simply-connected exterior, since the loop L st111 cannot

be shrunk.

The result K

leaving their tips con-

has a non-

~

°

If we continue, we get a sequence of closed sets

}\l:}\ :>K3 o. ..:g(s

is non-simply connected.

U C), each of whose exteriors
(See Figure 12.)

\

Figure 12

.

Now suppose the loop L could be shrunk to a point
in the exterior B of g(s ), using a homotopy F(s,t).
S1nce the image of F does not meet g(S" U CYy, it must

remain a finité distance € away.
5011d approximation x

But now

image of the homotopy will also miss K

e

find a

within € of g(s UC), and the
This contra-

dicts the fact that L cannot be shrunk to a po1ht ‘on

the exterior of K .

AY
6

6. PROBLEM

P’

Draw a sphere g(S ) such that its interuor A is not homeo-

morphic to the interior C of a round sphere.

P

k)

) . 1o

s

e

~
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Solution: Push the horns into the

~'A hole has. been cut away from the surfac

[ 4 v

insidg of the sphere.

€ to make them visible,

+
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. SINGLE ‘REACTANT IRREVERSIBLE REACTIONS

i
- + . .

. ) R J Y .
1.1 Definition and Some Examples v ’ -
7 .
Suppose we have a chemlcal réﬁctgpn of a p

51mp1e sort,.one which 1nvolves only one substhnce (1
call it A) as a reactant,-and whlgh is 1rrever51b1e,
therefore g61ng to completlon I't hgy be- represented b}

. writing: A - B + 52 + ... B ,

.

where B, Bz, e B are Jthe pxoducté Suppose, at .time

n
t = 0 we have a certain’ concen;rqtlgn a, of.A (measured, . \\

for .example, 1n moles per liter)..'It s possible to
observe and record the concentratlon a(t),of A at various, 7
later times t. . .0 ’

' TABLE I

Experimental Data from Three Slngle.
Reéctant Irgeversible Reactions.

) - «

t

(seconds) 51 (<206 | ush | 751 | 1132

¥

(:étAg) ) 58 113.32 | 11, 7317.79

Al

-

t
(minutes)

a(t)
(mm Hg)

«

4
t

(seconds)
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" Table I gives three 'sets of such observations. Part
" (a) Ads for an experiment conducted at 280°C’involvino the
decompos;tlon of tr1chloromethy1 chloroformate into phos-

gene: _ -« 0 . 0 . -
- , H 0
' ‘ Cl-C-O-CCl -+ 2C1-Cc-C1. - |

* -

Part CB) is for the decomposition at 506 °C of ethylamine

into ethylene and anmonia: o . :

. hd N * .,

. o C,H.NH, > C,H,+ NH,.

Part (c) is for alkaline hydrolysis of ethyl“ﬂdtrobenzoate
at an iﬁitial toncentration of 0.05 moles per liter.

" The reactants in parts (a) and (b) are gaseous. At
constant temperature and volume, a(t)‘zs proportional to
1ts partial pressure, and it is this figyre, in millimeters
of mercury (mm Hg) that appe§rs in Table I. 1In part (c),
a(t) is g1ven as a fractnon of-a ’

’
hd L

*In the conversion of tr1chloromethx1 thloroformate to
phosgene, bqth the reactant and the pmeduet/are gaseous, ¢
and the total pressure actuallv 1ntreases as the reactlon
proceeds beCause each trlchloromethyl chlazéformate molecule
gives rise to two phosgene molecules® The partial pressure
of the trlchloromethVI chloroformate is deduced from the
total pressure by taklng the. react1on-eauat10n and the
or:glnal pressure into 4ccount. In many reactions,. however,
the .amount of the reactant 1§'determined by techniques

based on its absorption of light. = . °
1.2 Graphgl of the Results - ) o ’
. - » [ W
We have plotted these results in Figures 1, » gnd -

3. In’ that all of the curves decrease as« t 1ncrease§,
‘these curves look very similar. But there is at least .

, one 51gn1f1cant difference (aside from the differences of’

scales} . In each figure we haye selected various cencen-
trations of A and determined graphlcally approximately how

, long it takes for a(t) to decrease ‘from the selected con-

centration to half of it. ,For example, Figure 1 shows us

- - -

0y

Iy




.

|
PR G

VR P

A

N 5 ._._..l.-.

|
—= =

B R >

-
.

.

(7
&

1000 . ‘. 1500 2000

N *§—)¢
H—mo sec — )
. {‘——‘—*—'——IZOOSCC —_—
\ * Figure t. Dec-omp'osit'lon of Trichloromethyl-Chloroformate (from 'l%ble 1{a)).

i

\.' - /a(t"
© Amm Hg)

}
|
|
|
$
1
|
i

R YRPRN S

=

T P o M -y w—

;..
4--

. W—— .....l..--.

>

e ————

-

P (T TP
- N
o A

“

'(-7 4 m’in—}
k.,Z..Zmin*

v mosoleimcpa

. f‘7 5 mizj ) .
Figure 2. Dec posltldn of Ethylam!ne (from Table l(b))ﬁ_ ot

Y

s Lo .
7




‘ ] Q.7

. 0.6

o 0.5

. .

R e e S

0k f}._,.-.:_.—_;_. .

. . . 0.3 |-

-
[ <

| 4 ;

o 0+ 1100 .zoo 300 40;1 500 1600 t(sec) . ?
' . ———300 sec :

. W\

3#5 sec——>
-, ’- P =400 sec
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¢

. ) f;lat it tal\es apnroxmatéﬁy 1170 seconds for a(t) to e
. decreage from 14 to 7 mm Hg,.or 1220, geconds *for it"te ®
decrease fromj)c to 5.mm Hg. In edch of - théffxrst two o
figures the m

(----_-.

A

asured t1me 1ntervals are approxxmately .
equak, but in Figure 3 they are not, v - . "

v o

1.3 Questxons ) ‘ ' LA B

- [ "

- " Can we explain this dxfferince in terms ‘of. the !
reactxons" Or, t-urnmg the qu,estzon arou‘nd, can we draw . K aitd
any conclusicns basba* on these observations, aboyt the .
/ na‘ture of the reactlons" L . \ N

,l

1 4 Thenmica'l J(metxcs e . ‘ . !

K e .o
i .
~ 0 Ques,txqons such as these are part of a branch of

chemistry known as chemical kfnettcs. Chemical kmetxcs
is concerned with the rates.and Jn/echapksms of}(chemxcael
~

’ 'S /’ ° e 4

. . - N . .
, . . , .ot
. '
- . — -
. . .
., . - . »
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reactions. The name reflects the fact that "kinetics"”

is concerned with the changing aspects of systems, as
distinguished from "statics" which concerns systems at
equilibrium. We should also point out here that the

rate at which a chemical process takes place and the
mechanism of the process (i.e., what exactly happens
during the transformation of A into B, ‘e B, + ... B )l
are two different things. The study bf.geactlon mech~
anxqms lies at a higher theoretical level than the study
of reaction rates. In general, experlmentally determined
reaction rates can be used to rule out a proposed methanlsm
if they are 1ncons1stent with itS But exper1ment%1 dat&

that are- con51stent with a proposed mechanism can only .
serve as support1ngoev1dence,forelt, they cannot be used

) d1rect1y g prove its correctness.

REACTION ORDER

[y

2.1 Definitibns

°
To make the question in Secti%n 1.3 more specif;c,
we shall summarize some background information about the‘
reaction rafes in reactjons of this type. If substance
A (1n gas or: 11qu1d form) is uniformty distributed, and
if the temperature and volume are kept constant, then.it
usually turns out that the rate a'(t) at which A decom-
poses is prbportional to a non-negative intéger power
(0,1,27...) of the concentration a(t). In other words

ar at(® = -kfaen™ LT

LAY
u,where k ks a pogigive constaﬁt and n is a non- negative

1nteger.' We'call k the rate constant and M the order 8.
the react1on Equatjon (1) w1th n established is called
the rate ‘ZazJ foly the reaction.’ X

We shall coﬂg1ger reaction orders 0, 1 and -2 #n ,
deta1l . H1gher réaction- orders for reactiors of fﬁ'/fype
we are d15cuss1ng are c0r51derab1y more rare

-

€ L
:
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N{C‘I o . al - .o ...'

RIA Fuirvext provided by enc:

. .& LN t
2.2 Zero-order Réﬁcxions';;" B -
) Setting n = 0 in Equaticn éi?e; i R ‘;?.4:.
. Yoon ) . -
2y a'(t) = -k .‘/A - RRPE

where we have 1ntroduced the .subscript to denote the
reaction order. The rate is 1ndependent nj the-concen-
tration of A It is determined by other facto?% such as
temperature, the intensity of light in light-induced
reactions, the surface area available in surface-catalyzed
reactions, or the amount of catalyst in homogeneous

N

t
catalysis. (A catalyst is a chemical substance that con*
. trols the g of a reaction without undergomp any net
change in its®1f over the course of the reactlon )
s .
2.3 First-order Reactions - ')
© In this' caSe. we have o
* (3) at(t) = -kja(e). %7
Mosf simple decompos1t1on reactions 1nvolv1ng,a single
" reactant are of first-order. Th1s is not surprising if
we: imagine the reaction process to consist of molecules
-~
Qi A decompos1ng randomly. If, for example, each molecfle .
has 1 chance in 10 of decomposipng in ‘the next second, sthen
about loth of those present will in fact decompose in that
second. In other words, the ‘change in a(t) in that secong
is about -— a(t)., We descrxbe this by wr1t1ng T
o - »
". at(v) - gna(t) N
2.4 Second-order Reactlons : ' ) e
* . .
The rate law for second-onder reactions is: * B
\,_ (4) : a'(t) = -kqa2(t). :

* In general, elementar) reactions which require the collision
;(pf two molecules are good candidates for this category.
- [:4

2

" -~ 2.5.-Statement of the Problem

A - - .
Equation (1) has been confirmed for many reactions

'By numerous experiments, and also explained theoretically.

S ‘ . Ed . v

.
EIRNTY
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O a(t) = a, - k

N .

-

We shall not get into the theoretical explanation except
to say (as has already been indicated in Sections 2.2, 2.3
and 2.4) that different reaction orders are the result of
different underlying reaction mechanisms. So if we have

a reaction and want to know more about-its mechanism a
‘very useful first stepsis to determine its reaction order
experimentally. .

Can we use data such as that given in Table I to
determine whether a reaction has one of the orders we have
discussed, and, if so, which one?

»

3. DETERMINING THE, REACTION ORDER-¢

>

L]

3.1 Solviﬁg for:a(;)

To begin with, we can use Equations (2), (3), and
(4) to obtain explicit formulas for a(t) in the three
caseés.

b

.

> . (a) Zero-order reactions® If a'(t) = -ko therklvqr'i
a(t) = -kot + C where C is a constant of integration.
Using the” fact that a(o) = a, we see that C = a

o and

ot

[ :
. (b) First-order reactions: Starting with Equation
(3), divide both sides by a(t) (which®is never zero):
- . : ' F <
" b
s . ) al(t)

a(t) g:f Ky " .
. ) 10
.th 2 (x) gt =/f-f; kpde? L

p a(t 2 d
t t=
1n a(t 1 = -kltl
J0 0
Ina(t),= '.kLt + 1lna,
< -k.t
"'a,(r«tv) = ﬂ:'e 1

[

J.

~




~ : . . ’ ;
{c) Second-order reactions: In Equatmn (4) we
dxv1de each side by az(t), and conclude that °

. ’ al t) - ,k
. 2 I ! ' g
. a* (v . .

- - tallt) gp . oty g | . #
. T~ X1 [ ure \

o a(t) = s paer e .

D
- .

b .
Exercise 1 o - N -

+ Rind a,(t) explicitly for a thiF-order reaction. .
~ -

. . Exercise 2 )

- '

. o
s Assume tyo reaction{ are of first and second order respectively: 12

. . .ooade) = ckaly) * . N .

b2(t) .o\ .

- L ° b'(g)--ku
Assime they begin with the same amount of redctant (a = bo), and

. & their initial rates are the same [a'(0) = b'(0)]. Pr0ve that
akt) < b(t) for all t > 0. .

o (Hlnt" Note “that i%% en t = 0 and show that lr is str-!ctly

decreasing for t > 0.) . ’ . oo ’ ' -t

. °

- . R N - N
. 3.2_The Difficulty e LT Tagane T L \x,
ﬁ ‘ * The rate constant (k kI’ II)T ‘is of coi.lrse‘ not i
> (rﬁnown, so\we cannot get away with, anythmg so na1ve as
* 'plugging our data into -Equatdons (S), (6), and (7). .
to see which one checks oyt. It is true that the gtaphs

. - - >




. of these equatxons have three dlstxnctxve shanes
whatever the constants are (for example, Equatxon (S) T
is a straight lire). So wg could con§1der graphxng

ouy experimental data and'trylng to determxne which

"shape' curve f1ts it 'best. In this unit however, we
present a method of determining the reaction order that -
does not depend on graphing, and whxoﬂ\also gives us the

* rate constaht at 1o extra cost.

3.3 Solving the,Difficulty . .

The method_starts qith'éolvfng Equations (5), (67,
and (7) for k°4 klf and Fil: | _

’ Al
T e

(8) kg t—r . t> 0 '
1, 20 LT s
.(9) kI = fln iy ‘ Lt 0f
. _1{ 1 1 ’ '
(10) kII --Yv [m ao], .t > 0. .

Now 'if, for exampie, the reaction order is zero,
then all the data points _ should satisfy Equation (5)
for some constant kg Thus whenever we Substitute any
data point (t, a(t)) to, the right side-of Equation ¥8)
e should get more or less the same value (namely kg).
Naunrally there will be small variations due to experi- - -
medtaloerrof ‘Similar comments apply to Equation (9) if
) the reactxon oerder is one, and Equatxon (10) if the . j{
reaction order is4 two. . o

. e

t . So all we need to do is compute three rows of
* figures -- the right sides of Equations (%9 .(9), and
! (10) -- for'bur ‘data points, and see if any row remaxns
mdre or less constant. If so, that row gives us the .

' ‘

Teaction, qgrder, and its constant value is the rdte .
o Q .
Ccnstant ’(ko’ kI’ or k I)" T b

CERIC e e 974
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3.4 An-Example .

1

As an example, let's go back to part (a) of Table I.s
In Table II, we haVe repeated the data and also tabulated
.the right sides «of Equations (8), (9), and (10). The )
figures in_ the roy corresponding td Equation (9) are
nearly constant (» 5.8 x 10 "se¢”’) while those in the
other rows are not. So this réaction is apparently a
first order reaction with ki-= 5.8 x 107 “set”?!.

’
b -

N TABLE 11

Calculation of Rate Constant and-Reaction
N Order for Data of Table I(a).

206 | usi

Exercise 3 : ‘4

v
i .
Determine the reaction order and rate constant from the data

. given in part (b) of Table 1. .

Exercise & B y
o) ' o
° Determine the reaction ordf:;and rate copstant from the data

given in part (c) of Table 1. - ,

A
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4. HALF-LIFE .

L ] ‘ ’
4.1 Definition . “v .o .

The half-life t, of a~cért§in amount of a reactant
is the length of time Tequired for exactly half of it to
- be used up. In other words, if the amount of reactant

is a, at time t = 0, and if a(t) is the amount at a- later
time t, then t, 1s the solutlon of the equation
:. 1
< .oA(t) = 7 3.

. ~

In Section ‘1:2 we determined graphically the half-

lives &f various amounts of three reactants, and discovered

thas for two qf the reactants ty, did not seem to depend
upgn the initial amount,vbut for the third reﬁctanfgif
did. Let us. see 1f this phenomenon can shed a little
more 11ght on the concept of reaction order,

[
. - -

.8 - ’
4.2 qFormulas for Half-Life

. ‘ v .

To start with, let us compute t% for each of the

-

three reactlon orders we are considering. All we need
, — to do 1s-sgr a(t)‘ -la;—In—eagh of Equatlons (S), (6), ~

-% *and (7) and solve for t: ,
] ! 3
1 . .
1 t, = a ero-order) -
A T S ).
-~ 5 ?°f ) .
M = B i- iz . . R
(12) t,1 —Tﬁt . (Flrst.order) . . . .
-~ ‘ 1 ‘ . - A . >‘7
. (13) - t,.5 E————i . (Second-order) ..
L] x” II .a.o . )
Exercide § ‘ D -, ) . .
- , " Find ti as, aefunct|on of, a-\for a th:rd-order reactlon
JRER ‘ ) .
. Exercise 67 - . - -3
. P V-
We define t, as the time required for. % of a reactant tq’ be
. used up. That 15,,a(t,/) ta,. Find t, asa functlon of a  for
* reactions of zero, f:rst, and second-order.', . "
* - - N rar * . 11
. . - . ¢ " A
-, Tl - ‘ \ Lot
- \‘ . .o‘ T . “ . ” .
-, ' . ' 53776; X 3 LI
) .
< * - q.

<
A .




. Exerciseﬁ

t
3 .
Flnd the-ratio /% 1 for reactions of zero, first, and

second-order t} ”
’

Exercise 8§

Table 111 ?ives t* and t,/“ for three initial amounts of the
~reactant in the reaction [
CHyCHO —— cH, +CO <
écetaldehyde methane carbon monoxide )
Determine .if possible whether the reactlon has one of the three
or('iers discussed in this unit and, if so, which one.
Fd
. TAB®E T11- - \
.. Half-1life and 3/, -Life Data for the
Reaction CH,CHO ~ CH, : co (Exercise 8)

. éz
a, (mm Hg) . 42y 225 184

t, (seconds) \ 385 572 665

t,, {seconds) " 1710 1920
3/“

.
.,

Exercise 9 . !
i '

o

'Suppose, for euery X between 0 and'l we write t for the,
time required for fraction x of a reactant to be used up (tn
Exércise 6 t3 © is an example of t ‘with x = 3/ ) Show that in
a first-order reactlon ’ls |ndependent of the |n|t|al amount no

matter what X is. .

-

[ ]

4.3 Zero-order Reactions
v

- For a zero-order reactiod, half-life is proportional
to init'i%amount. " The greater the amount, the longer -

R

« ©
’

TR -

A Tex: provided by ERIC .
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i

.

the half-life. To help yourself understand and remember
this, thxnk of a very large humber of marbles, from which
we remove, say, 10 each second (k = 10). The more there
are orxglnally, the longer it w111 take to remove half of

- 1

them. ‘ . ' Ny

»

5

"> 4.4 First-order Reactions - \ .

[ B

For a first-order rea'ction2 half-life is independent
of initial amount!! To help “Onderstand and remember this,
think dgain of a very Large number- of marbles. This time
remove one half of the _pile in the first second, then one
haﬂf of the remaining pxle in the next second, etc,

(kI = %). No matter how many we start with, it w11l take S,
one second to remove half of them. Also, at any later .
stage it will take one secand to remove half of what .

N . i
remains, P

2
.

4.5 "Second-orddr Reactions h ) )

‘§or a second-order reaction, half-1ife is proportional -
to the recxprocak of the initial amount. Another way of
say1ng this is mhat a(t, is-a constant. The more’of A . -
there is, the less t1me it takes for one half of it to
decompose! Although this ﬁay seem paradoxical we invite'
you to tonsider the fact that second-pgder reactions v
depend upon coflisiops of pairs of molecules. Equation '.‘
(13) says that the more molecules there are, the more
likely they will collide, and the faster the reaction wﬂgl
proceed. : o7

Exercise 10 . -

The folﬁowing data were obtained by F. Daniel§ and E.H. Johnston
(J. An. Chem. Soc., 43, 53 (1921)) for the deéomposition of nitrogen
‘pentoxide éNzos) in solution in carbon tetrachloride (CCIB) at 45° ¢:

2N,04 > 20,0, + 0. N

I




A~ =
v
K T

(Secgnds) 0 | 184 | 319 526 | 867 |1198 | 1877 | 2315

concentration

.

of N0, _ 2.33] 2,08 1.91] 1.67] 1.36 [1.11 ]| .72]| 55
(mole/8)" "y

.

h Y

| .
Determine the re?ction order and the rate constant, as well s8s the

L d
half-Tife ti' How long would it take for 87.5% of the reactant to
+ L]

be used up? v

ry - .

0

A .

¢
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: 5. MODEL EXAM .

1. For some reactions the reaction order is found

to be fractional. F{nd a(t) explicitly (in terms

; of.ao) for a reaction with reaction order n = %.
“ hd .
l. * > -

2.7 Define t, as that time for which a(tx);= (1 - x)a
Find t, for a second order reaction. Is this t

o

independent of ao}- ' 2
”

“
.

. . .
3. Determine the reaction order and rate constant from
the followirng data for a hypothetigal-reaction.

Y

t (seconds)' .0 2 ¢ 4 ' 6 8 -10
a(t) (moles/1) | -10.0 | 3.98 | 2.51 | 1.82 | 1.44 | 1.19
3 = .
LY ’
T ~ ’ N
& E"- ).
® . ' X .
& . ' ]
[ §
. 43
N . U
A » 1 'S -~
. , . “ . )
< - "y " ‘v * .
¢ P * e o

+
4
®
=3
«
\

N .- . ,/‘ (9 .
. 15
s, - . ‘e
%%ﬁ?ﬁ ‘. Joo
- 4
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. ANSWERS TO EXERCISES

’

1. t) = RN S — ' ‘. .
a(t) ao[Zaozk t + I]

i ‘ .
2. The information given to us is:
1. a'(e) = -kIa(t) ‘
2. b'(t) = -kIIbZ(z)
3. a(0) = b(0)
5. a'(0) = b'(0) . .

a S . . .
('\ b To see that -E%%))- is a decreasing fungtion of t, we show
that the derivative of the quotient is negative,

d [a(e)} _ b()a'(t) - a(t) b'(e)
3t [bte)) b2 (0) : ‘

N

- bR (kpa(e)) - ale) (kypb2(e) ‘

- . ’ b2(t) - ~ .

k
- | : .
(14) . a(t)[kII m—a-]: .
Now, a'(o)“= b'(0) means that - ’
kpa (0) = kygb2(0) ' -
" and a(0), = b(0) means further, that _. .
ka(o) = kIIbZ(O)- . . ———~———————T—4—-

~ . . +

kp = kg{0). , ' . "%,

When we substitute this value of kI in Equation (14) we obtain
o

a‘;[%m] - a(‘)["II ) ] .
3 e = kIIa(t)[l - E%] . .o
Since b(t) < b(0) for t > 0, L .
‘ b(o) , ,
< a . m s

‘and | " .
_ b(0) .
‘[1 blt ]5 0. -

N - . s ’ .
D . « , . ‘
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.
A

Reaction order = 1
1

-2 -
k= 9.4 %10 "min .
R;a_action order = 2 .
agk = 4.1 x 10 % sec”™” or, since a, = 0.05 ,
2 -2, -1 -1
. k=8.2>$\102‘1mo[e ‘sec .

- B
- 4

\ ’

, Second-order:

Zero-order:
First-order:

2
2
Second-order: 5\_- _

T .. 8. __ Second-order. -~
- . '

' \
First order, k = 6.2 x 107" sec ., t, ¥ 1120 ske, 3ty = 336 sec’

ANSWERS TO MODEL' EXAM,

’
>

2., t ’- -a—‘_— [‘.X
X 3%
A"
k=7.5x%x 10! Zmole

Order = 2.
‘s

s

¢ e,




